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Preface

This monograph is devoted to a rapidly developing area of the research of the
qualitative theory of difference equations. In particular, we are interested in the
qualitative theory of delay partial difference equations. The qualitative theory of
delay difference equations has attracted many researchers since 1988. The prolifer-
ation of this area has been witnessed by several hundreds of research papers and a
number of research monographs. It is known that most practical problems are of
multiple variables. Therefore, the research of partial difference equations is signif-
icant.

Recently, a monograph of partial difference equations has been published by
S. S. Cheng. The mathematical modeling of many real-world problems leads to
differential equations that depend on the past history in addition to the current
state. An excellent monograph of partial functional differential equations has been
published by J. Wu in 1996. By the same reason, many mathematicians have been
working on the delay partial difference equations. Much fundamental framework
has been done on the qualitative theory of delay partial difference equations in the
past ten years. And to the best of our knowledge, there has not been a book in the
literature presenting the systematical theory on delay partial difference equations
so far.

This book provides a broad scenario of the qualitative theory of delay partial
difference equations. The book is divided into five chapters. Chapter 1 introduces
delay partial difference equations and related initial value problems, and offers
several examples for motivation. In Chapter 2, we first discuss the oscillation of
the linear delay partial difference equations with constant parameters, where the
characteristic equations play an important role, then we present some techniques
for the investigation of the oscillation of the linear delay partial difference equa-
tions with variable coefficients. Chapter 3 is devoted to the study of the oscillation
of the nonlinear delay partial difference equations. In Chapter 4, we consider the
stability of the delay partial difference equations. In the last chapter, we introduce
some recent works on spatial chaos.

Most of the material in this book is based on the research work carried out by
authors and some other experts and graduate students during the past ten years.
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1
Preliminaries

1.1. Introduction

Mathematical computations are frequently based on equations that allow us to
compute the value of a function recursively from a given set of values. Such an
equation is called a “difference equation.” Partial difference equations are types of
difference equations that involve functions of two or more independent variables.
Such equations occur frequently in the approximation of solutions of partial dif-
ferential equations by finite difference methods, random walk problems, the study
of molecular orbits, dynamical systems, economics, biology, population dynamics,
and other fields.

The theory of delay partial differential equations has been studied rigorously
recently. Delay partial difference equations can be considered as discrete analogs
of delay partial differential equations.

Example 1.1. In order to describe the survival of red blood cells in animals,
Wazewska-Czyzeska and Lasota proposed the equation

p′(t) = −δp(t) + qe−ap(t−τ), (1.1)

where p(t) is the number of the red blood cells at time t, δ is the rate of death of
the red blood cells, q and a are parameters related to the generation of red blood
cells per unit time, and τ is the time needed to produce blood cells. If we add one
spatial variable to (1.1) and assume that spatial migration is possible, then (1.1)
becomes the delay reaction diffusion equation

∂p(x, t)
∂t

= d�p(x, t) − δp(x, t) + qe−ap(x−σ ,t−τ), (x, t) ∈ Ω× (0,∞) ≡ G,

(1.2)

where d is a positive constant, Ω is a bounded domain in R, where R denotes the
set of all real numbers, �p(x, t) = ∂2p(x, t)/∂x2, τ and σ are positive constants.

By means of standard difference method, we replace the second-order partial
derivative Δp(x, t) by central difference and ∂p(x, t)/∂t by the forward difference,
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then under the assumption p(xm, tn) ≈ pm,n, (1.2) becomes the nonlinear delay
partial difference equation

pm+1,n + pm,n+1 − pm,n = −δpm,n + qe−apm−σ ,n−τ , (m,n) ∈ N2
0 , (1.3)

where q, a ∈ (0,∞), δ ∈ (0, 1), σ and τ ∈ N1, Nt = {t, t + 1, . . .}, pm,n represents
the number of the red blood cells at site m and time n.

Example 1.2. Consider the temperature distribution of a “very long” thin rod. We
put a uniform grid on the rod and label the grid vertices with integers. Let um,n be
the temperature at the integral time n and the integral position m of the rod. At
time n, if the temperature um−1,n is higher than um,n, heat will flow from the point
m − 1 to m. The change of temperature at position m is um,n+1 − um,n, and it is
reasonable to postulate that this change is proportional to the difference um−1,n −
um,n, say, r(um−1,n − um,n), where r is a positive diffusion rate constant. Similarly,
heat will flow from the point m + 1 to m. Thus, the total effect is

um,n+1 − um,n = r
(
um−1,n − um,n

)
+ r
(
um+1,n − um,n

)
, m ∈ Z, n ∈ N0, (1.4)

where Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
Such a postulate can be regarded as a discrete form of the Newton law of

cooling. If we assume that the rod is semi-infinite, then (1.4) is defined on (m,n) ∈
N2

0 .
In the model (1.4), we assume that heat flow is instantaneous. However, in

reality, it takes time for heat to flow from one point m to its neighboring points
m−1 andm+1. Thus a corresponding model is the following delay heat equation:

um,n+1 − um,n = r
(
um−1,n−σ − um,n−σ

)
+ r
(
um+1,n−σ − um,n−σ

)
, (1.5)

that is,

um,n+1 − um,n = rum−1,n−σ − 2rum,n−σ + rum+1,n−σ . (1.6)

In this monograph, we develop the qualitative theory of delay partial differ-
ence equations, especially the oscillation theory and the stability theory for delay
partial difference equations with two variables. We will introduce some recent re-
sults about spatial chaos in the final chapter.

1.2. Initial value problems and initial boundary value problems

In Chapter 2, we will consider the delay partial difference equations of the form

Am+1,n + Am,n+1 − pAm,n +
u∑

i=1

qiAm−ki ,n−li = 0, (1.7)
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where p and qi are real numbers, ki and li ∈ N0, i = 1, 2, . . . ,u, and u is a positive
integer.

Set k = max ki, l = max li, i = 1, 2, . . . ,u. The set Ω = N−k ×N−l \N0 ×N1 is
called the initial domain. A function ϕi, j defined onΩ is called the initial function.
Equation (1.7) together with an initial condition

Ai, j = ϕi, j , (i, j) ∈ Ω, (1.8)

is called an initial value problem.
Using inductive arguments it is easy to see that the initial value problem (1.7)

and (1.8) has a unique solution {Am,n}, (m,n) ∈ N0 ×N1. In fact, we rewrite (1.7)
in the form

Am,n+1 = pAm,n − Am+1,n −
u∑

i=1

qiAm−ki,n−li , (1.9)

and use it to successively calculate A0,1, A1,1, A0,2, A2,1, A1,2, A0,3, . . . . The double
sequence {Am,n} is unique, and is called a solution of the initial value problem
(1.7) and (1.8).

For some partial difference equations, we have to consider the initial condi-
tion together with certain boundary value conditions, which is usually the case in
partial differential equations.

Example 1.3. Consider the delay parabolic equation

∂u(x, t)
∂t

= a(t)
∂2u(x, t)
∂x2

− q(t)u(x, t − σ), (1.10)

where σ > 0 is the delay. Such equations can be used to model problems of popu-
lation dynamics with spatial migrations. However, in population dynamics where
the population density fluctuation in a seasonal manner and settlements are al-
lowed only in concentrated locations, it is more appropriate to consider partial
difference equations with delay of the form

Δ2ui, j = ajΔ
2
1ui−1, j − qjui, j−σ , 1 ≤ i ≤ n, j ≥ 0, (1.11)

where σ is a nonnegative integer, aj , qj : N0 → R, and

Δ1ui, j = ui+1, j − ui, j ,

Δ2ui, j = ui, j+1 − ui, j ,

Δ2
1ui−1, j = Δ1

(
Δ1ui−1, j

) = ui+1, j − 2ui, j + ui−1, j .

(1.12)
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We will assume that ui, j is subject to the conditions

u0, j + αju1, j = 0, j ≥ 0,

un+1, j + βjun, j = 0, j ≥ 0,

ui, j = ρi, j , −σ ≤ j ≤ 0, 0 ≤ i ≤ n + 1,

(1.13)

where αj + 1 ≥ 0 and βj + 1 ≥ 0 for j ≥ 0.

Given an arbitrary function ρi, j which is defined on −σ ≤ j ≤ 0 and 0 ≤ i ≤
n + 1, we can show that a solution to (1.11)–(1.13) exists and is unique. Indeed,
from (1.11), we have

ui,1 = a0ρi+1,0 +
(
1 − 2a0

)
ρi,0 + a0ρi−1,0 − q0ρi,−σ , 1 ≤ i ≤ n,

u0,1 = −α1u1,1, un+1,1 = −β1un,1.
(1.14)

Inductively, we see that {ui, j+1}n+1
i=1 is uniquely determined by {ui,k}n+1

i=0 , k ≤ j.
We will introduce some initial boundary value problems of nonlinear partial

difference equations in the later chapters.

1.3. The z-transform

Let {Am,n} be a double sequence, (m,n) ∈ N2
0 . The z-transform of this sequence is

denoted by Z(Am,n) and is defined by

Z
(
Am,n

) = F
(
z1, z2

) =
∞∑

m=0

∞∑

n=0

Am,nz
−m
1 z−n2 (1.15)

if series (1.15) converges for |zi| > ri, ri ≥ 0, i = 1, 2. The notation Z denotes the
operation of applying the z-transform. z1 and z2 are complex variables which may
take any value in the complex plane. Equation (1.15) defines a complex analytic
function of the variables z1 and z2 in the region |z1| > r1 and |z2| > r2.

Lemma 1.4. Assume that there exist positive constants M1, M, and N such that

∣
∣Am,n

∣
∣ ≤M1r

m
1 r

n
2 , m ≥M, n ≥ N. (1.16)

Then the z-transform of {Am,n} exists in the region |z1| > r1 and |z2| > r2.

In the following, we assume that Am,n = 0 for m < 0 and n < 0 in the series∑∞
m=p

∑∞
n=q Am,nz

−m
1 z−n2 . By direct calculations we can prove the following lemma

easily.
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Lemma 1.5. The following formulas are true:
(i)

Z
(
Am−k,n−l

) = z−k1 z−l2 F
(
z1, z2

)
; (1.17)

(ii)

∞∑

i=0

F
(
k + i, z2

)
z−i1 = zk1

(
F
(
z1, z2

)−
k−1∑

m=0

F
(
m, z2

)
z−m1

)
, (1.18)

where F(k + i, z2) =∑∞
n=0 Ak+i,nz

−n
2 ;

(iii)

∞∑

i=0

l−1∑

n=0

Ak+i,nz
−i
1 z

−n
2 = zk1

( ∞∑

m=0

l−1∑

n=0

Am,nz
−m
1 z−n2 −

k−1∑

m=0

l−1∑

n=0

Am,nz
−m
1 z−n2

)

; (1.19)

(iv)

∞∑

m=0

l−1∑

n=0

Am,nz
−m
1 z−n2 =

l−1∑

i=0

F
(
z1, i

)
z−i2 , (1.20)

where F(z1,n) =∑∞
m=0 Am,nz

−m
1 ;

(v)

Z
(
Am+k,n+l

) = zk1z
l
2

(
F
(
z1, z2

)−
k−1∑

m=0

F
(
m, z2

)
z−m1

−
l−1∑

n=0

F
(
z1,n

)
z−n2 +

k−1∑

m=0

l−1∑

n=0

Am,nz
−m
1 z−n2

)
.

(1.21)

1.4. The Laplace transform

Assume that A(x, y) is a real or complex value function of two real variables, de-
fined on the region D ≡ {(x, y) | 0 ≤ x < ∞, 0 ≤ y < ∞} and integrable in the
Lebesgue sense over an arbitrary finite rectangle Da,b (0 ≤ x ≤ a, 0 ≤ y ≤ b).

We will consider the expression

F(p, q; a, b) =
∫ a

0

∫ b

0
e−px−qyA(x, y)dx dy, (1.22)

where p = σ+ iμ and q = τ+ iν are complex parameters determining a point (p, q)
in the plane of two complex dimensions. Let S be the class of all functions A(x, y)
such that the following conditions are satisfied for at least one point (p, q).
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(1) The integral (1.22) is bounded at the point (p, q) with respect to the vari-
ables a and b, that is,

∣
∣F(p, q; a, b)

∣
∣ < M(p, q) ∀a ≥ 0, b ≥ 0, (1.23)

where M(p, q) is a positive constant independent of a and b.
(2) At the point (p, q),

lim
a,b→∞

F(p, q; a, b) = F(p, q) (1.24)

exists. We denote the limit by

F(p, q) = Lp,q
{
A(x, y)

} =
∫∫∞

0
e−px−qyA(x, y)dx dy. (1.25)

The integral (1.25) is called the two-dimensional Laplace transform (or integral)
of the function A(x, y).

If the conditions 1 and 2 are satisfied simultaneously, we will say that the in-
tegral (1.25) converges boundedly for at least one point (p, q). Thus the class S
consists of functions for which the integral (1.25) converges boundedly for at least
one point (p, q). When the integral (1.25) converges boundedly, we will callA(x, y)
the determining function and F(p, q) the generating function.

Remark 1.6. If the function A(x, y) satisfies the condition

∣
∣A(x, y)

∣
∣ ≤Mehx+ky (1.26)

for all x ≥ 0, y ≥ 0, where M, h, k are positive constants, then it is easy to prove
that A(x, y) belongs to the class S at all points (p, q) for which Re p > h, Re q > k.

Theorem 1.7. If the integral (1.25) converges boundedly at the point (p0, q0), then it
converges boundedly at all points (p, q) for which Re(p − p0) > 0, Re(q − q0) > 0.

1.5. Some useful results from functional analysis and function theory

Theorem 1.8 (Fabry theorem). Let F(z1, z2) be defined by

F
(
z1, z2

) =
∞∑

m=0

∞∑

n=0

am,nz
−m
1 z−n2 , (1.27)

where z1 and z2 are complex and |zi| < ai, i = 1, 2. Assume that am,n = 1 + o(1/M),
M = max(m,n). Then F(z1, z2) is singular at z1 = 1 and z2 = 1.

Let Ω be a convex subset of R, and let f : Ω→ R be convex, that is,

f
(
αx + (1 − α)y

) ≤ α f (x) + (1 − α) f (y), (x, y) ∈ Ω, α ∈ (0, 1). (1.28)
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Then the following Jensen’s inequality holds:

1
b− a

∫ b

a
f
(
x(t)

)
dt ≥ f

(
1

b− a

∫ b

a
x(t)dt

)
. (1.29)

A nonempty and closed subset E of a Banach space X is called a cone if it possesses
the following properties.

(1) If α ∈ R+ and μ ∈ E, then αμ ∈ E.
(2) If μ, ν ∈ E, then μ + ν ∈ E.
(3) If μ ∈ E − {0}, then −μ /∈ E.

A Banach space X is partially ordered if it contains a cone E with nonempty
interior. The ordering ≤ in X is defined by

u ≤ v iff v − u ∈ E. (1.30)

Let S be a subset of a partially ordered Banach space X . Set

S = {u ∈ X : v ≤ u for every v ∈ S
}
. (1.31)

The point u0 ∈ X is the supremum of S if u0 ∈ S and for every u ∈ S, u ≤ u0.
Then infimum of S is defined in a similar way.

Theorem 1.9 (Knaster-Tarski fixed point theorem). Let X be a partially ordered
Banach space with ordering ≤. Let S be a subset of X with the property that the
infimum of S belongs to S and every nonempty subset of S has a supremum which
belongs to S. Let T : S → S be an increasing mapping, that is, u ≤ v implies that
Tu ≤ Tv. Then T has a fixed point in S.

Remark 1.10. In Knaster-Tarski fixed point theorem the continuity of T is not
required.

Theorem 1.11 (Brouwer fixed point theorem). LetΩ be a nonempty, closed, bound-
ed, and convex subset of Rn, and let T : Ω → Ω be a continuous mapping. Then T
has a fixed point in Ω.

Theorem 1.12 (Banach fixed point theorem). Let (X ,d) be a nonempty complete
metric space and let T : X → X be a contraction mapping. Then T has a fixed point
in X .

Theorem 1.13 (Schauder fixed point theorem). Let Ω be a nonempty, closed, and
convex subset of a Banach space X . Let T : Ω → Ω be a continuous mapping such
that TΩ is a relatively compact subset of X . Then T has at least one fixed point in Ω.

Theorem 1.14 (Krasnoselskii fixed point theorem). Let X be a Banach space and let
Ω be a bounded closed convex subset of X . T1 and T2 are maps of Ω into X such that
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T1x + T2y ∈ Ω for every pair x, y ∈ Ω. If T1 is a contraction and T2 is completely
continuous, then the equation

T1x + T2x = x (1.32)

has a solution in Ω.

1.6. Notes

Elementary discussions of partial difference equations and various applications are
included in several books, for example, Levy and Lessman [89], Cheng [29], Kelley
and Peterson [77], Agarwal [2], and so forth, also see [19, 22, 48, 49, 92, 118, 132].
In [2, 77, 89], authors only discuss the partial difference equations without de-
lay. There are few discussions of the delay partial difference equations in [29]. The
theory of delay partial differential equations can be found by Wu [154]. The be-
havior of differential equations can be different with its corresponding difference
versions, see Hooker [70].

Example 1.1 is taken from Zhang and Saker [177]. Example 1.2 is taken from
Cheng [29]. The initial value problem of (1.7) is posed by Zhang et al. [176] and
Zhang and Liu [169]. Example 1.3 is taken from Cheng and Zhang [42]. Equation
(1.10) is studied by Baı̆nov and Mishev [15]. Theory of the z-transform can be
seen from Vı́ch [146], also see Gregor [67]. Laplace transform of two variables
is taken from Ditkin and Prudnikov [54]. Theorem 1.8 is taken from Gilbert [63].
Some fixed point theorems in Section 1.5 are classical, which can be found in many
books.



2
Oscillations of linear delay partial
difference equations

2.1. Introduction

In this chapter, we will systematically describe the theory of oscillations of linear
delay partial difference equations, that is, we study the existence and nonexistence
of positive solutions of the initial value problem of linear delay partial difference
equations. We will begin with linear PDEs with constant parameters by the anal-
ysis of characteristic equations and then discuss the case with variable coefficients
presenting various available techniques. We present results for the equation with
integer variables first, then we show which technique is needed for the equation
with continuous arguments to the similar results.

2.2. Linear PDEs with constant parameters

Consider the delay partial difference equation

Am+1,n + Am,n+1 − pAm,n +
u∑

i=1

qiAm−ki,n−li = 0, m,n = 0, 1, 2, . . . , (2.1)

where p and qi are real numbers, ki and li ∈ N0, i = 1, 2, . . . ,u, u is a positive
integer. A solution of (2.1) is a real double sequence {Ai, j}, (i, j) ∈ N0×N1, which
satisfies (2.1).

A solution {Ai, j} of (2.1) is said to be eventually positive (negative) if Ai, j > 0
(Ai, j < 0) for all large i and j. It is said to be oscillatory if it is neither eventually
positive nor eventually negative. The purpose of this section is to derive a sufficient
and necessary condition for all solutions of (2.1) to be oscillatory.

A solution {Ai, j} of (2.1) is called to be proper if there exist positive numbers
M, α, and β such that

∣
∣Am,n

∣
∣ ≤Mαmβn (2.2)

for all large m and n.



10 Oscillations of linear PDEs

It is not difficult to prove that if the initial data satisfy

∣∣φm,n
∣∣ ≤M1α

mβn, (m,n) ∈ Ω, (2.3)

for some positive numbersM1, α, and β, then the corresponding solution is proper.
We look for the solution of the form

Am,n = λmμn, (2.4)

where λ and μ are complex. Substituting (2.4) into (2.1), we obtain the character-
istic equation

Φ(λ,μ) = λ + μ− p +
u∑

i=1

qiλ
−kiμ−li = 0. (2.5)

Theorem 2.1. Every proper solution {Am,n} of (2.1) is oscillatory if and only if its
characteristic equation (2.5) has no positive roots.

Proof .
Necessity. Otherwise, let (λ0,μ0) be a positive root of (2.5). Then it is easy to find
that {Am,n} with Am,n = λm0 μ

n
0 is a positive proper solution of (2.1), a contradic-

tion.

Sufficiency. Assume that (2.5) has no positive roots. Let {Am,n} be a positive proper
solution of (2.1) with the initial data φm,n such that |φm,n| < c, (m,n) ∈ Ω. Then,
by induction, it is easy to find that there exists b > 0 such that

∣
∣Am,n

∣
∣ < bcm+n, (m,n) ∈ N2

0 . (2.6)

Hence, by Lemma 1.4, for |zi| > c, i = 1, 2, the z-transform of {Am,n}

Z
(
Am,n

) =
∞∑

m,n=0

Am,nz
−m
1 z−n2 = F

(
z1, z2

)
(2.7)

exists. By taking the z-transform on both sides of (2.1), we obtain

Z
(
Am+1,n

)
+ Z

(
Am,n+1

)− pZ
(
Am,n

)
+

u∑

i=1

qiZ
(
Am−ki ,n−li

) = 0. (2.8)

By Lemma 1.5, (2.8) becomes

z1F
(
z1, z2

)
+ z2F

(
z1, z2

)− pF
(
z1, z2

)
+

u∑

i=1

qiz
−ki
1 z−li2 F

(
z1, z2

)

− z1

∞∑

n=0

A0,nz
−n
2 − z2

∞∑

m=0

Am,0z
−m
1 = 0,

∣
∣zi
∣
∣ > c, i = 1, 2.

(2.9)
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Set

Φ
(
z1, z2

) = z1 + z2 − p +
u∑

i=1

qiz
−ki
1 z−li2 ,

ψ
(
z1, z2

) = z1

∞∑

n=0

A0,nz
−n
2 + z2

∞∑

m=0

Am,0z
−m
1 .

(2.10)

Then (2.9) becomes

Φ
(
z1, z2

)
F
(
z1, z2

) = ψ
(
z1, z2

)
,

∣
∣zi
∣
∣ > c, i = 1, 2. (2.11)

We rewrite (2.11) in the form

Φ
(

1
z1

,
1
z2

)
F
(

1
z1

,
1
z2

)
= ψ

(
1
z1

,
1
z2

)
. (2.12)

Set

w
(
z1, z2

) = F
(

1
z1

,
1
z2

)
=

∞∑

m,n=0

Am,nz
m
1 z

n
2 . (2.13)

Equation (2.13) has the radius of convergence ri, i = 1, 2, that is, (2.12) holds for
|zi| < ri, i = 1, 2. Equivalently, (2.11) holds for |zi| > 1/ri, i = 1, 2. By Theorem 1.8,
a power series with positive coefficients having the radius of convergence ri, i = 1, 2
has the singularity at zi = ri, i = 1, 2. Since (2.5) has no positive roots, we have
Φ(z1, z2) �= 0 for (z1, z2) ∈ (0,∞) × (0,∞). Thus Φ(1/r1, 1/r2) �= 0, and hence

w
(
z1, z2

) = ψ
(
1/z1, 1/z2

)

Φ
(
1/z1, 1/z2

) (2.14)

is analytic in the region |z1 − r1| < ρ1 and |z2 − r2| < ρ2, where ρ1 and ρ2 are
positive constants, which contradicts the singularity of w(z1, z2) at zi = ri, i = 1, 2.
Therefore we must have ri = ∞, i = 1, 2, that is, (2.11) holds for |zi| > 0, i = 1, 2,
which leads to Am,n = 0 for all large m and n. Otherwise, the equality in (2.11)
does not hold. This contradiction proves Theorem 2.1. �

From Theorem 2.1, we can derive an explicit condition for the oscillation of
all proper solutions of (2.1).

Theorem 2.2. Assume that p > 0, qi ≥ 0, i = 1, 2, . . . ,u. Then every proper solution
of (2.1) oscillates if

u∑

i=1

qi

(
ki + li + 1

)ki+li+1

kkii l
li
i pki+li+1

> 1. (2.15)
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Proof . If (2.15) holds, we are going to prove that the characteristic equation (2.5)
has no positive roots. Clearly, (2.5) has no positive roots for λ + μ − p ≥ 0. For
λ + μ− p < 0, we write Φ(λ,μ) in the form

Φ(λ,μ) = (p − λ− μ)

(

− 1 +
u∑

i=1

qi
λ−kiμ−li

p − λ− μ

)

. (2.16)

Set

fi(λ,μ) = λ−kiμ−li

p − λ− μ
. (2.17)

Solving ∂ fi/∂λ = 0 and ∂ fi/∂μ = 0, we obtain

λ0 =
pki

ki + li + 1
> 0, μ0 =

pli
ki + li + 1

> 0. (2.18)

It is easy to find that fi(λ,μ) reaches its minimum value at (λ0,μ0), that is,

min
0<λ+μ<p

fi(λ,μ) = fi
(
λ0,μ0

) =
(
ki + li + 1

)ki+li+1

kkii l
li
i pki+li+1

. (2.19)

Hence, for 0 < λ + μ < p, we have

Φ(λ,μ) ≥ (p − λ− μ)

(

− 1 +
u∑

i=1

qi

(
ki + li + 1

)ki+li+1

kkii l
li
i pki+li+1

)

> 0, (2.20)

which implies that (2.5) has no positive roots. By Theorem 2.1, every proper solu-
tion of (2.1) oscillates. �

For u=1, (2.15) is not only sufficient but also necessary for every proper solu-
tion of (2.1) to be oscillatory.

Consider the equation

Am+1,n + Am,n+1 − pAm,n + qAm−k,n−l = 0, (2.21)

where k, l ∈ N0.

Theorem 2.3. Every proper solution of (2.21) oscillates if and only if

q
(k + l + 1)k+l+1

kkll pk+l+1
> 1. (2.22)
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Proof . To prove this theorem it is sufficient to prove that if (2.22) does not hold,
then (2.21) has a positive proper solution. In fact, the characteristic equation of
(2.21) is

Φ(λ,μ) = λ + μ− p + qλ−kμ−l = 0. (2.23)

Obviously, if (2.22) does not hold, then

Φ
(
p(k + 1)
k + l + 1

,
pl

k + l + 1

)
> 0,

Φ
(

pk

k + l + 1
,

pl

k + l + 1

)
= p

k + l + 1

(
− 1 + q

(k + l + 1)k+l+1

kkll pk+l+1

)
≤ 0.

(2.24)

Since Φ(λ,μ) is continuous, then there exist

λ0 ∈
[

pk

k + l + 1
,
p(k + 1)
k + l + 1

)
, μ0 =

pl

k + l + 1
(2.25)

such that Φ(λ0,μ0) = 0. By Theorem 2.1, (2.21) has a positive solution. The proof
is complete. �

The above method is available for other linear PDEs with constant parame-
ters.

For example, we consider the hyperbolic type partial difference equation

Am−1,n − Am,n−1 − pAm,n +
u∑

i=1

qiAm+ki,n+li = 0, m,n = 0, 1, 2, . . . , (2.26)

where p, qi are real numbers, ki and li ∈ N0, i = 1, 2, . . . ,u, u is a positive integer.
A solution of (2.26) is a real double sequence {Ai, j}, (i, j) ∈ N2

0 , which satisfies
(2.26).

We look for the solution of the form (2.4). Substituting (2.4) into (2.26) we
obtain the characteristic equation

Φ(λ,μ) = λ−1 − μ−1 − p +
u∑

i=1

qiλ
kiμli = 0. (2.27)

Theorem 2.4. Every proper solution {Am,n} of (2.26) is oscillatory if and only if its
characteristic equation (2.27) has no positive roots.

The proof is similar to the proof of Theorem 2.1.
From Theorem 2.4, we can obtain sufficient conditions, given explicitly in

terms of the coefficients and the delays, for the oscillation of all proper solutions
of (2.26).
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Theorem 2.5. Assume that p > 0, qi ≥ 0, and 1 + ki > li, i = 1, 2, . . . ,u. Then every
proper solution of (2.26) oscillates if

u∑

i=1

qi

(
ki − li + 1

)ki−li+1

kkii l
li
i pki+li+1

> 1. (2.28)

For u = 1, (2.28) is not only sufficient but also necessary for the oscillation of
all proper solutions of (2.26).

Consider the equation

Am−1,n − Am,n−1 − pAm,n + qAm+k,n+l = 0, m,n = 0, 1, 2, . . . , (2.29)

where k, l ∈ N0.

Theorem 2.6. Assume that p, q > 0, 1 + k > l. Every proper solution of (2.29)
oscillates if and only if

q
(k − l + 1)k−l+1

kkll pk+l+1
> 1. (2.30)

Remark 2.7. From Theorem 2.1, the characteristic equation (2.1) plays an impor-
tant role in the investigation of the oscillation of solutions of linear PDEs with
constant parameters. But to determine if the characteristic equation has no pos-
itive roots is quite a problem itself. We want to find the necessary and sufficient
condition expressed in terms p, qi, ki, li for the oscillation of (2.1), which is an
open problem.

2.3. Systems of linear PDEs with constant parameters

Consider the linear partial difference system in the form

Am,n =
u∑

i=1

piAm−ki ,n−li +
v∑

j=1

qjAm+τj ,n+σj , m,n = 0, 1, . . . , (2.31)

where pi and qj are r × r matrices, Am,n = (a1
m,n, a2

m,n, . . . , arm,n)T , ki, li, τj , σj ∈ N0,
i = 1, 2, . . . ,u, j = 1, 2, . . . , v, u and v are positive integers.

By a solution of (2.31) we mean a sequence {Am,n} of Am,n ∈ Rr , which satis-
fies (2.31) for m,n ∈ N0.

A sequence of real numbers {aim,n} is said to oscillate if the term aim,n is not all
eventually positive or eventually negative inm, n. Let {Am,n} be a solution of (2.31)
with Am,n = (a1

m,n, a2
m,n, . . . , arm,n)T for m,n ∈ N0. We say that the solution {Am,n}

oscillates componentwise if each component {aim,n} oscillates. Otherwise, the solu-
tion {Am,n} is called nonoscillatory. Therefore a solution of (2.31) is nonoscillatory
if it has a component {aim,n}, which is eventually positive or eventually negative in
m, n.
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The solution {Am,n} of (2.31) is said to be proper if there exist positive num-
bers M, α, and β such that

∥
∥Am,n

∥
∥ ≤Mαmβn for m,n ∈ N0. (2.32)

In the following, we will show the sufficient condition for all solutions to be
proper for the linear difference system

Am,n =
u∑

i=1

piAm−ki ,n−li . (2.33)

Set k = max ki, l = max li, i = 1, 2, . . . ,u, Ω = N−k × N−l \ N0 × N1. Given a
function φi, j defined on Ω, it is easy to construct by induction a double sequence
{Ai, j} which equals φi, j on Ω and satisfies (2.31) on N0 × N1. It is not difficult
to prove that if the initial data φm,n satisfy (2.32) on Ω, then the corresponding
solution of (2.33) is proper. Similarly, we can find some conditions to guarantee
that every solution of (2.31) is proper.

The purpose of this section is to derive the sufficient and necessary condition
for all proper solutions of (2.31) to be oscillatory componentwise.

Theorem 2.8. Every proper solution {Am,n} of (2.31) oscillates componentwise if and
only if its characteristic equation

det

( u∑

i=1

piλ
−kiμ−li − I +

v∑

j=1

qjλ
τj μσj

)

= 0 (2.34)

has no positive roots.

Proof . The proof of “only if” is simple. Suppose to the contrary, let (λ0,μ0) be a
positive root of (2.34), then there would be a nonzero vector ζ ∈ Rr such that

( u∑

i=1

piλ0
−kiμ0

−li − I +
v∑

j=1

qjλ0
τj μ0

σj

)

ζ = 0 (2.35)

which implies that Am,n = λm0 μ
n
0ζ is a proper solution of (2.31) with at least one

nonoscillatory component, which is a contradiction.
The proof of “if” uses the z-transform. Assume that (2.34) has no positive

roots and (2.31) has a proper solution {Am,n}with at least one nonoscillatory com-
ponent. Without loss of generality, we assume that {a1

m,n} is eventually positive. As
(2.31) is autonomous, we may assume that a1

m,n > 0 for m,n ∈ N0. For the proper
solution {Am,n}, the z-transform

Z
(
Am,n

) =
∞∑

m,n=0

Am,nz
−m
1 z−n2 = F

(
z1, z2

)
(2.36)
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exists for |z1| > α > 0, |z2| > β > 0. By taking the z-transform of both sides of
(2.31) and using some formulas of the z-transform in Section 1.3, we obtain

φ
(
z1, z2

)
F
(
z1, z2

) = ψ
(
z1, z2

)
, (2.37)

where

φ
(
z1, z2

) =
u∑

i=1

piz
−ki
1 z−li2 +

v∑

j=1

qjz
τj
1 z

σj
2 − I ,

ψ
(
z1, z2

) =
v∑

j=1

qjz
τj
1 z

σj
2

( τj−1∑

m=0

∞∑

n=0

Am,nz
−m
1 z−n2 +

σj−1∑

n=0

∞∑

m=0

Am,nz
−m
1 z−n2

−
τj−1∑

m=0

σj−1∑

n=0

Am,nz
−m
1 z−n2

)

.

(2.38)

By condition (2.34), detφ(z1, z2) �= 0 for z1 × z2 ∈ (0,∞)2. Let F1(z1, z2)
be the z-transform of the first component {a1

m,n} of the solution {Am,n} and let
b be the modulus of the largest zero of detφ(z1, z2). Then by Cramer’s rule, for
|z1| > max{α, b}, |z2| > max{β, b},

detφ
(
z1, z2

)
F1
(
z1, z2

) = detD
(
z1, z2

)
, (2.39)

where D(z1, z2) has components of φ(z1, z2) and ψ(z1, z2) as its entries and

F1
(
z1, z2

) =
∞∑

m,n=0

a1
m,nz

−m
1 z−n2 . (2.40)

Let

w1
(
z1, z2

) = F1

(
1
z1

,
1
z2

)
=

∞∑

m,n=0

a1
m,nz

m
1 z

n
2 . (2.41)

Equation (2.41) is a power series with positive coefficients having the radius of
convergence ρi, i = 1, 2. Hence

detφ
(

1
z1

,
1
z2

)
w1
(
z1, z2

) = detD
(

1
z1

,
1
z2

)
, (2.42)

for |zi| < ρi, i = 1, 2. By Theorem 1.8, a power series with positive coefficients hav-
ing the radius of convergence ρi, i = 1, 2 has the singularity at zi = ρi, i = 1, 2. By
condition detφ(z1, z2) �=0 for (z1, z2)∈(0,∞) × (0,∞). Thus detφ(1/ρ1, 1/ρ2) �=0,
and hence

w1
(
z1, z2

) = detD
(
1/z1, 1/z2

)

detφ
(
1/z1, 1/z2

) (2.43)
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is analytic in the regions |z1 − ρ1| < d1 and |z2 − ρ2| < d2, where d1 and d2

are positive constants, which contradicts the singularity of w1(z1, z2) at zi = ρi,
i = 1, 2. Therefore, we must have ρi = ∞, i = 1, 2, that is, (2.39) holds for |zi| > 0,
i = 1, 2, which leads to a1

m,n = 0 for all largem and n. Otherwise, for any fixed large
numbers M and N , the left-hand side of (2.39) has the nonzero term bm,nz

−m
1 z−n2 ,

wherem ≥M and n ≥ N . But the right-hand side of (2.39) has no such term. This
contradiction proves Theorem 2.8. �

For the scalar linear difference equation

am,n =
u∑

i=1

piam−ki ,n−li +
v∑

j=1

qjam+τj ,n+σj , m,n = 0, 1, 2, . . . , (2.44)

we have the following result.

Corollary 2.9. Every proper solution of (2.44) oscillates if and only if the character-
istic equation

1 =
u∑

i=1

piλ
−kiμ−li +

v∑

j=1

qjλ
τj μσj (2.45)

has no positive roots.

From Corollary 2.9 we can derive explicit conditions for the oscillation of all
proper solutions of some special equations.

2.4. Linear PDEs with continuous arguments

In this section, we will consider the linear delay partial difference equation with
continuous arguments

A(x + 1, y) +A(x, y + 1) − A(x, y) + pA(x − σ , y − τ) = 0, (2.46)

where p ∈ R, τ ≥ 0, σ ≥ 0.
By a solution of (2.46) we mean a continuous function A ∈ C([−σ ,∞) ×

[−τ,∞),R), which satisfies (2.46) for all x ≥ 1, y ≥ 1. Let Ω = [−σ , +∞) ×
[−τ, +∞) \ [1, +∞) × [1, +∞). Given an initial function φ(x, y) ∈ C(Ω,R), by the
method of steps, one can see that (2.46) has a unique solution on [1,∞) × [1,∞),
which satisfies the initial condition on Ω.

A solution A(x, y) of (2.46) is said to be eventually positive (negative) if
A(x, y) > 0 (A(x, y) < 0) for all large x and y. It is said to be oscillatory if it is
neither eventually positive nor eventually negative.

A solution A(x, y) is said to be proper, if there are positive constantsM, h, and
k such that

∣∣A(x, y)
∣∣ ≤Mehx+ky for all sufficiently large x and y. (2.47)
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It is easy to prove that if the initial function φ(x, y) satisfies |φ(x, y)| ≤M exp(h1x+
k1y), h1 > 0, k1 > 0, (x, y) ∈ Ω, then the corresponding solution of (2.46) is
proper.

Consider (2.46) together with its characteristic equation

φ(λ,μ) = λ + μ− 1 + pλ−σμ−τ = 0. (2.48)

Theorem 2.10. Every proper solution A(x, y) of (2.46) is oscillatory if and only if the
characteristic equation (2.48) has no positive roots.

Proof .
Necessity. Otherwise, let (λ0,μ0) be a positive root of (2.48). Then it is easy to find
that A(x, y) = λx0μ

y
0 is a proper positive solution of (2.46), a contradiction.

Sufficiency. Assume that (2.48) has no positive roots. Let A(x, y) be a proper pos-
itive solution of (2.46). By Theorem 1.7, for Re s > h, Re q > k, the Laplace trans-
form of A(x, y)

F(s, q) = Ls,q
{
A(x, y)

} =
∫∫∞

0
e−sx−qyA(x, y)dx dy (2.49)

exists. Taking the Laplace transform on both sides of (2.46), we obtain

f (s, q)F(s, q) =W(s, q), (2.50)

where

f (s, q) = es + eq − 1 + pe−sσ−qτ ,

W(s, q) = es
∫ +∞

0

∫ 1

0
e−sx−qyφ(x, y)dx dy

+ eq
∫ +∞

0

∫ 1

0
e−sx−qyφ(x, y)dy dx + ψ(s, q),

ψ(s, q) = −pe−sσ−qτ
(∫ +∞

0

∫ 0

−τ
e−sx−qyφ(x, y)dx dy

+
∫ +∞

0

∫ 0

−σ
e−sx−qyφ(x, y)dy dx

+
∫ 0

−σ

∫ 0

−τ
e−sx−qyφ(x, y)dx dy

)
.

(2.51)

Since F(s, q) is the Laplace transform of a positive function, if s0 > −∞, q0 >
−∞, in the sense of analytic continuous, F(s, q) must have the singularity at point
(s0, q0). But W(s, q) is an entire function of (s, q) on the two-dimensional plane,
and because f (s, q) = Φ(es, eq), so f (s, q) �= 0 for all real (s, q). Equation (2.50)
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shows that F(s, q) can be analytically continued to a neighborhood of any real
(s, q). Thus, we must have s0 = −∞, q0 = −∞, and (2.50) holds for all real (s, q).
Now lims,q→+∞ f (s, q) = +∞, so f (s, q) > 0 for all (s, q). f (s, q) is dominated by
pe−sσ−qτ as s→ −∞, q → −∞, so we must have p > 0. On the other hand, W(s, q)
is dominated by ψ, as s→ −∞, q → −∞. Since p > 0, e−sσ−qτ > 0, and φ(x, y) > 0,
we conclude that W(s, q) is negative as s → −∞, q → −∞. But F(s, q) ≥ 0. It is a
contradiction. This contradiction proves Theorem 2.10. �

The next result provides explicit conditions for the oscillation of all proper
solutions of (2.46).

Theorem 2.11. Assume that p > 0. Then every proper solution of (2.46) oscillates if
and only if

p
(σ + τ + 1)σ+τ+1

σσττ
> 1. (2.52)

Proof . To prove the necessity of this theorem, we need to prove that if (2.52) does
not hold, then (2.46) has a positive proper solution. In fact, the characteristic equa-
tion of (2.46) is

Φ(λ,μ) = λ + μ− 1 + pλ−σμ−τ = 0. (2.53)

Obviously,

Φ
(

σ + 1
σ + τ + 1

,
τ

σ + τ + 1

)
> 0,

Φ
(

σ

σ + τ + 1
,

τ

σ + τ + 1

)
= 1
σ + τ + 1

(
− 1 + p

(σ + τ + 1)σ+τ+1

σσττ

)
≤ 0.

(2.54)

Since Φ is continuous, there exist

λ0 ∈
[

σ

σ + τ + 1
,

σ + 1
σ + τ + 1

)
, μ0 = τ

σ + τ + 1
(2.55)

such that Φ(λ0,μ0) = 0. Then by Theorem 2.10, (2.46) has a positive proper solu-
tion.

Sufficiency. If (2.52) holds, we are going to prove that the characteristic equation
(2.48) has no positive roots. Clearly, (2.48) has no positive roots for λ+ μ ≥ 1. For
λ + μ < 1, we have

Φ(λ,μ) = (1 − λ− μ)
(
− 1 +

pλ−σμ−τ

1 − λ− μ

)
. (2.56)

Set

f (λ,μ) = λ−σμ−τ

1 − λ− μ
. (2.57)
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It is easy to see that f (λ,μ) reaches its minimum value at λ0 = σ/(σ + τ + 1),
μ0 = τ/(σ + τ + 1), that is,

min
0<λ+μ<1

f (λ,μ) = (σ + τ + 1)σ+τ+1

σσττ
. (2.58)

Hence, for 0 < λ + μ < 1, we have

Φ(λ,μ) ≥ (1 − λ− μ)
(
− 1 +

p(σ + τ + 1)σ+τ+1

σσττ

)
> 0 (2.59)

which implies that (2.48) has no positive roots. By Theorem 2.10, the proof is com-
pleted. �

Example 2.12. Consider the partial difference equation

A(x + 1, y) + A(x, y + 1) − A(x, y) + A(x − 2, y − 4) = 0, (2.60)

its characteristic equation is

λ + μ− 1 + λ−2μ−4 = 0. (2.61)

Obviously, (2.61) has no positive roots.
By Theorem 2.10, every proper solution of (2.60) is oscillatory. It is easy to

find that A(x, y) = c1 sinπx + c2 sinπy is a proper solution of (2.60) and is oscil-
latory, where c1 and c2 are arbitrary constants.

The above results can be extended to the partial difference equation with sev-
eral delays of the form

A(x + 1, y) + A(x, y + 1) − pA(x, y) +
n∑

i=1

piA
(
x − σi, y − τi

) = 0, (2.62)

where p > 0, σi, τi ∈ (0,∞), i = 1, 2, . . . ,n.

Theorem 2.13. Every solution of (2.62) is oscillatory if and only if its characteristic
equation

Φ(λ,μ) = λ + μ− p +
n∑

i=1

piλ
−σiμ−τi = 0 (2.63)

has no positive roots.
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Theorem 2.14. Assume that p > 0, pi > 0, i = 1, 2, . . . ,n, then every solution of
(2.62) oscillates if

n∑

i=1

pi
(σi + τi + 1)σi+τi+1

σσii τ
τi
i pσi+τi+1

> 1. (2.64)

2.5. Linear PDEs with variable coefficients

2.5.1. Oscillation of PDEs with variable coefficients (I)

Consider the linear delay partial difference equation

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n + pm,nAm−k,n−l = 0, (2.65)

where pm,n > 0 on N2
0 , k, l ∈ N0.

A double sequence {Am,n}, (m,n) ∈ Nm0 × Nn0 is said to be a solution of
(2.65), if it satisfies (2.65) for m ≥ m0, n ≥ n0.

We assume that a, b, c, d, and pm,n, (m,n) ∈ Nm0 ×Nn0 are positive.
Define the set E by

E = {λ > 0 | d − λpm,n > 0 eventually
}
. (2.66)

Theorem 2.15. Assume that
(i) lim supm,n→∞ pm,n > 0;

(ii) for k ≥ l ≥ 1, there exist M,N ∈ N1 such that

sup
λ∈E,m≥M,n≥N

λ
l∏

i=1

(
d − λpm−i,n−i

) k−l∏

j=1

(
d − λpm−l− j,n−l

)
<
(
a +

2bc
d

)l
bk−l,

(2.67)

and for l ≥ k ≥ 1,

sup
λ∈E,m≥M,n≥N

λ
k∏

i=1

(
d − λpm−i,n−i

) l−k∏

j=1

(
d − λpm−k,n−k− j

)
<
(
a +

2bc
d

)k
cl−k.

(2.68)

Then every solution of (2.65) oscillates, where
∏0

j=1 ∗ = 1.

Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(2.65). We define the set S(A) of positive numbers by

S(A)={λ > 0 | aAm+1,n+1 +bAm+1,n+cAm,n+1−
(
d − λpm,n

)
Am,n ≤ 0 eventually

}
.

(2.69)
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From (2.65), we have

aAm+1,n+1 + bAm+1,n + cAm,n+1 < dAm,n. (2.70)

If k ≥ l, then we obtain

Am−k,n−l >
(
a

d

)l
Am−k+l,n >

(
a

d

)l(b

d

)k−l
Am,n. (2.71)

If l ≥ k, then we obtain

Am−k,n−l >
(
a

d

)k
Am,n−l+k >

(
a

d

)k( c

d

)l−k
Am,n. (2.72)

Substituting (2.71) and (2.72) into (2.65), we obtain

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n +
(
a

d

)l(b

d

)k−l
pm,nAm,n < 0,

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n +
(
a

d

)k( c

d

)l−k
pm,nAm,n < 0,

(2.73)

respectively. Equations (2.73) show that S(A) is nonempty. For λ ∈ S(A), we have
eventually

d − λpm,n > 0, (2.74)

which implies that S(A) ⊆ E. Due to condition (i), the set E is bounded, and hence
S(A) is bounded. Let μ ∈ S(A). From (2.70), we have

Am+1,n+1 ≤ d

b
Am,n+1, Am+1,n+1 ≤ d

c
Am+1,n. (2.75)

Hence, we obtain
(
a +

2bc
d

)
Am+1,n+1 ≤ aAm+1,n+1 + bAm+1,n + cAm,n+1 ≤

(
d − μpm,n

)
Am,n.

(2.76)

If k ≥ l, we have

Am,n ≤
(
a +

2bc
d

)−l l∏

i=1

(
d − μpm−i,n−i

)
Am−l,n−l,

Am−l,n−l ≤ 1
b

(
d − μpm−l−1,n−l

)
Am−l−1,n−l

≤ · · · ≤
(

1
b

)k−l k−l∏

j=1

(
d − μpm−l− j,n−l

)
Am−k,n−l .

(2.77)
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Combining the above two inequalities, we obtain

Am,n ≤
(
a +

2bc
d

)−l
bl−k

l∏

i=1

(
d − μpm−i,n−i

) k−l∏

j=1

(
d − μpm−l− j,n−l

)
Am−k,n−l .

(2.78)

Similarly, if l ≥ k, we have

Am,n ≤
(
a +

2bc
d

)−k
ck−l

k∏

i=1

(
d − μpm−i,n−i

) l−k∏

j=1

(
d − μpm−k,n−k− j

)
Am−k,n−l .

(2.79)

Substituting (2.78) and (2.79) into (2.65), we find, for l ≥ k,

Am+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n + pm,n

(
a +

2bc
d

)k
cl−k

×
( k∏

i=1

(
d − μpm−i,n−i

) l−k∏

j=1

(
d − μpm−k,n−k− j

)
)−1

Am,n ≤ 0,

(2.80)

and, for k ≥ l,

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n + pm,n

(
a +

2bc
d

)l
bk−l

×
( l∏

i=1

(
d − μpm−i,n−i

) k−l∏

j=1

(
d − μpm−l− j,n−l

)
)−1

Am,n ≤ 0.

(2.81)

Hence we have, for l ≥ k,

aAm+1,n+1 + bAm+1,n + cAm,n+1

−
(

d − pm,n

(
a +

2bc
d

)k
cl−k

× sup
m≥M,n≥N

[ k∏

i=1

(
d − μpm−i,n−i

) l−k∏

j=1

(
d − μpm−k,n−k− j

)
]−1)

Am,n ≤ 0,

(2.82)
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and, for k ≥ l,

aAm+1,n+1 + bAm+1,n + cAm,n+1

−
(

d − pm,n

(
a +

2bc
d

)l
bk−l

× sup
m≥M,n≥N

[ l∏

i=1

(
d − μpm−i,n−i

) k−l∏

j=1

(
d − μpm−l− j,n−l

)
]−1)

Am,n ≤ 0.

(2.83)

From (2.82) and (2.83), we obtain, for l ≥ k,

(
a+

2bc
d

)k
cl−k×

(

sup
m≥M,n≥N

[ k∏

i=1

(
d−μpm−i,n−i

) l−k∏

j=1

(
d−μpm−k,n−k− j

)
]−1)

∈S(A),

(2.84)

and, for k > l,

(
a+

2bc
d

)l
bk−l×

(

sup
m≥M,n≥N

[ l∏

i=1

(
d−μpm−i,n−i

) k−l∏

j=1

(
d−μpm−l− j,n−l

)
]−1)

∈S(A).

(2.85)

On the other hand, (2.67) implies that there exists β ∈ (0, 1) such that

sup
λ∈E,m≥M,n≥N

λ
l∏

i=1

(
d−λpm−i,n−i

) k−l∏

j=1

(
d−λpm−l− j,n−l

)≤β
(
a +

2bc
d

)l
bk−l, k≥ l,

(2.86)

and (2.68) implies that there exists β ∈ (0, 1) such that

sup
λ∈E,m≥M,n≥N

λ
k∏

i=1

(
d−λpm−i,n−i

) l−k∏

j=1

(
d−λpm−k,n−k− j

)≤β
(
a+

2bc
d

)k
cl−k, l≥k.

(2.87)

Hence, for k ≥ l, we have

sup
m≥M,n≥N

[ l∏

i=1

(
d − μpm−i,n−i

) k−l∏

j=1

(
d − μpm−l− j,n−l

)
]

≤ β

μ

(
a +

2bc
d

)l
bk−l,

(2.88)
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and, for l ≥ k, we have

sup
m≥M,n≥N

[ k∏

i=1

(
d − μpm−i,n−i

) l−k∏

j=1

(
d − μpm−k,n−k− j

)
]

≤ β

μ

(
a +

2bc
d

)k
cl−k.

(2.89)

From (2.84) and (2.89), for l ≥ k, (2.85) and (2.88), for k ≥ l, we have that μ/β ∈
S(A). Repeating the above procedure, we conclude that μ/βr ∈ S(A), r = 1, 2, . . . ,
which contradicts the boundedness of S(A). The proof is complete. �

From Theorem 2.15, we can derive an explicit condition for the oscillation of
(2.65).

Corollary 2.16. In addition to (i) of Theorem 2.15, assume that

lim inf
m,n→∞ pm,n = P > dk+1

((
a +

2bc
d

)l
bk−l

)−1 kk

(1 + k)1+k
, k ≥ l, (2.90)

or

lim inf
m,n→∞ pm,n = P > dl+1

((
a +

2bc
d

)k
cl−k

)−1 ll

(1 + l)1+l
, l ≥ k. (2.91)

Then every solution of (2.65) oscillates.

Proof . We see that

max
d/P>λ>0

λ(d − λP)k = dk+1kk

P(1 + k)1+k
. (2.92)

Hence (2.90) and (2.91) imply that (2.67) and (2.68) hold. By Theorem 2.15, every
solution of (2.65) oscillates. The proof is complete. �

From (2.65), we have

Am,n <
d

b
Am−1,n < · · · <

(
d

b

)k
Am−k,n < · · · <

(
d

b

)k(d

c

)l
Am−k,n−l . (2.93)

Let μ ∈ S(A). Then

Am,n ≤ 1
b

(
d − μpm−1,n

)
Am−1,n ≤

(
1
b

)k k∏

i=1

(
d − μpm−i,n

)
Am−k,n

≤
(

1
b

)k(1
c

) k∏

i=1

(
d − μpm−i,n

)(
d − μpm−k,n−1

)
Am−k,n−1

≤
(

1
b

)k(1
c

)l k∏

i=1

(
d − μpm−i,n

) l∏

j=1

(
d − μpm−k,n− j

)
Am−k,n−l .

(2.94)
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Substituting the above inequality into (2.65), we obtain

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n

+ pm,nb
kcl
[ k∏

i=1

(
d − μpm−i,n

) l∏

j=1

(
d − μpm−k,n− j

)
]−1

Am,n ≤ 0.
(2.95)

Hence, we have

aAm+1,n+1 + bAm+1,n + cAm,n+1

−
(

d−pm,nb
kcl
[

sup
m≥M,n≥M

k∏

i=1

(
d−μpm−i,n

) l∏

j=1

(
d−μpm−k,n− j

)
]−1)

Am,n≤0,

(2.96)

which implies that

bkcl
[

sup
m≥M,n≥N

k∏

i=1

(
d − μpm−i,n

) l∏

j=1

(
d − μpm−k,n− j

)
]−1

∈ S(A). (2.97)

We are ready to state the following theorem.

Theorem 2.17. In addition to (i) of Theorem 2.15, further, assume that
(ii) there exist M,N ∈ N1 such that

sup
λ∈E,m≥M,n≥N

λ
k∏

i=1

(
d − λpm−i,n

) l∏

j=1

(
d − λpm−k,n− j

)
< bkcl. (2.98)

Then every solution of (2.65) oscillates.

Since

max
d/P>λ>0

λ(d − λP)k+l = dk+l+1(k + l)k+l

P(1 + k + l)1+k+l
(2.99)

and (2.98), we have the following result.

Corollary 2.18. In addition to (i) of Theorem 2.15, assume that

lim inf
m,n→∞ pm,n = P >

d1+k+l(k + l)k+l

bkcl(1 + k + l)1+k+l
. (2.100)

Then every solution of (2.65) is oscillatory.
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Example 2.19. Consider the partial difference equation

Am+1,n+1 + eAm+1,n + Am,n+1 − Am,n + (1 + e)e4Am−2,n−2 = 0. (2.101)

It is easy to see that (2.101) satisfies the conditions of Corollary 2.18, so every
solution of this equation is oscillatory. In fact, Am,n = (−e)m+n is such a solution.

Remark 2.20. Results in Section 2.5.1 are true for a = 0 in (2.65).

In the following we present the techniques to improve the results in Section
2.5.1.

2.5.2. Oscillation of PDEs with variable coefficients (II)

To obtain main results in this section, we need the following technical lemmas.
The first lemma is obvious.

Lemma 2.21. Assume that for positive integers m, n, and r ≥ 1, (2.65) has a solution
{Am,n} such thatAm,n > 0 form ∈ {m−k,m−k+1, . . . ,m+r} and n ∈ {n−l,n−l+
1, . . . ,n+r}, and pm,n ≥ 0 form ∈ {m,m+1, . . . ,m+r} and n ∈ {n,n+1, . . . ,n+r}.
Then

drAm,n ≥ arAm+r,n+r , drAm,n ≥ brAm+r,n, drAm,n ≥ crAm,n+r . (2.102)

Lemma 2.22. Let r ≥ 1, m and n be positive integers so that m ≥ 2k and n ≥ 2l.
Assume that {Am,n} is a solution of (2.65) with Am,n > 0 for m ∈ {m − 2k,m −
2k + 1, . . . ,m + r} and n ∈ {n − 2l,n − 2l + 1, . . . ,n + r} and pm,n ≥ q ≥ 0 for
m ∈ {m− k,m− k + 1, . . . ,m + r} and n ∈ {n− l,n− l + 1, . . . ,n + r}. Then

drAm,n ≥ a
r−1∑

j=0

dr−1− j
j∑

i=0

bj−iciCijAm+ j+1−i,n+1+i

+ aq
r−2∑

j=0

( j + 1)dr−2− j
j∑

i=0

bj−iciCijAm+ j+1−i−k,n+1+i−l

+
r∑

i=0

br−iciCirAm+r−i,n+i

+ rq
r−1∑

i=0

br−1−iciCir−1Am+r−1−i−k,n+i−l .

(2.103)
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Proof . In view of (2.65), for i ∈ {m− k,m− k + 1, . . . ,m + r} and j ∈ {n− l,n−
l + 1, . . . ,n + r}, we have

dAi, j = aAi+1, j+1 + bAi+1, j + cAi, j+1 + pi, jAi−k, j−l

≥ aAi+1, j+1 + bAi+1, j + cAi, j+1 + qAi−k, j−l .
(2.104)

Hence from (2.104), we obtain

dAm,n = aAm+1,n+1 + bAm+1,n + cAm,n+1 + pm,nAm−k,n−l

≥ aAm+1,n+1 + bAm+1,n + cAm,n+1 + qAm−k,n−l,

dAm+1,n = aAm+2,n+1 + bAm+2,n + cAm+1,n+1 + pm+1,nAm+1−k,n−l

≥ aAm+2,n+1 + bAm+2,n + cAm+1,n+1 + qAm+1−k,n−l,

dAm,n+1 = aAm+1,n+2 + bAm+1,n+1 + cAm,n+2 + pm,n+1Am−k,n+1−l

≥ aAm+1,n+2 + bAm+1,n+1 + cAm,n+2 + qAm−k,n+1−l,

dAm−k,n−l = aAm+1−k,n+1−l + bAm+1−k,n−l + cAm−k,n+1−l + pm−k,n−lAm−2k,n−2l

≥ aAm+1−k,n+1−l + bAm+1−k,n−l + cAm−k,n+1−l + qAm−2k,n−2l .
(2.105)

Thus, from (2.105), we obtain

d2Am,n ≥ adAm+1,n+1 + abAm+2,n+1 + acAm+1,n+2

+ b2Am+2,n + 2bcAm+1,n+1 + c2Am,n+2

+ apm,nAm+1−k,n+1−l + b(pm+1,n + pm,n)Am+1−k,n−l

+ c(pm,n+1 + pm,n)Am−k,n+1−l + pm,npm−k,n−lAm−2k,n−2l .

(2.106)

Then we obtain

d2Am,n ≥ adAm+1,n+1 + a
1∑

i=0

b1−iciAm+2−i,n+1+i + aqAm+1−k,n+1−l

+
2∑

j=0

b2− j c jC
j
2Am+2− j,n+ j + 2q

1∑

j=0

b1− j c jC
j
1Am+1− j−k,n+ j−l .

(2.107)
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In view of the following equality, for any positive integers m,n, and r,

r∑

i=0

br−iciCir
(
bAm+r+1−i,n+i + cAm+r−i,n+1+i

)

= br+1Am+r+1,n +
r∑

i=1

br+1−iciCirAm+r+1−i,n+i

+
r−1∑

i=0

br−ici+1CirAm+r−i,n+1+i + cr+1Am,n+r+1

= br+1Am+r+1,n + cr+1Am,n+r+1

+
r∑

i=1

br+1−ici
(
Cir + Ci−1

r

)
Am+r+1−i,n+i

=
r+1∑

i=0

br+1−iciCir+1Am+r+1−i,n+i,

(2.108)

and (2.105), we can obtain

d3Am,n ≥ a
2∑

j=0

d2− j
j∑

i=0

bj−iciCijAm+ j+1−i,n+1+i

+ aq
1∑

j=0

( j + 1)d1− j
j∑

i=0

bj−iciCijAm+ j+1−i−k,n+1+i−l

+
3∑

i=0

b3−iciCi3Am+3−i,n+i + 3q
2∑

i=0

b2−iciCi2Am+2−i−k,n+i−l .

(2.109)

By induction, (2.103) follows. The proof is completed. �

From Lemma 2.22, we can obtain the following corollaries.

Corollary 2.23. Assume that k > 0 and l > 0, and, for m ≥ 3k and n ≥ 3l, {Am,n} is
a solution of (2.65) such that Am,n > 0 for m ∈ {m− 3k,m− 3k + 1, . . . ,m + l + 1}
and n ∈ {n− 3l,n− 3l + 1, . . . ,n + k + 1} and pm,n ≥ q ≥ 0 for m ∈ {m− 2k,m−
2k + 1, . . . ,m + l} and n ∈ {n− 2l,n− 2l + 1, . . . ,n + k}. Then

(
adbk−1cl−1Cl−1

k+l−2 + bkclClk+l

)
Am,n

≤
{
dk+l − qbk−1cl−1

(
a(k + l − 1)Cl−1

k+l−2 +
bc(k + l)

d
Clk+l

)}
Am−k,n−l .

(2.110)
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Proof . From Lemma 2.22, we have

dk+lAm−k,n−l ≥ a
k+l−1∑

j=0

dk+l−1− j
j∑

i=0

bj−iciCijAm−k+ j+1−i,n−l+1+i

+ aq
k+l−2∑

j=0

( j + 1)dk+l−2− j
j∑

i=0

bj−iciCijAm−k+ j+1−i−k,n−l+1+i−l

+
k+l∑

i=0

bk+l−iciCik+lAm−k+k+l−1+1−i,n−l+i

+ (k + l)q
k+l−1∑

i=0

bk+l−1−iciCik+l−1Am+l−1−i−k,n−2l+i

≥ adbk−1cl−1Cl−1
k+l−2Am,n + aq(k + l − 1)bk−1cl−1Cl−1

k+l−2Am−k,n−l

+ bkclClk+lAm,n + (k + l)qbkcl−1Cl−1
k+l−1Am−k,n−l−1

+ (k + l)qbk−1clClk+l−1Am−k−1,n−l .
(2.111)

From Lemma 2.21 and the above inequality, we obtain (2.110). The proof is com-
pleted. �

Corollary 2.24. Assume that for integers m ≥ 2k + l and n ≥ 2l + k, {Am,n} is a
solution of (2.65) such that Am,n > 0 for m ∈ {m−2k−1,m−2k, . . . ,m+k+ l+ 2}
and n ∈ {n− 2l − 1,n− 2l, . . . ,n + l + k + 2} and pm,n ≥ q ≥ 0 for m ∈ {m− k −
1,m− k, . . . ,m + k + l} and n ∈ {n− l − 1,n− l, . . . ,n + l + k}. If k > 0 and l > 0,
then

(
dk+l+1 − adq(k + l − 1)bk−1cl−1Cl−1

k+l−2 − (k + l + 1)qbkclClk+l

)
Am−1,n+1

≥ (k + l + 1)qbk+1cl−1Cl−1
k+l Am,n,

(2.112)

(
dk+l+1 − adq(k + l − 1)bk−1cl−1Cl−1

k+l−2 − (k + l + 1)qbkclClk+l

)
Am+1,n−1

≥ (k + l + 1)qbk−1cl+1Cl+1
k+lAm,n.

(2.113)

Proof . From (2.65), we have

dAm,n ≥ qAm−k,n−l (2.114)
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for m ∈ {m− k − 1,m− k, . . . ,m + k + l} and n ∈ {n− l − 1,n− l, . . . ,n + k + l}.
From Lemma 2.22 and (2.114), we obtain

dk+l+1Am−1,n+1 ≥ aq
k+l−1∑

j=0

( j + 1)dk+l−1− j
j∑

i=0

bj−iciCijAm−1+ j+1−i−k,n+1+1+i−l

+ (k + l + 1)q
k+l∑

i=0

bk+l−iciCik+lAm−1+k+l−i−k,n+1+i−l

≥ adq(k + l − 1)bk−1cl−1Cl−1
k+l−2Am−1,n+1

+ q(k + l + 1)bk+1cl−1Cl−1
k+l Am,n + q(k + l + 1)bkclClk+lAm−1,n+1.

(2.115)

Hence (2.112) holds. Similarly, (2.113) holds. The proof is completed. �

Corollary 2.25. Assume that for integers m ≥ 2k + l and n ≥ 2l + k, {Am,n} is a
solution of (2.65) such that Am,n > 0 for m ∈ {m−2k,m−2k+ 1, . . . ,m+k+ l+ 2}
and n ∈ {n− 2l,n− 2l+ 1, . . . ,n+ l+ k+ 2} and pm,n ≥ q ≥ 0 for m ∈ {m− k,m−
k + 1, . . . ,m + k + l + 1} and n ∈ {n− l,n− l + 1, . . . ,n + l + k + 1}. For k > 0 and
l > 0, then

(
dk+l − aq(k + l)bk−1cl−1Cl−1

k+l−2

)
Am+1,n+1

≥ (qd−1bkclClk+l + q(k + l)bkcl−1Cl−1
k+l−1

)
Am+1,n

+
(
qd−1bk−1cl+1Cl+1

k+l + q(k + l)bk−1clClk+l−1

)
Am,n+1.

(2.116)

Proof . From Lemma 2.22 and (2.114), we have

dk+lAm+1,n+1 ≥ a
k+l−1∑

j=0

dk+l−1− j
j∑

i=0

bj−iciCijAm+1+ j+1−i,n+1+1+i

+ aq
k+l−2∑

j=0

( j + 1)dk+l−2− j
j∑

i=0

bj−iciCijAm+1+ j+1−i−k,n+1+1+i−l

+
k+l∑

i=0

bk+l−iciCik+lAm+1+k+l−i,n+1+i

+ (k + l)q
k+l−1∑

i=0

bk+l−1−iciCik+l−1Am+1+k+l−1−i−k,n+1+i−l
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≥ aqbk−1cl−1Cl−1
k+l−2Am+1,n+1

+ aq(k + l − 1)bk−1cl−1Cl−1
k+l−2Am+1,n+1

+ qd−1bkclClk+lAm+1,n + qd−1bk−1cl+1Cl+1
k+lAm,n+1

+ q(k + l)bkcl−1Cl−1
k+l−1Am+1,n + q(k + l)bk−1clClk+l−1Am,n+1.

(2.117)

Hence (2.116) holds. The proof is completed. �

Lemma 2.26. Assume that the conditions of Lemma 2.22 hold and q = 0. Then

drAm,n ≥ a
r−1∑

j=0

dr− j−1
j∑

i=0

bj−iciCijAm+ j+1−i,n+1+i

+ a
r−2∑

u=0

dr−u−2
u∑

j=0

bu− j c j
{ u− j∑

s=0

j∑

t=0

pm+s,n+t

}

× Am+u+1− j−k,n+1+ j−l

+
r∑

i=0

br−iciCirAm+k1−i,n+i+
r−1∑

j=0

br−1− j c j
{ r−1− j∑

s=0

j∑

t=0

pm+s,n+t

}

Am+r−1−j−k,n+ j−l .

(2.118)

Proof . As in the proof of Lemma 2.22, we know that inequality (2.106) holds.
Then (2.118) holds for r = 2. By induction, we obtain (2.118). The proof is com-
pleted. �

Corollary 2.27. Assume that k > 0 and l > 0, and for m ≥ 3k + l and n ≥ 3l + k,
{Am,n} is a solution of (2.65) such thatAm,n > 0 form ∈ {m−2k−1,m−2k, . . . ,m+
k + l + 2} and n ∈ {n − 2l − 1,n − 2l, . . . ,n + k + l + 2}, pm,n ≥ 0 for m ∈
{m− k − 1,m− k, . . . ,m + k + l + 1} and n ∈ {n− l − 1,n− l, . . . ,n + k + l + 1},
and

∑m−1
i=m−k

∑n−1
j=n−l pi, j ≥ q ≥ 0 for m ∈ {m,m + 1, . . . ,m + k + 1} and n ∈

{n,n + 1, . . . ,n + l + 1}. Then

{
dk+l+1 − qbk−1cl−1(ad + bc)

}
Am−1,n+1 ≥ qbk+1cl−1Am,n, (2.119)

{
dk+l+1 − qbk−1cl−1(ad + bc)

}
Am+1,n−1 ≥ qbk−1cl+1Am,n. (2.120)
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Proof . From Lemma 2.26, we have

dk+l+1Am−1,n+1 ≥ a
k+l−1∑

u=0

dk+l−1−u
u∑

j=0

bu− j c j
{ u− j∑

s=0

j∑

t=0

pm+s,n+t

}

× Am−1+u+1− j−k,n+1+1+ j−l

+
k+l∑

j=0

bk+l− j c j
{ k+l− j∑

s=0

j∑

t=0

pm+s,n+t

}

Am−1+k+l− j−k,n+1+ j−l

≥ adbk−1cl−1

{ k−1∑

s=0

l−1∑

t=0

pm+s,n+t

}

Am−1,n+1

+ bk+1cl−1

{ k−1∑

s=0

l−1∑

t=0

pm+s,n+t

}

Am,n

+ bkcl
{ k∑

s=0

l∑

t=0

pm+s,n+t

}

Am−1,n+1

≥ qbk−1cl−1(ad + bc)Am−1,n+1 + qbk+1cl−1Am,n.

(2.121)

Hence (2.119) holds. Similarly, (2.120) holds. The proof is completed. �

Corollary 2.28. Assume that the conditions of Corollary 2.27 hold. Then

(
dk+l − aqbk−1cl−1)Am+1,n+1 ≥ qbkcl−1Am+1,n + qbk−1clAm,n+1. (2.122)

Proof . From Lemma 2.26, we have

dk+lAm+1,n+1≥a
k+l−2∑

u=0

dk+l−2−u
u∑

j=0

bu− j c j
{ u− j∑

s=0

j∑

t=0

pm+s,n+t

}

Am+1+u+1− j−k,n+1+1+ j−l

+
k+l−1∑

j=0

bk+l−1− j c j
{ k+l−1− j∑

s=0

j∑

t=0

pm+s,n+t

}

Am+1+k+l−1− j−k,n+1+ j−l

≥abk−1cl−1

{ k−1∑

s=0

l−1∑

t=0

pm+s,n+t

}

Am+1,n+1+bkcl−1

{ k∑

s=0

l−1∑

t=0

pm+s,n+t

}

Am+1,n

+ bk−1cl
{ k−1∑

s=0

l∑

t=0

pm+s,n+t

}

Am,n+1

≥ aqbk−1cl−1Am+1,n+1 + qbkcl−1Am+1,n + qbk−1clAm,n+1.
(2.123)

Hence (2.122) holds. The proof is completed. �
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Define the set E of real numbers as follows:

E = {λ > 0 | d − λpm,n > 0 eventually
}
. (2.124)

Lemma 2.29. Assume that pm,n ≥ 0 eventually and there exists a constant M > 0
such that

sup
λ∈E,m≥S,n≥T

λ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)ξ

< M (2.125)

for all sufficiently large positive integers S and T , where ξ is a positive constant. Then
the set E defined in (2.124) is bounded.

Proof . The lemma holds obviously if lim supm,n→∞ pm,n > 0. If

lim sup
m,n→∞

pm,n = 0 (2.126)

and the set E is unbounded, then there exist λ0 ∈ E and λ0 > C = 2M/dξkl such
that for any sufficiently large positive integers S and T ,

sup
m≥S,n≥T

λ0

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λ0pi, j

)
)ξ

< M. (2.127)

Since lim supm,n→∞ pm,n = 0, then there exist S and T such that

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λ0pi, j

)
)ξ

≥ dξkl

2
∀m ≥ S, n ≥ T. (2.128)

Hence

sup
m≥S,n≥T

λ0

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λ0pi, j

)
)ξ

>
2Mdξkl

2dξkl
=M, (2.129)

which contradicts (2.127). Thus the set E is bounded. The proof is completed. �

For every eventually positive solution A = {Am,n} of (2.65), we define the set
S of the positive reals as follows:

S(A)={λ > 0 | aAm+1,n+1 + bAm+1,n + cAm,n+1 −
(
d − λpm,n

)
Am,n ≤ 0 eventually

}
.

(2.130)
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In view of (2.65) and Lemma 2.21, we have

aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n + pm,n
bkcl

dk+l
Am,n

≤ aAm+1,n+1 + bAm+1,n + cAm,n+1 − dAm,n + pm,nAm−k,n−l = 0,

(2.131)

which implies that

0 < aAm+1,n+1 + bAm+1,n + cAm,n+1 ≤
(
d − bkcl

dk+l
pm,n

)
Am,n eventually. (2.132)

Hence bkcl/dk+l ∈ S(A), that is, S(A) is nonempty. It is easy to see that for any
λ ∈ S(A), we have eventually

aAm+1,n+1 + bAm+1,n + cAm,n+1 ≤
(
d − λpm,n

)
Am,n, (2.133)

that is, (d − λpm,n)Am,n > 0 eventually, and then λ ∈ E, which leads to S(A) ⊂ E.

Theorem 2.30. Assume that there exists a positive constant q > 0 such that
(i)

m−1∑

i=m−k

n−1∑

j=n−l
pi, j ≥ q eventually; (2.134)

(ii) there exist S,T ∈ N1 such that

sup
λ∈E,m≥S,n≥T

λ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/k

< βl
(
b

d

)k
for 0 < k ≤ l (2.135)

or

sup
λ∈E,m≥S,n≥T

λ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/l

< αk
(
c

d

)l
for k ≥ l > 0, (2.136)

where

α = bdk+l

dk+l − aqbk−1cl−1
+

qdk+lbk+1cl
(
dk+l − aqbk−1cl−1

)(
dk+l+1 − qbk−1cl−1(ad + bc)

) ,

β = cdk+l

dk+l − aqbk−1cl−1
+

qdk+lbkcl+1
(
dk+l − aqbk−1cl−1

)(
dk+l+1 − qbk−1cl−1(ad + bc)

) .

(2.137)

Then every solution of (2.65) oscillates.
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Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(2.65). From Lemma 2.29, the sets E and S(A) are bounded. Let μ ∈ S(A). By
Corollaries 2.27-2.28, we have

(
d − μpm,n

)
Am,n ≥ aAm+1,n+1 + bAm+1,n + cAm,n+1 ≥ αAm+1,n, (2.138)

(
d − μpm,n

)
Am,n ≥ aAm+1,n+1 + bAm+1,n + cAm,n+1 ≥ βAm,n+1. (2.139)

From (2.138), for all large m and n,

αAm,n ≤
(
d − μpm−1,n

)
Am−1,n,

αAm−1,n ≤
(
d − μpm−2,n

)
Am−2,n,

...

αAm−σ+1,n ≤
(
d − μpm−σ ,n

)
Am−σ ,n.

(2.140)

Hence, we have

αkAm,n ≤
m−1∏

i=m−k

(
d − μpi,n

)
Am−k,n. (2.141)

Similarly, from (2.139), we obtain

βlAm−k,n ≤
n−1∏

j=n−l

(
d − μpm−k, j

)
Am−k,n−l . (2.142)

From (2.141), we have

αkAm,n− j ≤
( m−1∏

i=m−k

(
d − μpi,n− j

)
)

Am−k,n− j , j = 0, 1, . . . , l. (2.143)

Hence by Lemma 2.21, we obtain

(
c

d

)l2(
αkAm,n

)l ≤
(
c

d

)l(l−1)/2

αklAm,n−1Am,n−2 · · ·Am,n−l

≤
m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
Alm−k,n−l .

(2.144)

Similarly, from (2.142), we obtain

(
b

d

)k2
(
βlAm,n

)k ≤
m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
Akm−k,n−l . (2.145)
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Therefore, we have

(
b

d

)k
βlAm,n ≤

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
)1/k

Am−k,n−l for k ≤ l, (2.146)

(
c

d

)l
αkAm,n ≤

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
)1/l

Am−k,n−l for k > l. (2.147)

If k ≤ l, then in view of (2.146) and (2.65), we obtain

βl
(
b

d

)k
sup

m≥M,n≥N

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
)−1/k

∈ S(A). (2.148)

On the other hand, (2.135) implies that there exists θ ∈ (0, 1) such that

sup
λ∈E,m≥M,n≥N

λ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/k

≤ θβl
(
b

d

)k
< βl

(
b

d

)k
. (2.149)

Hence, we have

sup
m≥M,n≥N

μ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − μpi, j

)
)1/k

≤ θβl
(
b

d

)k
. (2.150)

In view of (2.148) and (2.150), we obtain μ/θ ∈ S(A). Repeating the above proce-
dure, we obtain

μ
(

1
θ

)r
∈ S(A), r = 1, 2, . . . , (2.151)

which contradicts the boundedness of S(A).
The second result can be proved similarly. The proof is completed. �

Corollary 2.31. Assume that for all large m and n,

1
kl

m−1∑

i=m−k

n−1∑

j=n−l
pi, j ≥ q̂ ≥ 0 (2.152)

and for k ≤ l,

q̂βl
(
b

d

)k
>

dl+1ll

(l + 1)l+1
(2.153)
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or for k > l,

q̂αk
(
c

d

)l
>

dk+1kk

(k + 1)k+1
, (2.154)

where α and β are defined in Theorem 2.30. Then every solution of (2.65) oscillates.

Proof . If k ≤ l, then we see that

kld − λ
m−1∑

i=m−k

n−1∑

j=n−l
pi, j =

m−1∑

i=m−k

n−1∑

j=n−l

(
d − λpi, j

) ≥ kl

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/kl

.

(2.155)

Hence that for all large m and n,

(
d − λ

kl

m−1∑

i=m−k

n−1∑

j=n−l
pi, j

)l
≥
( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/k

. (2.156)

It is easy to see that max0<λ<d/c λ(d−cλ)l = d1+l ll/c(1+l)1+l for a positive constant c.
Hence, we have

βl
(
b

d

)k
>

dl+1ll

q̂(l + 1)l+1
≥ max

λ>0
λ

(

d − λ

kl

m−1∑

i=m−k

n−1∑

j=n−l
pi, j

)l

≥ λ

( m−1∏

i=m−k

n−1∏

j=n−l

(
d − λpi, j

)
)1/k

.

(2.157)

Taking the supremum on both sides of (2.157), we obtain (2.135). By Theorem
2.30, every solution of (2.65) oscillates.

The second result can be obtained similarly. The proof is completed. �

Theorem 2.32. Assume that there exists a positive constant q > 0 such that
(i) pi, j ≥ q eventually;
(ii) there exist S,T ∈ N1 such that

sup
λ∈E,m≥S,n≥T

λ

( m−1∏

i=m−k

(
d − λpi,n

)
)( n−1∏

j=n−l

(
d − λpm−k, j

)
)

< αkβ
l
, (2.158)
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where

θ1 = b +
aqd−1bkclClk+l + (k + l)aqbkcl−1Cl−1

k+l−1

dk+l − aqbk−1cl−1Cl−1
k+l−2 − aq(k + l − 1)bk−1cl−1Cl−1

k+l−2

,

θ2 = c +
aqd−1bk−1cl+1Cl+1

k+l + (k + l)aqbk−1clClk+l−1

dk+l − aqbk−1cl−1Cl−1
k+l−2 − aq(k + l − 1)bk−1cl−1Cl−1

k+l−2

,

α = θ1 + θ2 ·
(k + l + 1)qbk+1cl−1Cl−1

k+l

dk+l+1 − adq(k + l − 1)bk−1cl−1Cl−1
k+l−2 − (k + l + 1)qbkclClk+l

,

β = θ2 + θ1 ·
(k + l + 1)qbk−1cl+1Cl+1

k+l

dk+l+1 − adq(k + l − 1)bk−1cl−1Cl−1
k+l−2 − (k + l + 1)qbkclClk+l

.

(2.159)

Then every solution of (2.65) oscillates.

Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(2.65). Due to condition (i), the sets E and S(A) are bounded. Let μ ∈ S(A). By
Corollaries 2.24-2.25, we have

(
d − μpm,n

)
Am,n ≥ aAm+1,n+1 + bAm+1,n + cAm,n+1 ≥ αAm+1,n, (2.160)

(
d − μpm,n

)
Am,n ≥ aAm+1,n+1 + bAm+1,n + cAm,n+1 ≥ βAm,n+1. (2.161)

Hence, from (2.160), we have

αkAm,n ≤
m−1∏

i=m−k

(
d − μpi,n

)
Am−k,n. (2.162)

Similarly, from (2.161), we obtain

β
l
Am−k,n ≤

n−1∏

j=n−l

(
d − μpm−k, j

)
Am−k,n−l . (2.163)

From (2.162) and (2.163), we have

αkβ
l
Am,n ≤

m−1∏

i=m−k

(
d − μpi,n

) n−1∏

j=n−l

(
d − μpm−k, j

)
Am−k,n−l . (2.164)

Substituting (2.164) into (2.65), we obtain

αkβ
l
(

sup
m≥S,n≥T

m−1∏

i=m−k

(
d − μpi,n

) n−1∏

j=n−l

(
d − μpm−k, j

)
)−1

∈ S(A). (2.165)
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On the other hand, (2.158) implies that there exists θ ∈ (0, 1) such that

sup
λ∈E,m≥S,n≥T

λ
m−1∏

i=m−k

(
d − λpi,n

) n−1∏

j=n−l

(
d − λpm−k, j

) ≤ θαkβ
l
< αkβ

l
. (2.166)

Hence

sup
m≥S,n≥T

m−1∏

i=m−k

(
d − μpi,n

) n−1∏

j=n−l

(
d − μpm−k, j

) ≤ θαkβ
l

μ
. (2.167)

In view of (2.165) and (2.167), we obtain (μ/θ) ∈ S(A). Repeating the above pro-
cedure, we obtain

μ
(

1
θ

)r
∈ S(A), r = 1, 2, . . . , (2.168)

which contradicts the boundedness of S(A). The proof is complete. �

Corollary 2.33. Assume that for all large m and n, pm,n ≥ q > 0 and

qαkβ
l
>
dk+l+1(k + l)k+l

(k + l + 1)k+l+1
. (2.169)

Then every solution of (2.65) oscillates.

Proof . In view of the inequality

sup
λ∈(0,d/q)

λ(d − λq)k+l = dk+l+1(k + l)k+l

q(k + l + 1)k+l+1
, (2.170)

we can see that

sup
λ∈E,m≥S,n≥T

λ

( m−1∏

i=m−k

(
d − λpi,n

)
)( n−1∏

j=n−l

(
d − λpm−k, j

)
)

≤ sup
λ∈E

λ(d − λq)k+l ≤ sup
λ∈(0,d/q)

λ(d − λq)k+l

= dk+l+1(k + l)k+l

q(k + l + 1)k+l+1
< αkβ

l
.

(2.171)

By Theorem 2.32, every solution of (2.65) oscillates. The proof is complete. �
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Theorem 2.34. Assume that for all large m and n, pm,n ≥ 0 and

lim sup
m,n→∞

pm,n >
dk+l+1

bkclClk+l + adbk−1cl−1Cl−1
k+l−2

. (2.172)

Then every solution of (2.65) oscillates.

In fact, the conclusion of Theorem 2.34 is straightforward from (2.65) and
Corollary 2.23.

Remark 2.35. To compare results here with results in Section 2.5.1, we consider
the equation

Am+1,n+1 + Am+1,n + Am,n+1 − Am,n + pm,nAm−k,n−l = 0. (2.173)

By Corollary 2.18, if

pm,n ≥ q >
(k + l)k+l

(k + l + 1)k+l+1
, (2.174)

then every solution of (2.173) oscillates. By Corollary 2.33, if

pm,n ≥ q >
(k + l)k+l

ᾱkβ̄l(k + l + 1)k+l+1
, (2.175)

then every solution of (2.173) oscillates.

By the definitions of ᾱ and β̄ in Theorem 2.30, it is easy to see that

ᾱ > 1, β̄ > 1. (2.176)

Thus, condition (2.175) improves condition (2.174) in Section 2.5.1.

2.5.3. Oscillation of PDEs with continuous arguments

In this section, we consider the partial difference equation with continuous vari-
ables

p1A(x + a, y + b) + p2A(x + a, y) + p3A(x, y + b) − p4A(x, y)

+ P(x, y)A(x − τ, y − σ) = 0.
(2.177)

Throughout this section we will assume that
(i) pi ∈ R, p1 ≥ 0, p2, p3 ≥ p4 > 0, P ∈ C(R+ × R+,R+ − {0});

(ii) a, b, τ, σ ∈ R and aτ > 0, bσ > 0;
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(iii) τ = ka+ θ, σ = lb+ η, where k, l are nonnegative integers, θ ∈ [0, a) for
a > 0, and θ ∈ (a, 0] for a < 0, η ∈ [0, b) for b > 0, and η ∈ (b, 0] for
b < 0;

(iv)

Q(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
P(u, v) | x ≤ u ≤ x + a, y ≤ v ≤ y + b

}
, a > 0, b > 0,

min
{
P(u, v) | x + a ≤ u ≤ x, y ≤ v ≤ y + b

}
, a < 0, b > 0,

min
{
P(u, v) | x ≤ u ≤ x + a, y + b ≤ v ≤ y

}
, a > 0, b < 0,

min
{
P(u, v) | x + a ≤ u ≤ x, y + b ≤ v ≤ y

}
, a < 0, b < 0,

lim sup
x,y→∞

Q(x, y) > 0.

(2.178)

Define the set E by

E = {λ > 0 | p4 − λQ(x, y) > 0 eventually
}
. (2.179)

Lemma 2.36. Assume that (2.177) has an eventually positive solution. Then the dif-
ference inequality

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b) − p4w(x, y)

+Q(x, y)w(x − ka, y − lb) ≤ 0
(2.180)

has an eventually positive solution.

Proof . Let A(x, y) be an eventually positive solution of (2.177). From (2.177), we
have eventually

p4
(
A(x + a, y) + A(x, y + b) − A(x, y)

)

< p1A(x + a, y + b) + p2A(x + a, y) + p3A(x, y + b) − p4A(x, y) < 0.
(2.181)

We consider the following four cases.

Case 1. a > 0, b > 0.

Let

w(x, y) =
∫ x+a

x

∫ y+b

y
A(u, v)dudv. (2.182)
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Then

∂w(x, y)
∂x

=
∫ y+b

y

(
A(x + a, v) − A(x, v)

)
dv < 0,

∂w(x, y)
∂y

=
∫ x+a

x

(
A(u, y + b) − A(u, y)

)
du < 0.

(2.183)

Integrating (2.177), we have

p1

∫ x+a

x

∫ y+b

y
A(u + a, v + b)dudv + p2

∫ x+a

x

∫ y+b

y
A(u + a, v)dudv

+ p3

∫ x+a

x

∫ y+b

y
A(u, v + b)dudv − p4

∫ x+a

x

∫ y+b

y
A(u, v)dudv

+
∫ x+a

x

∫ y+b

y
P(u, v)A(u− τ, v − σ)dudv = 0.

(2.184)

By (2.178), (2.182), and the above equality, we obtain

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b) − p4w(x, y)

+Q(x, y)w(x − τ, y − σ) ≤ 0.
(2.185)

Since ∂w/∂x < 0 and ∂w/∂y < 0, we have

w(x − τ, y − σ) = w
(
x − (ka + θ), y − (lb + η)

) ≥ w(x − ka, y − lb). (2.186)

Therefore,

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

− p4w(x, y) +Q(x, y)w(x − ka, y − lb) ≤ 0.
(2.187)

Case 2. a < 0, b > 0.

Let

w(x, y) =
∫ x

x+a

∫ y+b

y
A(u, v)dudv. (2.188)
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Then ∂w/∂x > 0 and ∂w/∂y < 0. Integrating (2.177), by (2.178) and (2.188) we
have

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b) − p4w(x, y)

+Q(x, y)w(x − τ, y − σ) ≤ 0.
(2.189)

Since ∂w/∂x > 0 and ∂w/∂y < 0, we have

w(x − τ, y − σ) = w
(
x − (ka + θ), y − (lb + η)

)

≥ w
(
x − ka, y − (lb + η)

) ≥ w(x − ka, y − lb).
(2.190)

Therefore,

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b) − p4w(x, y)

+Q(x, y)w(x − ka, y − lb) ≤ 0.
(2.191)

Case 3. a > 0, b < 0.

Let

w(x, y) =
∫ x+a

x

∫ y

y+b
A(u, v)dudv. (2.192)

Then ∂w/∂x < 0 and ∂w/∂y > 0. Similarly, we can prove that the conclusion of
Lemma 2.36 holds.

Case 4. a < 0, b < 0.

Let

w(x, y) =
∫ x

x+a

∫ y

y+b
A(u, v)dudv. (2.193)

Then ∂w/∂x > 0 and ∂w/∂y > 0. Similarly, we can prove that the conclusion of
Lemma 2.36 holds. �

Theorem 2.37. Assume that there exist x1 ≥ x0, y1 ≥ y0 either if k > l > 0 and

sup
λ∈E, x≥x1, y≥y1

[

λ
l∏

i=1

(
p4 − λQ(x − ia, y − ib)

)

×
k−l∏

j=1

(
p4 − λQ(x − la− ja, y − lb)

)
]

<
(
p1 +

2p2p3

p4

)l
pk−l2 ,

(2.194)
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or if l > k > 0 and

sup
λ∈E, x≥x1, y≥y1

[

λ
k∏

i=1

(
p4 − λQ(x − ia, y − ib)

)

×
l−k∏

j=1

(
p4 − λQ(x − ka, y − kb − jb)

)
]

<
(
p1 +

2p2p3

p4

)k
pl−k3 .

(2.195)

Then every solution of (2.177) oscillates.

Proof . Suppose to the contrary, let A(x, y) be an eventually positive solution. Let
w(x, y) be defined as in Lemma 2.36. We define the subset S(w) of the positive
numbers as follows:

S(w) = {λ > 0 | p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

− (p4 − λQ(x, y)
)
w(x, y) ≤ 0 eventually

}
.

(2.196)

From (2.180) we have

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

− (p4 −Q(x, y)
)
w(x, y) ≤ 0,

(2.197)

which implies 1 ∈ S(w). Hence, S(w) is nonempty. For λ ∈ S(w), we have eventu-
ally

p4 − λQ(x, y) > 0, (2.198)

which implies that S(w) ⊂ E. Due to the condition (i), the set E is bounded, and
hence S(w) is bounded. From (2.180), we have

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b) < p4w(x, y), (2.199)

and so

w(x + a, y + b) ≤ p4

p2
w(x, y + b),

w(x + a, y + b) ≤ p4

p3
w(x + a, y).

(2.200)
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Let μ ∈ S(w). Then

(
p1 +

2p2p3

p4

)
w(x + a, y + b)

≤ p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

≤ (p4 − μQ(x, y)
)
w(x, y).

(2.201)

By using the similar method as in the proof of Theorem 2.15, we obtain

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

−
{

p4 −Q(x, y)
(
p1 +

2p2p3

p4

)l
pk−l2

× sup
x≥x1, y≥y1

[( l∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
k−l∏

j=1

(
p4−μQ(x−la−ja, y−lb)

)
)−1]}

w(x, y)≤0 for k>l,

p1w(x + a, y + b) + p2w(x + a, y) + p3w(x, y + b)

−
{

p4 −Q(x, y)
(
p1 +

2p2p3

p4

)k
pl−k3

× sup
x≥x1, y≥y1

[( k∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
l−k∏

j=1

(
p4−μQ(x−ka, y−kb−jb)

)
)−1]}

w(x, y)≤0 for l>k.

(2.202)

From (2.202) we obtain

(
p1 +

2p2p3

p4

)l
pk−l2 sup

x≥x1,y≥y1

×
[( l∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
k−l∏

j=1

(
p4 − μQ(x − la− ja, y − lb)

)
)−1]

∈ S(w) for k > l,
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(
p1 +

2p2p3

p4

)k
pl−k3 sup

x≥x1, y≥y1

×
[( k∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
l−k∏

j=1

(
p4 − μQ(x − ka, y − kb − jb)

)
)−1]

∈ S(w) for l > k.

(2.203)

On the other hand, (2.194) implies that there exists α1 ∈ (0, 1) such that for k > l,
we have

sup
λ∈E, x≥x1, y≥y1

λ
l∏

i=1

(
p4 − λQ(x − ia, y − ib)

)

×
k−l∏

j=1

(
p4 − λQ(x − la− ja, y − lb)

)

≤ α1

(
p1 +

2p2p3

p4

)l
pk−l2 ,

(2.204)

and (2.195) implies that there exists α1 ∈ (0, 1) such that for l > k, we have

sup
λ∈E, x≥x1, y≥y1

λ
k∏

i=1

(
p4 − λQ(x − ia, y − ib)

)

×
l−k∏

j=1

(
p4 − λQ(x − ka, y − kb − jb)

)

≤ α1

(
p1 +

2p2p3

p4

)k
pl−k3 .

(2.205)

In particular, (2.204) and (2.205) lead to (when λ = μ), respectively,

(
p1 +

2p2p3

p4

)l
pk−l2 sup

x≥x1, y≥y1

×
[( l∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
k−l∏

j=1

(
p4 − μQ(x − la− ja, y − lb)

)
)−1]

≥ μ

α1
for k > l,

(2.206)
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(
p1 +

2p2p3

p4

)k
pl−k3 sup

x≥x1, y≥y1

×
[( k∏

i=1

(
p4 − μQ(x − ia, y − ib)

)

×
l−k∏

j=1

(
p4 − μQ(x − ka, y − kb − jb)

)
)−1]

≥ μ

α1
for l > k.

(2.207)

Since μ∗ ∈ S(w) and μ′ ≤ μ∗ imply that μ′ ∈ S(w), it follows from (2.204) and
(2.206) for k > l, (2.205) and (2.207) for l > k that μ/α1 ∈ S(w). Repeating the
above argument with μ replaced by μ/α1, we get μ/α1α2 ∈ S(w) where α2 ∈ (0, 1).
Continuing in this way, we obtain

μ
∏∞

i=1 αi
∈ S(w), (2.208)

where αi ∈ (0, 1). This contradicts the boundedness of S. The proof is complete.
�

Corollary 2.38. Assume that either for k > l > 0,

lim inf
x,y→∞ Q(x, y) = q > pk+1

4

(
p1 +

2p2p3

p4

)−l
pl−k2

kk

(k + 1)k+1
, (2.209)

or for l > k > 0,

lim inf
x,y→∞ Q(x, y) = q > pl+1

4

(
p1 +

2p2p3

p4

)−k
pk−l3

ll

(l + 1)l+1
. (2.210)

Then every solution of (2.177) oscillates.

Proof . We see that

max
p4/q>λ>0

λ
(
p4 − λq

)k = pk+1
4 kk

q(k + 1)k+1
. (2.211)

Hence (2.209) and (2.210) imply that (2.194) and (2.195) hold. By Theorem 2.37,
every solution of (2.177) oscillates. The proof is complete. �
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Theorem 2.39. Assume that there exist x1 ≥ x0, y1 ≥ y0 either if k > l > 0,

sup
λ∈E, x≥x1, y≥y1

λ

[ k−l∏

j=1

l∏

i=1

(
p4 − λQ(x − ia− ja, y − ib)

)
]1/(k−l)

<
(
p1 +

2p2p3

p4

)l( p2

p4

)(1/2)(k−l+1)

,

(2.212)

or if l > k > 0,

sup
λ∈E, x≥x1, y≥y1

λ

[ l−k∏

j=1

k∏

i=1

(
p4 − λQ(x − ia, y − ib− jb)

)
]1/(l−k)

<
(
p1 +

2p2p3

p4

)k( p3

p4

)(1/2)(l−k+1)

.

(2.213)

Then every solution of (2.177) oscillates.

Proof . If k > l, we have

w(x, y) ≤
(
p1 +

2p2p3

p4

)−l l∏

i=1

(
p4 − μQ(x − ia, y − ib)

)
w(x − la, y − lb).

(2.214)

By (2.200) and (2.214), we have

w(x − ja, y) ≤
(
p1 +

2p2p3

p4

)−l

×
l∏

i=1

(
p4 − μQ(x − ia− ja, y − ib)

)
w(x − la− ja, y − lb)

≤
[(

p1 +
2p2p3

p4

)−l l∏

i=1

(
p4−μQ(x−ia− ja, y−ib)

)
]

w(x−ka, y−lb)

(2.215)

for j = 1, 2, . . . , k − l. In view of

wk−l(x, y) ≤
k−l∏

j=1

(
p4

p2

) j
w(x − ja, y) (2.216)
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and (2.215), we obtain

wk−l(x, y) =
(
p1 +

2p2p3

p4

)−l(k−l)( p4

p2

)(1/2)(k−l+1)(k−l)

×
[ k−l∏

j=1

l∏

i=1

(
p4 − μQ(x − ia− ja, y − ib)

)
]

wk−l(x − ka, y − lb).

(2.217)

That is,

w(x, y) ≤
(
p1 +

2p2p3

p4

)−l( p4

p2

)(1/2)(k−l+1)

×
[ k−l∏

j=1

l∏

i=1

(
p4 − μQ(x − ia− ja, y − ib)

)
]1/(k−l)

w(x − ka, y − lb).

(2.218)

Similarly, if l > k, we have

w(x, y) ≤
(
p1 +

2p2p3

p4

)−k( p4

p3

)(1/2)(l−k+1)

×
[ l−k∏

j=1

k∏

i=1

(
p4 − μQ(x − ia, y − ib− jb)

)
]1/(l−k)

w(x − ka, y − lb).

(2.219)

The rest of the proof is similar to that of Theorem 2.37, and thus, is omitted. �

Corollary 2.40. Assume that either for k > l > 0,

lim inf
x,y→∞

1
(k − l)l

k−l∑

j=1

l∑

i=1

Q(x − ia− ja, y − ib)

>
pl+1

4 ll

(l + 1)l+1

(
p1 +

2p2p3

p4

)−l( p4

p2

)(1/2)(k−l+1)

,

(2.220)
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or for l > k > 0,

lim inf
x,y→∞

1
(l − k)k

l−k∑

j=1

k∑

i=1

Q(x − ia, y − ib − jb)

>
pk+1

4 kk

(k + 1)k+1

(
p1 +

2p2p3

p4

)−k( p4

p3

)(1/2)(l−k+1)

.

(2.221)

Then every solution of (2.177) oscillates.

Proof . Since

max
p4/c>λ>0

λ
(
p4 − λc

)l = pl+1
4 ll

c(l + 1)l+1
(2.222)

let

c = 1
(k − l)l

k−l∑

j=1

l∑

i=1

Q(x − ia− ja, y − ib). (2.223)

Then

λ

[ k−l∏

j=1

l∏

i=1

(
p4 − λQ(x − ia− ja, y − ib)

)
]1/(k−l)

≤ λ

(k − l)l

[ k−l∑

j=1

l∑

i=1

(
p4 − λQ(x − ia− ja, y − ib)

)
]l

≤ λ

[

p4 − λ

(k − l)l

k−l∑

j=1

l∑

i=1

Q(x − ia− ja, y − ib)

]l

≤ pl+1
4

ll

(l + 1)l+1

[
1

(k − l)l

k−l∑

j=1

l∑

i=1

Q(x − ia− ja, y − ib)

]−1

≤
(
p1 +

2p2p3

p4

)l( p2

p4

)(1/2)(k−l+1)

.

(2.224)

Similarly, we have

λ

[ l−k∏

j=1

k∏

i=1

(
p4 − λQ(x − ia, y − ib− jb)

)
]1/(l−k)

≤
(
p1 +

2p2p3

p4

)k( p3

p4

)(1/2)(l−k+1)

.

(2.225)

By Theorem 2.39, every solution of (2.177) oscillates. The proof is complete. �
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Theorem 2.41. Assume that there exist x1 ≥ x0, y1 ≥ y0 such that if k = l > 0,

sup
λ∈E, x≥x1, y≥y1

λ
k∏

i=1

(
p4 − λQ(x − ia, y − ib)

)
<
(
p1 +

2p2p3

p4

)k
. (2.226)

Then every solution of (2.177) oscillates.

Proof . Let μ ∈ S(w). Then from (2.200), we have

w(x, y) ≤
(
p1 +

2p2p3

p4

)−k k∏

i=1

(
p4 − μQ(x − ia, y − ib)

)
w(x − ka, y − kb).

(2.227)

The rest of the proof is similar to that of Theorem 2.39, and thus, is omitted. �

Since

max
p4/q>λ>0

λ
(
p4 − λq

)k = pk+1
4 kk

q(k + 1)k+1
, (2.228)

we have the following result.

Corollary 2.42. Assume that k = l > 0 and that

lim inf
x,y→∞ Q(x, y) = q >

pk+1
4 kk

(k + 1)k+1

(
p1 +

2p2p3

p4

)−k
. (2.229)

Then every solution of (2.177) oscillates.

Theorem 2.43. Assume that there exist x1 ≥ x0, y1 ≥ y0 such that if k, l > 0 and

sup
λ∈E, x≥x1, y≥x1

λ
k∏

i=1

(
p4 − λQ(x − ia, y)

) l∏

j=1

(
p4 − λQ(x − ka, y − jb)

)
< pk2 p

l
3,

(2.230)

then every solution of (2.177) oscillates.
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Proof . Let μ ∈ S(w). Then

w(x, y) ≤ 1
p2

(
p4 − μQ(x − a, y)

)
w(x − a, y)

≤
(

1
p2

)k k∏

i=1

(
p4 − μQ(x − ia, y)

)
w(x − ka, y)

≤
(

1
p2

)k( 1
p3

) k∏

i=1

(
p4 − μQ(x − ia, y)

)(
p4 − μQ(x − ia, y − b)

)

×w(x − ka, y − b)

≤
(

1
p2

)k( 1
p3

)l k∏

i=1

(
p4 − μQ(x − ia, y)

) l∏

j=1

(
p4 − μQ(x − ia, y − jb)

)

×w(x − ka, y − lb).
(2.231)

The rest of the proof is similar to that of Theorem 2.15, and thus, is omitted. �
Since

max
p4/q>λ>0

λ(p4 − λq)k+l = pk+l+1
4 (k + l)k+l

q(k + l + 1)k+l+1
, (2.232)

and (2.230), we have the following result.

Corollary 2.44. Assume that k, l > 0 and that

lim inf
x,y→∞ Q(x, y) = q >

pk+l+1
4 (k + l)k+l

pk2 p
l
3(k + l + 1)k+l+1

. (2.233)

Then every solution of (2.177) oscillates.

Theorem 2.45. Assume that there exist x1 ≥ x0, y1 ≥ y0 such that if k, l > 0 and

sup
λ∈E, x≥x1, y≥y1

λ

[ l∏

j=1

k∏

i=1

(
p4 − λQ(x − ia, y − jb)

)
]1/l

< pk2

(
p3

p4

)(1/2)(l+1)

,

(2.234)

or

sup
λ∈E, x≥x1, y≥y1

λ

[ k∏

i=1

l∏

j=1

(
p4 − λQ(x − ia, y − jb)

)
]1/k

< pl3

(
p2

p4

)(1/2)(k+1)

,

(2.235)

then every solution of (2.177) oscillates.
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Proof . Let μ ∈ S(w). Then, we have eventually

p2w(x + a, y) ≤ (p4 − μQ(x, y)
)
w(x, y), (2.236)

p3w(x, y + b) ≤ (p4 − μQ(x, y)
)
w(x, y). (2.237)

By (2.236), we get

w(x, y) ≤ 1
p2

(
p4 − μQ(x − a, y)

)
w(x − a, y)

≤ · · · ≤
(

1
p2

)k k∏

i=1

(
p4 − μQ(x − ia, y)

)
w(x − ka, y).

(2.238)

Hence

w(x, y − jb) ≤ 1

pk2

k∏

i=1

(
p4 − μQ(x − ia, y − jb)

)
w(x − ka, y − jb)

≤
[

1

pk2

k∏

i=1

(
p4−μQ(x−ia, y− jb)

)
]

w(x−ka, y−lb), j=1, 2, . . . , l,

(2.239)

and so

wl(x, y) ≤
l∏

j=1

(
p4

p3

) j
w(x, y − jb)

≤
l∏

j=1

{(
p4

p3

) j[ 1

pk2

k∏

i=1

(
p4 − μQ(x − ia, y − jb)

)
]

w(x − ka, y − lb)

}

= 1

pkl2

(
p4

p3

)(1/2)l(l+1)
[ l∏

j=1

k∏

i=1

(
p4−μQ(x−ia, y− jb)

)
]

wl(x−ka, y−lb),

(2.240)

that is,

w(x, y) ≤
[

1

pkl2

(
p4

p3

)l(l+1)/2 l∏

j=1

k∏

i=1

(
p4 − μQ(x − ia, y − jb)

)
]1/l

w(x − ka, y − lb).

(2.241)
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Similarly, we have

w(x, y) ≤
(

1
p3

)l l∏

j=1

(
p4 − μQ(x, y − jb)

)
w(x, y − lb),

wk(x, y) ≤
k∏

i=1

(
p4

p2

)i
w(x − ia, y)

≤ 1

plk3

(
p4

p2

)(1/2)k(k+1)
[ k∏

i=1

l∏

j=1

(
p4−μQ(x−ia, y− jb)

)
]

wk(x−ka, y−lb),

(2.242)

that is,

w(x, y)≤
[

1

plk3

(
p4

p2

)k(k+l)/2 k∏

i=1

l∏

j=1

(
p4−μQ(x−ia, y− jb)

)
]1/k

w(x−ka, y−lb).

(2.243)

The rest of the proof is similar to that of Theorem 2.37, and thus, is omitted. �

Corollary 2.46. Assume that

lim inf
x,y→∞

1
kl

l∑

j=1

k∑

i=1

Q(x − ia, y − ib) > p−k2

(
p4

p3

)(l+1)/2 kk

(k + 1)k+1
, (2.244)

or

lim inf
x,y→∞

1
lk

k∑

i=1

l∑

j=1

Q(x − ia, y − ib) > p−l3

(
p4

p2

)(k+1)/2 ll

(l + 1)l+1
. (2.245)

Then every solution of (2.177) oscillates.

Example 2.47. Consider the partial difference equation with continuous variables
of the form

A
(
x +

1
2

, y − 1
)

+
1
e
A
(
x +

1
2

, y
)

+ e2A(x, y − 1)

− A(x, y) + (e + 1)A(x − 1, y + 2) = 0.

(2.246)

It is easy to see that (2.246) satisfies the conditions of Corollary 2.42, so every so-
lution of this equation is oscillatory. In fact, A(x, y) = (−e)2x+y is such a solution.
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2.6. Linear PDEs with several delays

2.6.1. Equations with nonnegative coefficients

Consider the partial difference equation with several delays

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

p(i)
m,nAm−ki,n−li = 0, m,n ∈ N0, (2.247)

where {p(i)
m,n} is a double real sequence with p(i)

m,n ≥ 0 for all large m,n, ki, li ∈ N1,
i = 1, 2, . . . ,u, and

p(i)
m,n ≥ pi ∈ [0,∞), lim inf

m,n→∞ p(i)
m,n = pi, i = 1, 2, . . . ,u. (2.248)

Then the corresponding limiting equation of (2.247) is

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

piAm−ki ,n−li = 0, m,n ∈ N0. (2.249)

The characteristic equation of (2.249) is

λ + μ− 1 +
u∑

i=1

piλ
−kiμ−li = 0. (2.250)

First we define a sequence {λl}∞l=1 by

λ1 = 1, λl+1 = 1 −
u∑

i=1

piλ
−ki−li
l , l = 1, 2, . . . , (2.251)

where pi ≥ 0, i = 1, 2, . . . ,u.
The following lemma will be used to prove our main results.

Lemma 2.48. Assume that the sequence {λl} is defined by (2.251). Then λ∗ ≤ λl ≤ 1
and liml→∞ λl = λ∗, where λ∗ is the largest root of the equation

λ = 1 −
u∑

i=1

piλ
−ki−li (2.252)

on (0, 1].

The proof is simple and thus omitted.
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In the following, we consider the linear partial difference inequalities

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

p(i)
m,nAm−ki,n−li ≤ 0, m,n ∈ N0, (2.253)

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

p(i)
m,nAm−ki ,n−li ≥ 0, m,n ∈ N0. (2.254)

Assume that pi, i = 1, 2, . . . ,u are sufficiently small such that the equation

2λ− 1 +
u∑

i=1

piλ
−ki−li = 0 (2.255)

has positive roots on (0, 1/2). Hence (2.250) has positive roots, which implies that
(2.249) has nonoscillatory solutions. We will show sufficient conditions for the
oscillation of (2.247) in this case.

Theorem 2.49. Assume that (2.248) holds. Further, assume that

lim sup
m,n→∞

u∑

i=1

(
λ−ki−li∗ p(i)

m,n + λ1−ki−li∗
(
p(i)
m+1,n + p(i)

m,n+1

))
> 1, (2.256)

where λ∗ is the largest root of (2.252) on (0, 1]. Then
(i) equation (2.253) has no eventually positive solutions;

(ii) equation (2.254) has no eventually negative solutions;
(iii) every solution of (2.247) oscillates.

Proof . It is sufficient to prove that (i), (ii), and (iii) follow from (i). Assume, for
the sake of contradiction, that {Am,n} is an eventually positive solution of (2.253).
Then, there exist m1 and n1 such that Am,n > 0 and Am−ki,n−li > 0, i = 1, 2, . . . ,u
for m ≥ m1, n ≥ n1. Therefore, from (2.253), we have

Am+1,n < Am,n, Am,n+1 < Am,n, m ≥ m1, n ≥ n1, (2.257)

which gives

Am−ki ,n ≥ λ−ki1 Am,n for m ≥ m1 + ki, n ≥ n1. (2.258)

Hence, we have

Am−ki ,n−li ≥ λ−ki−li1 Am,n for m ≥ m1 + ki, n ≥ n1 + li. (2.259)

Using now (2.259) and (2.247), we have

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

piλ
−ki−li
1 Am,n ≤ 0. (2.260)
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Hence, we have

Am+1,n ≤ Am,n

(

1 −
u∑

i=1

piλ
−ki−li
1

)

= λ2Am,n for m ≥ m1 + ki, n ≥ n1 + li,

Am,n+1 ≤ Am,n

(

1 −
u∑

i=1

piλ
−ki−li
1

)

= λ2Am,n for m ≥ m1 + ki, n ≥ n1 + li.

(2.261)

Hence

Am−ki,n−li ≥ λ−ki−li2 Am,n for m ≥ m1 + 2ki, n ≥ n1 + 2li. (2.262)

Repeating the above procedure, we get

Am+1,n ≤ Am,n

(

1 −
u∑

i=1

piλ
−ki−li
l−1

)

= λlAm,n (2.263)

for m ≥ m1 + (l − 1)ki, n ≥ n1 + (l − 1)li, and

Am,n+1 ≤ Am,n

(

1 −
u∑

i=1

piλ
−ki−li
l−1

)

= λlAm,n (2.264)

for m ≥ m1 + (l − 1)ki, n ≥ n1 + (l − 1)li. Hence,

Am−ki ,n−li ≥ λ−ki−lil Am,n for m ≥ m1 + lki, n ≥ n1 + lli, (2.265)

where

λl = 1 −
u∑

i=1

piλ
−ki−li
l−1 . (2.266)

Since liml→∞ λl = λ∗, for a sequence {εl} with εl > 0, and εl → 0 as l → ∞,
by (2.263), (2.264), and (2.265) there exists a double sequence {ml,nl} such that
ml,nl →∞ as l →∞ and

Am+1,n ≤
(
λ∗ + εl

)
Am,n for m ≥ ml, n ≥ nl, (2.267)

Am,n+1 ≤
(
λ∗ + εl

)
Am,n for m ≥ ml, n ≥ nl, (2.268)

Am−ki ,n−li ≥
(
λ∗ + εl

)−ki−liAm,n for m ≥ ml + ki, n ≥ nl + li. (2.269)
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From (2.247) and (2.269), we have

Am,n ≥
u∑

i=1

p(i)
m,n

(
λ∗ + εl

)1−ki−liAm−1,n,

Am,n ≥
u∑

i=1

p(i)
m,n

(
λ∗ + εl

)1−ki−liAm,n−1.

(2.270)

Dividing (2.247) by Am,n, we have

1 = Am+1,n + Am,n+1

Am,n
+

u∑

i=1

p(i)
m,n

Am−ki ,n−li
Am,n

. (2.271)

From (2.269)–(2.271), we have

1 ≥
u∑

i=1

((
λ∗ + εl

)−ki−li p(i)
m,n +

(
λ∗ + εl

)1−ki−li(p(i)
m+1,n + p(i)

m,n+1

))
. (2.272)

Letting l →∞, the above inequality implies

lim sup
m,n→∞

u∑

i=1

(
λ−ki−li∗ p(i)

m,n + λ1−ki−li∗
(
p(i)
m+1,n + p(i)

m,n+1

)) ≤ 1, (2.273)

which contradicts (2.256) and completes the proof. �

Theorem 2.50. Assume that (2.248) holds and (2.256) does not hold. If

lim sup
m,n→∞

⎛

⎝
u∑

i=1

λ−ki−li∗ p(i)
m,n +

∑u
i=1 λ

1−ki−li∗ p(i)
m+1,n

1 −∑u
i=1 λ

1−ki−li∗
(
p(i)
m+2,n + p(i)

m+1,n+1

)

+

∑u
i=1 λ

1−ki−li∗ p(i)
m,n+1

1 −∑u
i=1 λ

1−ki−li∗
(
p(i)
m+1,n+1 + p(i)

m,n+2

)

⎞

⎠ > 1,

(2.274)

then the conclusions of Theorem 2.49 remain.

Proof . In fact, from (2.270), we have

Am+1,n ≥
u∑

i=1

p(i)
m+1,n

(
λ∗ + εl

)1−ki−liAm,n for m ≥ ml, n ≥ nl,

Am,n+1 ≥
u∑

i=1

p(i)
m,n+1

(
λ∗ + εl

)1−ki−liAm,n for m ≥ ml, n ≥ nl.

(2.275)
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Hence

Am,n = Am+1,n + Am,n+1 +
u∑

i=1

p(i)
m,nAm−ki ,n−li

≥
u∑

i=1

(
p(i)
m+1,n + p(i)

m,n+1

)(
λ∗ + εl

)1−ki−liAm,n

+
u∑

i=1

p(i)
m,n

(
λ∗ + εl

)1−ki−liAm−1,n

(2.276)

and hence

Am,n ≥
∑u

i=1

(
λ∗ + εl

)1−ki−li p(i)
m,n

1 −∑u
i=1

(
λ∗ + εl

)1−ki−li(p(i)
m+1,n + p(i)

m,n+1

)Am−1,n. (2.277)

Similarly,

Am,n ≥
∑u

i=1

(
λ∗ + εl

)1−ki−li p(i)
m,n

1 −∑u
i=1

(
λ∗ + εl

)1−ki−li(p(i)
m+1,n + p(i)

m,n+1

)Am,n−1. (2.278)

Substituting the above inequalities into (2.271) and letting l → ∞, we obtain a
contradiction with (2.274). The proof is complete. �

Since

u∑

i=1

λ1−ki−li∗ p(i)
m+1,n ≥ λ∗

u∑

i=1

λ−ki−li∗ pi = λ∗
(
1 − λ∗

)
, (2.279)

from (2.274), we can obtain a simpler condition.

Corollary 2.51. If (2.274) is replaced by

lim sup
m,n→∞

u∑

i=1

λ−ki−li∗ p(i)
m,n > 2 − 1

λ2∗ +
(
1 − λ∗

)2 , (2.280)

then the conclusions of Theorem 2.49 remain.

In fact, (2.280) implies (2.274).
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Theorem 2.52. Assume that (2.248) holds. Further, assume that

lim sup
m,n→∞

(
1

(
1 − λ∗

)2

u∑

i=1

p(i)
m,nλ

−ki−li∗
(
1 − λli+1

∗
)(

1 − λki+1
∗
)

+Q
(
m,n, λ∗

)
)

> 1,

(2.281)

where λ∗ is the largest root of (2.252) on (0, 1] and

Q
(
m,n, λ∗

) =
∑u

i=1 λ
1−ki−li∗ p(i)

m+1,n+1

1 −∑u
i=1 λ

1−ki−li∗
(
p(i)
m+2,n+1 + p(i)

m+1,n+2

)

×
∑u

i=1 λ
1−ki−li∗ p(i)

m+1,n

1 −∑u
i=1 λ

1−ki−li∗
(
p(i)
m+2,n + p(i)

m+1,n+1

) .

(2.282)

Then
(i) equation (2.253) has no eventually positive solutions;

(ii) equation (2.254) has no eventually negative solutions;
(iii) every solution of (2.247) oscillates.

Proof . It is sufficient to prove that (i), (ii), and (iii) follow from (i). Assume, for
the sake of contradiction, that {Am,n} is an eventually positive solution of (2.253).
Summing (2.253) in n from n(≥ n1) to ∞, we have

∞∑

v=n
Am+1,v − Am,n +

u∑

i=1

∞∑

v=n
p(i)
m,vAm−ki ,v−li ≤ 0. (2.283)

We rewrite the above inequality in the form

∞∑

v=n+1

Am+1,v + Am+1,n − Am,n +
u∑

i=1

∞∑

v=n
p(i)
m,vAm−ki,v−li ≤ 0. (2.284)

Summing it in m from m(≥ m1) to ∞, we obtain

∞∑

s=m

∞∑

v=n+1

As+1,v − Am,n +
u∑

i=1

∞∑

s=m

∞∑

v=n
p(i)
s,vAs−ki ,v−li ≤ 0. (2.285)

From (2.277) and (2.278), we have

Am+1,n+1 ≥ Q
(
m,n, λ∗ + εl

)
Am,n. (2.286)
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By (2.285), we get

Am,n ≥
∞∑

s=m

∞∑

v=n+1

As+1,v +
u∑

i=1

∞∑

s=m

∞∑

v=n
p(i)
s,vAs−ki ,v−li

≥ Am+1,n+1 +
u∑

i=1

m+ki∑

s=m

n+li∑

v=n
p(i)
s,vAs−ki ,v−li

≥ Am+1,n+1 +
u∑

i=1

ki∑

s=0

li∑

v=0

p(i)
s+m,v+nAm+s−ki ,n+v−li

≥ Am+1,n+1 + Am,n

u∑

i=1

ki∑

s=0

li∑

v=0

p(i)
s+m,v+n

(
λ∗ + εl

)(s−ki)+(v−li)

= Am+1,n+1 + Am,n

u∑

i=1

(m+ki∑

s=m

n+li∑

v=n
p(i)
m,n

(
λ∗ + εl

)(s−m−ki)+(v−n−li)
)

.

(2.287)

Letting l →∞, the above two inequalities imply

lim sup
m,n→∞

(
1

(
1 − λ∗

)2

u∑

i=1

p(i)
m,nλ

−ki−li∗
(
1 − λli+1

∗
)(

1 − λki+1
∗
)

+Q
(
m,n, λ∗

)
)

≤ 1,

(2.288)

which contradicts (2.281) and completes the proof. �

Since

Q
(
m,n, λ∗

) ≥
(

λ∗
(
1 − λ∗

)

1 − 2λ∗ + 2λ2∗

)2

, (2.289)

we can derive a simpler condition from (2.281).

Corollary 2.53. If (2.281) is replaced by

lim sup
m,n→∞

1
(
1 − λ∗

)2

u∑

i=1

p(i)
m,nλ

−ki−li∗
(
1 − λli+1

∗
)(

1 − λki+1
∗
)
> 1 −

(
λ∗
(
1 − λ∗

)

1 − 2λ∗ + 2λ2∗

)2

,

(2.290)

then the conclusions of Theorem 2.52 remain.

Example 2.54. Consider the partial difference equation

Am+1,n +Am,n+1 − Am,n + pm,nAm−1,n−1 = 0, m ≥ 0, n ≥ 0, (2.291)
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where

pm,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
27

, m = n ∈ N0,

1
5

, otherwise.

(2.292)

For (2.291), (2.255) is

2λ− 1 +
1

27
λ−2 = 0, (2.293)

which has a positive root λ = 1/3. The limiting equation of (2.291) is

Am+1,n + Am,n+1 − Am,n +
1

27
Am−1,n−1 = 0, m ≥ 0, n ≥ 0, (2.294)

which has a positive solution {Am,n} = {3−(m+n)}, m,n ∈ N0. Equation (2.252) is

λ− 1 +
1

27
λ−2 = 0, (2.295)

which has a positive root λ∗ = (2/3) cos(φ/3), where cosφ = 1/2. Thus, φ = π/3
and λ∗ ≈ 0.63. Since lim supm,n→∞ pm,n = 1/5, we have

lim sup
m,n→∞

pm,n > λ
2
∗

(

2 − 1

λ2∗ +
(
1 − λ∗

)2

)

≈ 0.05. (2.296)

By Corollary 2.51, every solution of (2.291) is oscillatory.

2.6.2. Equations with oscillatory coefficients

Consider the linear partial difference equation

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

p(i)
m,nAm−ki,n−li = 0, (2.297)

where ki, li ∈ N1, k1 > k2 > · · · > ku > 0, l1 > l2 > · · · > lu > 0, p(i)
m,n are real

double sequences and may change sign in m, n for i = 1, 2, . . . ,u.

Lemma 2.55. Assume that there exist sufficiently large M and N such that

p(1)
m,n ≥ 0, p(1)

m,n + p(2)
m,n ≥ 0, . . . ,

u∑

i=1

p(i)
m,n ≥ 0 for m ≥M, n ≥ N. (2.298)
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Further assume that for any given positive integers M and N , there exist M1 ≥ M,
N1 ≥ N such that

p(i)
m,n ≥ 0 for m ∈ [M1, M1 + k1

]
, n ∈ [N1,N1 + l1

]
, i = 1, 2, . . . ,u. (2.299)

Let {Am,n} be an eventually positive solution of (2.297). Then Am,n is eventually
nonincreasing in m, n, and

u∑

i=1

p(i)
m,nAm−ki ,n−li ≥ Am−ku ,n−lu

u∑

i=1

p(i)
m,n. (2.300)

Proof . Let Am−k1,n−l1 > 0 for m ≥M, n ≥ N . By condition (2.299),

p(i)
m,n ≥ 0, i = 1, 2, . . . ,u, m ∈ [M1,M1 + k1

]
, n ∈ [N1,N1 + l1

]
. (2.301)

Then

Am+1,n + Am,n+1 − Am,n = −
u∑

i=1

p(i)
m,nAm−ki ,n−li ≤ 0 (2.302)

for m ∈ [M1,M1 + k1], n ∈ [N1,N1 + l1].
We will show that Am,n is nonincreasing for m ∈ [M1 + k1,M1 + k1 + ku],

n ∈ [N1+l1,N1+l1+lu]. In fact,m−ki ∈ [M1,M1+k1] form ∈ [M1+k1,M1+k1+ku]
and n − li ∈ [N1,N1 + l1] for n ∈ [N1 + l1,N1 + l1 + lu]. From (2.302), we have
Am−k1,n−l1 ≥ Am−k2,n−l2 ≥ · · · ≥ Am−ku,n−lu form ∈ [M1,M1+k1], n ∈ [N1,N1+l1].
Therefore

Am+1,n + Am,n+1 − Am,n = −
u∑

i=1

p(i)
m,nAm−ki ,n−li

≤ −(p(1)
m,n + p(2)

m,n

)
Am−k2,n−l2 −

u∑

i=3

p(i)
m,nAm−ki,n−li

≤ · · · ≤ −
( u∑

i=1

p(i)
m,n

)

Am−ku ,n−lu ≤ 0

(2.303)

for m ∈ [M1 + k1,M1 + k1 + ku], n ∈ [N1 + l1,N1 + l1 + lu].
Repeating the above method, it follows thatAm,n is nonincreasing form ≥M1,

n ≥ N1, and (2.300) holds. �

Theorem 2.56. Suppose that the assumptions of Lemma 2.55 hold. Further, assume
that

∞∑

i=M

∞∑

j=N

u∑

s=1

p(s)
i, j = ∞. (2.304)

Then every nonoscillatory solution of (2.297) tends to zero as m,n→∞.
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Proof . Let {Am,n} be an eventually positive solution of (2.297). By Lemma 2.55,
Am,n is eventually nonincreasing and hence limm,n→∞ Am,n = L ≥ 0 and

Am+1,n + Am,n+1 − Am,n + Am−ku,n−lu

u∑

i=1

p(i)
m,n ≤ 0. (2.305)

Summing (2.305) in n from n to ∞, we obtain

∞∑

i=n
Am+1,i − Am,n +

∞∑

i=n

u∑

s=1

p(s)
m,iAm−ks,i−ls ≤ 0, (2.306)

that is,

Am+1,n − Am,n +
∞∑

i=n+1

Am+1,i +
∞∑

i=n

u∑

s=1

p(s)
m,iAm−ks,i−ls ≤ 0. (2.307)

Summing (2.307) in m from m to ∞, we obtain

−Am,n +
∞∑

j=m

∞∑

i=n+1

Aj+1,i +
∞∑

j=m

∞∑

i=n

u∑

s=1

p(s)
j,i Aj−ks,i−ls ≤ 0. (2.308)

Thus

Am,n ≥
∞∑

j=m

∞∑

i=n

u∑

s=1

p(s)
j,i Aj−ks,i−ls . (2.309)

If L > 0, (2.309) contradicts (2.304). The proof is complete. �
Define the subset of positive reals as follows:

E =
{

λ > 0 | 1 − λ
u∑

i=1

p(i)
m,n > 0 eventually

}

. (2.310)

Given an eventually positive solution {Am,n} of (2.297), we define the subset
S(A) of the positive reals as follows:

S(A) =
{

λ > 0 | Am+1,n +Am,n+1 − Am,n

(

1 − λ
u∑

i=1

p(i)
m,n

)

≤ 0 eventually

}

.

(2.311)

If λ ∈ S(A), then 1 − λ
∑u

i=1 p
(i)
m,n > 0 eventually. Therefore S(A) ⊂ E.

It is easy to see that condition

lim sup
m,n→∞

u∑

i=1

p(i)
m,n > 0 (2.312)

implies that the set E is bounded.
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Theorem 2.57. Assume that conditions of Lemma 2.55 and (2.312) hold. Further,
assume that

sup
λ∈E,m≥M,n≥N

λ

{ m−1∏

i=m−ku

n−1∏

j=n−lu

(

1 − λ
u∑

s=1

p(s)
i, j

)}1/η

< 1 (2.313)

for some positive integers M and N , where η = min{ku, lu}. Then every solution of
(2.297) oscillates.

Proof . Let {Am,n} be an eventually positive solution of (2.297). Then by
Lemma 2.55, Am,n is nonincreasing in m,n eventually and

Am+1,n +Am,n+1 − Am,n + Am−ku ,n−lu

u∑

i=1

p(i)
m,n ≤ 0, (2.314)

thus we have

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

p(i)
m,nAm,n ≤ 0, (2.315)

so

0 < Am+1,n +Am,n+1 ≤
(

1 −
u∑

i=1

p(i)
m,n

)

Am,n, (2.316)

which implies that S(A) is nonempty.
Let μ ∈ S(A), then

Am+1,n ≤
(

1 − μ
u∑

i=1

p(i)
m,n

)

Am,n (2.317)

and so

Am,n ≤
m−1∏

r=m−ku

(

1 − μ
u∑

i=1

p(i)
r,n

)

Am−ku,n. (2.318)

Similarly, we have

Am,n+1 ≤
(

1 − μ
u∑

i=1

p(i)
m,n

)

Am,n (2.319)

and so

Am,n ≤
n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
m,s

)

Am,n−lu . (2.320)
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Hence

Alum,n ≤ Am,n−1 · · ·Am,n−lu ≤
n−1∏

s=n−lu

m−1∏

r=m−ku

(

1 − μ
u∑

i=1

p(i)
r,s

)

Alum−ku ,n−lu . (2.321)

Similarly, we have

Akum,n ≤ Am−1,n · · ·Am−ku ,n ≤
m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
r,s

)

Akum−ku ,n−lu . (2.322)

Hence, we obtain

Am,n ≤
{ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
r,s

)}1/η

Am−ku,n−lu . (2.323)

Substituting the above inequality into (2.314), we obtain

Am+1,n + Am,n+1 − Am,n

{

1 −
u∑

i=1

p(i)
m,n

[ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
r,s

)]−1/η}

≤ 0,

(2.324)

which implies that

{

sup
m≥M,n≥N

[ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
r,s

)]1/η}−1

∈ S(A). (2.325)

From condition (2.313), there exists γ ∈ (0, 1) such that

sup
λ∈E,m≥M,n≥N

λ

{ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − λ
u∑

i=1

p(i)
r,s

)}1/η

≤ γ < 1. (2.326)

Hence

{

sup
m≥M,n≥N

[ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − μ
u∑

i=1

p(i)
r,s

)]1/η}−1

≥ μ

γ
, (2.327)

so that μ/γ ∈ S(A). By induction, μ/γ j ∈ S(A), j = 1, 2, . . . . This contradicts the
boundedness of S(A). The proof is complete. �

Remark 2.58. The nonnegativity of all coefficients of (2.297) is not required in
Theorem 2.57.
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Remark 2.59. From (2.300), (2.314) implies that if every solution of

Am+1,n + Am,n+1 − Am,n + Am−ku,n−lu

u∑

i=1

p(i)
m,n = 0 (2.328)

oscillates, then every solution of (2.297) oscillates.

From Theorem 2.57, we can derive an explicit oscillation criterion.

Corollary 2.60. Assume that conditions of Lemma 2.55 hold. Further assume that

lim inf
m,n→∞

1
kulu

m−1∑

i=m−ku

n−1∑

j=n−lu

u∑

s=1

p(s)
i, j >

σσ

(1 + σ)1+σ
, (2.329)

where σ = max{ku, lu}. Then every solution of (2.297) oscillates.

Proof . Let g(λ) = λ(1 − cλ)σ for λ > 0, c > 0. Then

max
λ>0

g(λ) = σσ

c(1 + σ)1+σ
. (2.330)

Set c = (1/kulu)
∑m−1

r=m−ku
∑n−1

s=n−lu
∑u

i=1 p
(i)
r,s. Since

{

1 − λ

kulu

m−1∑

r=m−ku

n−1∑

s=n−lu
p(i)
r,s

}σ

≥
{ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − λ
u∑

i=1

p(i)
r,s

)}1/η

, (2.331)

we obtain

1 >
σσ

(1 + σ)1+σ

{
1
kulu

m−1∑

r=m−ku

n−1∑

s=n−lu

u∑

i=1

p(i)
r,s

}−1

≥ λ

(

1 − λ

kulu

m−1∑

r=m−ku

n−1∑

s=n−lu

u∑

i=1

p(i)
r,s

)σ

≥ λ

{ m−1∏

r=m−ku

n−1∏

s=n−lu

(

1 − λ
u∑

i=1

p(i)
r,s

)}1/η

.

(2.332)

Then the conclusion follows from Theorem 2.57. �

Example 2.61. Consider the equation

Am+1,n + Am,n+1 − Am,n +
(

3 + sin
π

3
m
)
Am−3,n−5 + sin

π

3
mAm−1,n−2 = 0.

(2.333)
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We can see that this equation satisfies Corollary 2.60, so every solution is oscilla-
tory. In fact, (−1)m+n+1 is an oscillatory solution.

2.6.3. Equations with positive coefficients and p ∈ (0, 1]

Consider the equation

Am+1,n +Am,n+1 − pAm,n +
u∑

i=1

p(i)
m,nAm−ki ,n−li = 0, (2.334)

where p ∈ (0, 1] and p(i)
m,n ≥ 0, i = 1, 2, . . . ,u,

∑u
i=1 p

(i)
m,n > 0 for m ≥ N , n ≥ N .

Lemma 2.62. Let {Am,n} be an eventually positive solution of (2.334). Then {Am,n}
is eventually decreasing in m and n and for all sufficiently large m and n,

Am+1,n < pAm,n, Am,n+1 < pAm,n. (2.335)

From (2.335), for positive integers k and l,

Am+k,n+l < pk+lAm,n. (2.336)

Now consider (2.334) together with difference inequalities

Am+1,n +Am,n+1 − pAm,n +
u∑

i=1

p(i)
m,nAm−ki ,n−li ≤ 0, (2.337)

Am+1,n + Am,n+1 − pAm,n +
u∑

i=1

p(i)
m,nAm−ki ,n−li ≥ 0. (2.338)

Theorem 2.63. Assume that ki and li are positive integers and

(i) lim infm,n→∞ p(i)
m,n = ci > 0, i = 1, 2, . . . ,u;

(ii)
∑u

i=1 p
−1−ki−li(lim supm,n→∞ p(i)

m,n + 2ci) > 1.
Then

(a) equation (2.337) has no eventually positive solutions;
(b) equation (2.338) has no eventually negative solutions;
(c) every solution of (2.334) oscillates.

Proof . Since (2.334) is linear. To prove Theorem 2.63, it is sufficient to prove (a).
Suppose to the contrary, let {Am,n} be an eventually positive solution of (2.337).

Then there exist positive integersM andN such thatAm,n > 0 and p(i)
m,n ≥ ci−ε > 0

for m ≥ M, n ≥ N , where ε ∈ (0, mini ci) is arbitrarily small. From (2.337), we
have

pAm,n >
u∑

i=1

(
ci − ε

)
Am−ki ,n−li . (2.339)
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By Lemma 2.62, we obtain

pAm,n > Am−1,n−1

u∑

i=1

p2−ki−li(ci − ε
)
. (2.340)

Hence,

Am+1,n > Am,n−1

u∑

i=1

p1−ki−li(ci − ε
)
> Am,n

u∑

i=1

p−ki−li
(
ci − ε

)
. (2.341)

Similarly, we have

Am,n+1 > Am,n

u∑

i=1

p−ki−li
(
ci − ε

)
. (2.342)

Hence, from (2.337), (2.341), and (2.342), we obtain

0 ≥ Am+1,n + Am,n+1 − pAm,n +
u∑

i=1

p(i)
m,nAm−ki ,n−li

> Am,n

( u∑

i=1

p−ki−li
(
p(i)
m,n + 2

(
ci − ε

))− p

)

.

(2.343)

Hence

u∑

i=1

p−ki−li
(
p(i)
m,n + 2

(
ci − ε

))
< p, (2.344)

which contradicts condition (ii). The proof is complete. �

Example 2.64. Consider the partial difference equation

Am+1,n + Am,n+1 − Am,n +
(

1 +
1
n

)
Am−1,n−1 + pm,nAm−2,n−1 = 0, (2.345)

where pm,n = (2n3 + 7n2 + 5n + 2)/(n(n + 1)(n + 2)), m ≥ 3, n ≥ 3.
It is easy to see that all assumptions of Theorem 2.63 hold. Therefore every

solution of (2.345) oscillates. In fact, {Am,n} = {(−1)m(1/(n + 1))} is such a solu-
tion.

Theorem 2.65. Assume that (i) of Theorem 2.63 holds and

u∑

i=1

ci

(
ri + 1

)ri+1

pri+r̄i+1rrii
> 1. (2.346)

Then every solution of (2.334) oscillates, where ri = min{ki, li}, r̄i = max{ki, li},
i = 1, 2, . . . ,u, and 00 = 1.
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Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(2.334). Set

αm,n = Am,n

Am+1,n+1
>

1
p2

, (2.347)

by Lemma 2.62. From (2.334), we have

Am+1,n + Am,n+1

Am,n
− p = −

u∑

i=1

p(i)
m,n

Am−ki,n−li
Am,n

. (2.348)

Hence, by Lemma 2.62 and (2.348), we have

Am+1,n+1

Am,n
− p2 <

2Am+1,n+1

Am,n
− p2 < p

(
Am+1,n + Am,n+1

Am,n
− p

)

= −p
u∑

i=1

p(i)
m,n

Am−ki ,n−li
Am,n

< −p
u∑

i=1

p(i)
m,np

ri−r̄i Am−ri,n−ri
Am,n

.

(2.349)

We note that

Am−ri,n−ri
Am,n

= Am−ri,n−ri
Am−ri+1,n−ri+1

Am−ri+1,n−ri+1

Am−ri+2,n−ri+2

· · · Am−1,n−1

Am,n
. (2.350)

Then (2.349) becomes

α−1
m,n − p2 < −p

u∑

i=1

p(i)
m,np

ri−r̄i
ri∏

s=1

αm−s,n−s. (2.351)

We claim that
∑n

i=1 r
2
i �= 0 under condition (2.346). Otherwise, from (2.346), we

obtain
∑u

i=1 ci p
−r̄i−1 > 1. On the other hand, from (2.351), we have

−p2 < α−1
m,n − p2 < −

u∑

i=1

p(i)
m,np

−r̄i+1 ≤ −
u∑

i=1

ci p
−r̄i+1. (2.352)

Hence

1 >
u∑

i=1

ci p
−r̄i−1. (2.353)

This contradiction shows that
∑n

i=1 r
2
i �= 0. Since ci > 0, (2.351) implies that αm,n

is bounded above. Set

l = lim inf
m,n→∞ αm,n. (2.354)
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Then l ∈ (1/p2,∞). From (2.351), we obtain

lim sup
m,n→∞

(
α−1
m,n

) = 1
l
< p2 −

u∑

i=1

pri−r̄i+1 lim inf
m,n→∞

(

p(i)
m,n

ri∏

s=1

αm−s,n−s

)

≤ p2 −
u∑

i=1

pri−r̄i+1cil
ri .

(2.355)

Hence

u∑

i=1

ci
lri+1pri−r̄i+1

lp2 − 1
≤ 1. (2.356)

We note that

lim inf
lp2>1

(
pri−r̄i+1lri+1

lp2 − 1

)
= p−ri−r̄i−1

(
ri + 1

)ri+1

riri
. (2.357)

Combining (2.356) and (2.357), we obtain

u∑

i=1

ci

(
ri + 1

)ri+1

pri+r̄i+1riri
≤ 1, (2.358)

which contradicts (2.346). The proof is complete. �

Example 2.66. Consider the partial difference equation

Am+1,n + Am,n+1 − Am,n +
2n2 + n− 3
n(n + 1)

Am,n−1 + Am−1,n = 0, (2.359)

where m ≥ 1, n ≥ 1.
It is easy to see that (2.346) holds. By Theorem 2.65, every solution of (2.359)

is oscillatory. In fact, Am,n = (−1)m(1/n) is such a solution of (2.359).

2.6.4. Equations with continuous arguments

Consider the partial difference equation with continuous arguments of the form

d1A(x + a, y + b) + d2A(x + a, y) + d3A(x, y + b) − d4A(x, y)

+
u∑

i=1

pi(x, y)A
(
x − τi, y − σi

) = 0,
(2.360)

where pi ∈ C(R+ × R+,R+), a, b, τi and σi, i = 1, 2, . . . ,u are positive, di, i = 1, 2, 3
are nonnegative and d4 is positive.
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Throughout this section, we assume that
(i) τi = kia+θi, σi = lib+ηi, where ki, li are nonnegative integers, θi ∈ [0, a),

ηi ∈ [0, b);
(ii)

Qi(x, y) = min
{
pi(u, v) | x ≤ u ≤ x + a, y ≤ v ≤ y + b

}
(2.361)

and lim infx,y→∞Qi(x, y) = qi ≥ 0, i = 1, 2, . . . ,u.
The following result is obvious.

Lemma 2.67. Let A(x, y) be an eventually positive solution of (2.360). Set

ω(x, y) =
∫ x+a

x

∫ y+b

y
A(u, v)dudv. (2.362)

Then ω(x, y) is an eventually positive solution of the difference inequality

d1ω(x + a, y + b) + d2ω(x + a, y) + d3ω(x, y + b) − d4ω(x, y)

+
u∑

i=1

Qi(x, y)ω
(
x − kia, y − lib

) ≤ 0,
(2.363)

and ∂ω/∂x < 0, ∂ω/∂y < 0.

From (2.363), d2ω(x + a, y) ≤ d4ω(x, y). Let λ1 = 0. We have

ω(x − a, y) ≥ e−λ1

(
d2

d4

)
ω(x, y),

ω
(
x − kia, y

) ≥ e−kiλ1

(
d2

d4

)ki
ω(x, y).

(2.364)

From d3ω(x, y + b) ≤ d4ω(x, y), we have

d3

d4
ω(x, y + b) ≤ ω(x, y). (2.365)

Hence,

ω(x, y − b) ≥ e−λ1

(
d3

d4

)
ω(x, y),

ω
(
x, y − lib

) ≥ e−liλ1

(
d3

d4

)li
ω(x, y),

ω
(
x − kia, y − lib

) ≥ e−kiλ1

(
d2

d4

)ki
ω
(
x, y − lib

)

≥ e−(ki+li)λ1

(
d2

d4

)ki(d3

d4

)li
ω(x, y).

(2.366)
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From (2.363) and (ii), we have

d1ω(x + a, y + b) + d2ω(x + a, y) + d3ω(x, y + b) − d4ω(x, y)

+
u∑

i=1

qiω
(
x − kia, y − lib

) ≤ 0.
(2.367)

Hence

d2

d4
ω(x + a, y) ≤ ω(x, y)

(

1 − 1
d4

u∑

i=1

qie
−(ki+li)λ1

(
d2

d4

)ki(d3

d4

)li)

. (2.368)

Let

eλ2 = 1 − 1
d4

u∑

i=1

qie
−(ki+li)λ1

(
d2

d4

)ki(d3

d4

)li
. (2.369)

Then

d2

d4
ω(x + a, y) ≤ eλ2ω(x, y), (2.370)

or

ω(x − a, y) ≥ e−λ2
d2

d4
ω(x, y). (2.371)

Similarly,

d3

d4
ω(x, y + b) ≤ ω(x, y)

(

1 − 1
d4

u∑

i=1

qie
−(ki+li)λ1

(
d2

d4

)ki(d3

d4

)li)

= eλ2ω(x, y).

(2.372)

Hence

ω(x, y − b) ≥ e−λ2
d3

d4
ω(x, y). (2.373)

By induction,

ω(x − a, y) ≥ e−λn
d2

d4
ω(x, y),

ω(x, y − b) ≥ e−λn
d3

d4
ω(x, y),

(2.374)

where

eλn = 1 − 1
d4

u∑

i=1

qie
−(ki+li)λn−1

(
d2

d4

)ki(d3

d4

)li
. (2.375)
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Obviously, {λn} is decreasing and bounded. So limn→∞ λn = λ∗ exists and

eλ
∗ = 1 − 1

d4

u∑

i=1

qie
−(ki+li)λ∗

(
d2

d4

)ki(d3

d4

)li
. (2.376)

Hence, we have

ω
(
x − kia, y − lib

) ≥ e−(ki+li)λ∗
(
d2

d4

)ki(d3

d4

)li
ω(x, y). (2.377)

From (2.363),

d4ω(x, y) ≥ d1ω(x + a, y + b) + d2ω(x + a, y) + d3ω(x, y + b)

+
u∑

i=1

Qi(x, y)ω
(
x − kia, y − lib

)
.

(2.378)

Since

ω
(
x − kia, y − lib

) ≥ e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x − a, y), (2.379)

we have

ω(x, y) ≥ 1
d4

u∑

i=1

Qi(x, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x − a, y). (2.380)

Hence

ω(x + a, y) ≥ 1
d4

u∑

i=1

Qi(x + a, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x, y). (2.381)

Similarly, we have

ω(x, y + b) ≥ 1
d4

u∑

i=1

Qi(x, y + b)e−(ki+li−1)λ∗
(
d2

d4

)ki(d3

d4

)li−1

ω(x, y). (2.382)
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Substituting the above inequalities into (2.378), we obtain

d4ω(x, y) ≥ d1

d4

u∑

i=1

Qi(x + a, y + b)e−(ki+li−2)λ∗
(
d2

d4

)ki−1(d3

d4

)li−1

ω(x, y)

+
d2

d4

u∑

i=1

Qi(x + a, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x, y)

+
d3

d4

u∑

i=1

Qi(x, y + b)e−(ki+li−1)λ∗
(
d2

d4

)ki(d3

d4

)li−1

ω(x, y)

+
u∑

i=1

Qi(x, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x − a, y).

(2.383)

Set

U(x, y) = d4 − d1

d4

u∑

i=1

Qi(x + a, y + b)e−(ki+li−2)λ∗
(
d2

d4

)ki−1(d3

d4

)li−1

− d2

d4

u∑

i=1

Qi(x + a, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li

− d3

d4

u∑

i=1

Qi(x, y + b)e−(ki+li−1)λ∗
(
d2

d4

)ki(d3

d4

)li−1

.

(2.384)

Then (2.383) leads to

ω(x, y) ≥ 1
U(x, y)

u∑

i=1

Qi(x, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li
ω(x − a, y). (2.385)

Similarly, we have

ω(x, y) ≥ 1
U(x, y)

u∑

i=1

Qi(x, y)e−(ki+li−1)λ∗
(
d2

d4

)ki(d3

d4

)li−1

ω(x, y − b),

ω(x, y) ≥ 1
U(x, y)

u∑

i=1

Qi(x, y)e−(ki+li−2)λ∗
(
d2

d4

)ki−1(d3

d4

)li−1

ω(x − a, y − b).

(2.386)
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From (2.363), we have

1 ≥ d1

d4

ω(x + a, y + b)
ω(x, y)

+
d2

d4

ω(x + a, y)
ω(x, y)

+
d3

d4

ω(x, y + b)
ω(x, y)

+
1
d4

u∑

i=1

Qi(x, y)
ω
(
x − kia, y − lib

)

ω(x, y)

≥ d1

d4

1
U(x + a, y + b)

u∑

i=1

Qi(x + a, y + b)e−(ki+li−2)λ∗

×
(
d2

d4

)ki−1(d3

d4

)li−1

+
d2

d4

1
U(x + a, y)

u∑

i=1

Qi(x + a, y)e−(ki+li−1)λ∗
(
d2

d4

)ki−1(d3

d4

)li

+
d3

d4

1
U(x, y + b)

u∑

i=1

Qi(x, y + b)e−(ki+li−1)λ∗
(
d2

d4

)ki(d3

d4

)li−1

+
1
d4

u∑

i=1

Qi(x, y)e−(ki+li)λ∗
(
d2

d4

)ki(d3

d4

)li
Δ= H(x, y).

(2.387)

From (2.387), we obtain the main result in this section.

Theorem 2.68. Assume that

lim sup
x,y→∞

H(x, y) > 1. (2.388)

Then every solution of (2.360) is oscillatory.

From (2.376), we have

d4
(
1 − eλ

∗) =
u∑

i=1

qie
−(ki+li)λ∗

(
d2

d4

)ki(d3

d4

)li
. (2.389)

By (2.389), we can obtain a simpler oscillation condition from (2.388).
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In view of (2.384), we have

U(x, y) ≤ d4 − d1

d4

u∑

i=1

qie
−(ki+li−2)λ∗

(
d2

d4

)ki−1(d3

d4

)li−1

− d2

d4

u∑

i=1

qie
−(ki+li−1)λ∗

(
d2

d4

)ki−1(d3

d4

)li

− d3

d4

u∑

i=1

qie
−(ki+li−1)λ∗

(
d2

d4

)ki(d3

d4

)li−1

= d4 − d1

d4
d4
(
1 − eλ

∗)
e2λ∗ d2

4

d2d3

− d2

d4
d4
(
1 − eλ

∗)
eλ

∗ d4

d2
− d3

d4
d4
(
1 − eλ

∗)
eλ

∗ d4

d3

= d4

[
1 − (1 − eλ

∗)
(
d1d4

d2d3
e2λ∗ + 2eλ

∗
)]

= d4

[
1 − (1 − eλ

∗)
eλ

∗
(
d1d4

d2d3
eλ

∗
+ 2
)]
.

(2.390)

Therefore,

H(x, y) ≥ 1
d4
[
1 − (1 − eλ∗

)
eλ∗
((
d1d4/d2d3

)
eλ∗ + 2

)]

×
{
d1

d4
d4
(
1 − eλ

∗)
e2λ∗ d2

4

d2d3

+
d2

d4
d4
(
1 − eλ

∗)
eλ

∗ d4

d2
+
d3

d4
d4
(
1 − eλ

∗)
eλ

∗ d4

d3

}

+
1
d4

u∑

i=1

Qi(x, y)e−(ki+li)λ∗
(
d2

d4

)ki(d3

d4

)li

=
(
1 − eλ

∗)
eλ

∗((
d1d4/d2d3

)
eλ

∗
+ 2
)

1 − (1 − eλ∗
)
eλ∗
((
d1d4/d2d3

)
eλ∗ + 2

)

+
1
d4

u∑

i=1

Qi(x, y)e−(ki+li)λ∗
(
d2

d4

)ki(d3

d4

)li
.

(2.391)

Then we have the following simpler result.
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Corollary 2.69. Assume that

lim sup
x,y→∞

1
d4

u∑

i=1

Qi(x, y)e−(ki+li)λ∗
(
d2

d4

)ki(d3

d4

)li

>
1 − 2

(
1 − eλ

∗)
eλ

∗((
d1d4/d2d3

)
eλ∗ + 2

)

1 − (1 − eλ∗
)
eλ∗
((
d1d4/d2d3

)
eλ∗ + 2

) .

(2.392)

Then every solution of (2.360) oscillates.

From (2.391), we have

H(x, y) ≥
(
1 − eλ

∗)
eλ

∗((
d1d4/d2d3

)
eλ

∗
+ 2
)

1 − (1 − eλ∗
)
eλ∗
((
d1d4/d2d3

)
eλ∗ + 2

) +
(
1 − eλ

∗)
. (2.393)

Corollary 2.70. If

(
1 − eλ

∗)
eλ

∗((
d1d4/d2d3

)
eλ

∗
+ 2
)

1 − (1 − eλ∗
)
eλ∗
((
d1d4/d2d3

)
eλ∗ + 2

) +
(
1 − eλ

∗)
> 1, (2.394)

then every solution of (2.360) oscillates.

Example 2.71. Consider the partial difference equation

A(x + 2π, y + 2π) + A(x + 2π, y) + A(x, y + 2π) − A(x, y)

+ p(x, y)A(x − π, y − 3π) = 0,
(2.395)

where p(x, y) = 11/5 + sin x + sin y. Then

Q(x, y) = min
x≤u≤x+2π
y≤v≤y+2π

p(u, v) = 1
5

, (2.396)

that is, q = 1/5. By (2.376), eλ
∗ = 1 − (1/5)e−λ

∗
. Hence eλ

∗ = (1 − √
1/5)/2 ≈

0.276393, and

(
1 − eλ

∗)
eλ

∗(
eλ

∗
+ 2
)

1 − (1 − eλ∗
)
eλ∗
(
eλ∗ + 2

) +
(
1 − eλ

∗) = 1.5594133 > 1. (2.397)

By Corollary 2.70, every solution of (2.395) oscillates.
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2.7. Frequent oscillations

In this section, we will consider the difference equation

aAm+1,n + bAm,n+1 − dAm,n +
r∑

i=1

p(i)
m,nAm−σi,n−τi = 0, m,n = 0, 1, 2, . . . ,

(2.398)

where a, b, and d are three positive real constants, σi, τi, and r are positive integers,

and {p(i)
m,n}∞m,n=0 are real double sequences, i = 1, 2, . . . , r.

Since the above usual concept of oscillation does not catch all the fine details
of an oscillatory sequence, a strengthened oscillation called frequent oscillation
has been posed.

First, we introduce the related definitions and lemmas.
Let Z = {. . . ,−1, 0, 1, . . . }, Nk = {k, k + 1, k + 2, . . . } and

Z2 = {(m,n) | m,n ∈ Z
}

, N2
k =

{
(m,n) | m,n ∈ Nk

}
. (2.399)

An element of Z2 is called a lattice point. The union, intersection, and difference
of two sets A and B of lattice points will be denoted by A + B (or A∪ B), A · B (or
A ∩ B) and A − B (or A\B), respectively. Let Ω be a set of lattice points. The size
of Ω is denoted by |Ω|. Given integers m and n, the translation operators Xm and
Yn are defined by

XmΩ = {(i +m, j) ∈ Z2 | (i, j) ∈ Ω
}

, YnΩ = {(i, j + n) ∈ Z2 | (i, j) ∈ Ω
}

,
(2.400)

respectively, and Ω(m,n) = {(i, j) | (i, j) ∈ Ω, i ≤ m, j ≤ n}. Let α, β, and θ, δ

be integers such that α ≤ β and θ ≤ δ. The union
∑β

i=α
∑δ

j=θ X
iY jΩ is called a

derived set of Ω. Hence

(i, j) ∈ Z2 \
β∑

i=α

δ∑

j=θ
XiY jΩ⇐⇒ (i− k, j − l) ∈ Z2 \Ω, (2.401)

for α ≤ k ≤ β and θ ≤ l ≤ δ.

Definition 2.72. LetΩ be a set of integers. If lim supm,n→∞(|Ω(m,n)|/mn) exists, then
the limit, denoted by μ∗(Ω), will be called the upper frequency measure ofΩ. Sim-
ilarly, if lim infm,n→∞(|Ω(m,n)|/mn) exists, then the limit, denoted by μ∗(Ω), will
be called the lower frequency measure of Ω. If μ∗(Ω) = μ∗(Ω), then the common
limit, denoted by μ(Ω), will be called the frequency measure of Ω.
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Definition 2.73. Let A = {Am,n | m ≥ −u, n ≥ −v} be a real double sequence
and let λ ∈ [0, 1] be a constant. If μ∗(A ≤ 0) ≤ λ, then A is said to be frequently
positive of upper degree λ, and if μ∗(A ≥ 0) ≤ λ, then A is said to be frequently
negative of upper degree λ. The sequence A is said to be frequently oscillatory of
upper degree λ if it is neither frequently positive nor frequently negative of the
same upper degree λ. The concept of frequently positive of lower degree, and so
forth, is similarly defined by means of μ∗. If a sequence A is frequently oscillatory
of upper degree 0, it is said to be frequently oscillatory.

Obviously, if a double sequence is eventually positive (or eventually negative),
then it is frequently positive (or frequently negative). Thus, if the sequence is fre-
quently oscillatory, then it is oscillatory.

We will adopt the usual notation for level sets of a double sequence, that is,
let A : Ω → R be a double sequence, then the set {(m,n) ∈ Ω | Am,n ≤ c} will
be denoted by (A ≤ c) or (Am,n ≤ c), where c is a real constant. The notations
(A ≥ c), (Am,n < c), and so forth, will have similar meanings.

Lemma 2.74. Let Ω and Γ be subsets of N2
k , where k ∈ Z. Then

μ∗(Ω + Γ) ≤ μ∗(Ω) + μ∗(Γ). (2.402)

Furthermore, if Ω and Γ are disjoint, then

μ∗(Ω) + μ∗(Γ) ≤ μ∗(Ω + Γ) ≤ μ∗(Ω) + μ∗(Γ) ≤ μ∗(Ω + Γ) ≤ μ∗(Ω) + μ∗(Γ),
(2.403)

so that

μ∗(Ω) + μ∗
(
N2
k \Ω

) = 1. (2.404)

Proof . If Ω and Γ are disjoint, then (Ω + Γ)(m,n) = Ω(m,n) + Γ(m,n) so that

μ∗(Ω + Γ) = lim sup
m,n→∞

∣∣Ω(m,n) + Γ(m,n)
∣∣

mn

≥ lim sup
m,n→∞

∣∣Γ(m,n)
∣∣

mn
+ lim inf

m,n→∞

∣∣Ω(m,n)
∣∣

mn
= μ∗(Ω) + μ∗(Γ).

(2.405)

The other cases are similarly proved. As an immediate consequence, we have

1 = μ∗
(
N2
k

) ≤ μ∗(Ω) + μ∗
(
N2
k \Ω

) ≤ μ∗
(
N2
k ) = 1. (2.406)
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Hence

μ∗(Ω) + μ∗
(
N2
k \Ω

) = 1. (2.407)
�

Lemma 2.75. Let Ω and Γ be subsets of N2
k . If μ∗(Ω) + μ∗(Γ) > 1, then Ω∩ Γ is an

infinite set.

Proof . If Ω∩ Γ is finite, then μ∗(Ω∩ Γ) = 0 and in view of Ω ⊆ (N2
k \ Γ) +Ω∩ Γ,

we have

μ∗(Ω) ≤ μ∗
(
N2
k \ Γ

)
+ μ∗(Ω∩ Γ) = μ∗

(
N2
k \ Γ

)
. (2.408)

Thus by Lemma 2.74,

1 < μ∗(Ω) + μ∗(Γ) ≤ μ∗
(
N2
k \ Γ

)
+ μ∗(Γ) = 1, (2.409)

which is a contradiction. �

Similarly, from Lemma 2.74, we have the following.

Lemma 2.76. Let Ω ⊂ N2
k , α, β, θ, and δ be integers such that α ≤ β and θ ≤ δ.

Then

μ∗
( β∑

i=α

δ∑

j=θ
XiY jΩ

)

≤ (β − α + 1)(δ − θ + 1)μ∗(Ω),

μ∗

( β∑

i=α

δ∑

j=θ
XiY jΩ

)

≤ (β− α + 1)(δ − θ + 1)μ∗(Ω).

(2.410)

Lemma 2.77. Let k, m, and n be three positive integers, and let {Ai, j} be a sequence
such that Ai, j > 0 for i ∈ {m,m + 1, . . . ,m + k} and j ∈ {n,n + 1, . . . ,n + k}. If
dAi, j ≥ aAi+1, j + bAi, j+1 for i ∈ {m,m+ 1, . . . ,m+ k} and j ∈ {n,n+ 1, . . . ,n+ k},
then

dkAm,n ≥
k∑

i=0

ak−ibiCikAm+k−i,n+i. (2.411)
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Proof . Obviously, (2.411) holds for k = 1. Assume that (2.411) holds for an inte-
ger s ∈ {1, 2, . . . , k − 1}. Then in view of the following inequality:

s∑

i=0

as−ibiCis
(
aAm+s+1−i,n+i + bAm+s−i,n+i+1

)

≥ as+1Am+s+1,n +
s∑

i=1

as+1−ibiCisAm+s+1−i,n+i

+
s−1∑

i=0

as−ib1+iCisAm+s−i,n+i+1 + bs+1Am,n+s+1

≥ as+1Am+s+1,n +
s∑

i=1

as+1−ibi
(
Cis + Ci−1

s

)
Am+s+1−i,n+i

+ bs+1Am,n+s+1

=
s+1∑

i=0

as+1−ibiCis+1Am+s+1−i,n+i,

(2.412)

(2.411) holds for s + 1. By induction, (2.411) holds. The proof is completed. �

Lemma 2.78. Let k,m, and n be three positive integers such thatm ≥ 2u and n ≥ 2v.
Assume that (2.398) has a solution {Ai, j} such that Ai, j > 0 for i ∈ {m − 2u,m −
2u + 1, . . . ,m + k} and j ∈ {n − 2v,n − 2v + 1, . . . ,n + k}, ps(i, j) ≥ qs ≥ 0 for
i ∈ {m−u,m−u+ 1, . . . ,m+ k} and j ∈ {n− v,n− v + 1, . . . ,n+ k}, where qs are
real constants, s = 1, 2, . . . , r. Then

dk+1Am,n ≥
k+1∑

i=0

ak+1−ibiCik+1Am+k+1−i,n+i

+ (k + 1)q
k∑

i=0

ak−ibiCikAm+k−i−α,n+i−β

+ q2
k∑

i=1

idk−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β,

(2.413)

where α = min{σ1, σ2, . . . , σr} and β = min{τ1, τ2, . . . , τr}, and

q =
r∑

s=1

qsaσs−αbτs−βC
τs−β
σs−α+τs−β

dσs−α+τs−β . (2.414)
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Proof . In view of (2.398), for any i ∈ {m − u,m − u + 1, . . . ,m + k} and j ∈
{n− v,n− v + 1, . . . ,n + k}, we have

dAi, j = aAi+1, j + bAi, j+1 +
r∑

s=1

ps(i, j)Ai−σs, j−τs ≥ aAi+1, j + bAi, j+1. (2.415)

Then from Lemma 2.77, for any i ∈ {m,m+1, . . . ,m+k} and j ∈ {n,n+1, . . . ,n+
k}, we get

dσs+τs−α−βAi−σs, j−τs ≥ aσs−αbτs−βC
τs−β
σs+τs−α−βAi−α, j−β, s = 1, 2, . . . , r, (2.416)

and so that

dAi, j ≥ aAi+1, j + bAi, j+1 +

( r∑

s=1

ps(i, j)C
τs−β
σs+τs−α−β

aσs−αbτs−β

dσs+τs−α−β

)

Ai−α, j−β

= aAi+1, j + bAi, j+1 + qi, jAi−α, j−β,

(2.417)

where

qi, j =
r∑

s=1

aσs−αbτs−βC
τs−β
σs−α+τs−β

dσs+τs−α−β
ps(i, j). (2.418)

Obviously, qi, j ≥ q for i ∈ {m− u,m− u + 1, . . . ,m + k} and j ∈ {n− v,n− v +
1, . . . ,n + k}. Hence, from (2.417), we obtain

dAm,n ≥ aAm+1,n + bAm,n+1 + qm,nAm−α,n−β,

dAm+1,n ≥ aAm+2,n + bAm+1,n+1 + qm+1,nAm+1−α,n−β,

dAm,n+1 ≥ aAm+1,n+1 + bAm,n+2 + qm,n+1Am−α,n+1−β,

dAm−α,n−β ≥ aAm+1−α,n−β + bAm−α,n+1−β + qm−α,n−βAm−2α,n−2β.

(2.419)
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Thus, from the above in equalities, we have

d2Am,n ≥ a2Am+2,n + 2abAm+1,n+1 + b2Am,n+2

+ a
(
qm,n + qm+1,n

)
Am+1−α,n−β

+ b
(
qm,n + qm,n+1

)
Am−α,n+1−β + qm,nqm−α,n−βAm−2α,n−2β.

(2.420)

Hence

d2Am,n ≥
2∑

i=0

a2−ibiCi2Am+2−i,n+i + 2q
1∑

i=0

a1−ibiCi1Am+1−i−α,n+i−β

+ q2
1∑

i=1

id1−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β.

(2.421)

Assume that (2.413) holds for a positive integer s ∈ {1, 2, . . . , k}. Then from
(2.412), (2.417), and the assumptions, we have

dk+1Am,n ≥
k∑

i=0

ak−ibiCik
(
aAm+k+1−i,n+i + bAm+k−i,n+1+i + qAm+k−i−α,n+i−β

)

+ kq
k−1∑

i=0

ak−1−ibiCik−1

× (aAm+k−i−α,n+i−β + bAm+k−1−i−α,n+1+i−β + qAm+k−1−i−2α,n+i−2β
)

+ q2
k−1∑

i=1

idk−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β

≥
k+1∑

i=0

ak+1−ibiCik+1Am+k+1−i,n+i + q
k∑

i=0

ak−ibiCikAm+k−i−α,n+i−β

+kq
k∑

i=0

ak−ibiCikAm+k−i−α,n+i−β+kq2
k−1∑

i=0

ak−1−ibiCik−1Am+k−1−i−2α,n+i−2β

+ q2
k−1∑

i=1

idk−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β

=
k+1∑

i=0

ak+1−ibiCik+1Am+k+1−i,n+i + (k + 1)q
k∑

i=0

ak−ibiCikAm+k−i−α,n+i−β

+ q2
k∑

i=1

idk−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β.

(2.422)

Hence (2.413) holds. The proof is completed. �
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From Lemma 2.78, we can obtain the following corollaries.

Corollary 2.79. Assume that α > 0 and β > 0. Further, assume that for integers
m ≥ 3u and n ≥ 3v, (2.398) has a solution {Ai, j} such that Ai, j > 0 for i ∈ {m −
3u,m− 3u+ 1, . . . ,m+ v} and j ∈ {n− 3v,n− 3v + 1, . . . ,n+ u}, ps(i, j) ≥ qs ≥ 0
for i ∈ {m − 2u,m − 2u + 1, . . . ,m + v}, j ∈ {n − 2v,n − 2v + 1, . . . ,n + u} and
s = 1, 2, . . . , r, where q is defined in (2.414). Then

(
dα+β − q(α + β)C

β
α+β

(
aαbβ

d

))
Am−α,n−β ≥ aαbβC

β
α+βAm,n. (2.423)

Proof . From (2.398), for i ∈ {m− 2u,m− 2u+ 1, . . . ,m+ v} and j ∈ {n− 2v,n−
2v + 1, . . . ,n + u}, we have

dAi−1, j ≥ aAi, j , dAi, j−1 ≥ bAi, j . (2.424)

In view of Lemma 2.78 and the equality Cik + Ci−1
k = Cik+1, we have

dα+βAm−α,n−β ≥
α+β∑

i=0

aα+β−ibiCiα+βAm+β−i,n−β+i

+ q(α + β)
α+β−1∑

i=0

aα+β−1−ibiCiα+β−1Am+β−1−i−α,n+i−2β

≥ aαbβC
β
α+βAm,n + (α + β)qaα−1bβC

β
α+β−1Am−α−1,n−β

+ (α + β)qaαbβ−1C
β−1
α+β−1Am−α,n−β−1

≥ aαbβC
β
α+βAm,n + (α + β)q

(
aαbβ

d

)
C
β
α+βAm−α,n−β.

(2.425)

Hence (2.423) holds. The proof is completed. �

Corollary 2.80. Assume that α > 0 and β > 0. Further assume that for integers
m ≥ 2u and n ≥ 2v, (2.398) has a solution {Ai, j} such that Ai, j > 0 for i ∈ {m −
2u,m− 2u + 1, . . . ,m + u + v + 1} and j ∈ {n− 2v,n− 2v + 1, . . . ,n + u + v + 1},
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and ps(i, j) ≥ qs ≥ 0 for i ∈ {m− u,m− u + 1, . . . ,m + u + v}, j ∈ {n− v,n− v +
1, . . . ,n + u + v} and s = 1, 2, . . . , r. Let q be defined in (2.414). Then

(
dα+β − qd−1aαbβ(1 + β)C

β
α+β

)
Am+1,n ≥ (α + β)qaα−1bβC

β
α+β−1Am,n, (2.426)

(
dα+β − qd−1aαbβ(1 + α)C

β
α+β

)
Am,n+1 ≥ (α + β)qaαbβ−1C

β−1
α+β−1Am,n. (2.427)

Proof . From (2.398), we have dAm+1,n−1 ≥ bAm+1,n. From (2.417), for any i ∈
{m,m + 1, . . . ,m + u + v} and j ∈ {n,n + 1, . . . ,n + u + v}, we obtain

dAi, j ≥ qAi−α, j−β. (2.428)

In view of Lemma 2.78, we get

dα+βAm+1,n ≥
α+β∑

i=0

aα+β−ibiCiα+βAm+1+α+β−i,n+i

+ q(α + β)
α+β−1∑

i=0

aα+β−1−ibiCiα+β−1Am+α+β−i−α,n+i−β

≥ aαbβC
β
α+βAm+1+α,n+β + (α + β)qaα−1bβC

β
α+β−1Am,n

+ (α + β)qaαbβ−1C
β−1
α+β−1Am+1,n−1

≥ qd−1aαbβC
β
α+βAm+1,n + (α + β)qaα−1bβC

β
α+β−1Am,n

+ qd−1(α + β)aαbβC
β−1
α+β−1Am+1,n

= qd−1aαbβ(1 + β)C
β
α+βAm+1,n + (α + β)qaα−1bβC

β
α+β−1Am,n.

(2.429)

Hence (2.426) holds. Similarly, (2.427) holds. The proof is completed. �

Corollary 2.81. Assume that α > 0 and β > 0. Further, assume that for integers
m ≥ 2u + v and n ≥ 2v + u, (2.398) has a solution {Ai, j} such that Ai, j > 0 for
i ∈ {m− 2u− v,m− 2u− v + 1, . . . ,m+ 2u+ v + 1} and j ∈ {n− 2v− u,n− 2v−
u + 1, . . . ,n + u + 2v + 1}, and ps(i, j) ≥ qs ≥ 0 for i ∈ {m − u − v,m − u − v +
1, . . . ,m+ 2u+ v}, j ∈ {n− v− u,n− v− u+ 1, . . . ,n+ u+ 2v} and s = 1, 2, . . . , r.
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Then

dα+β+1Am−h,n+h ≥ (α + β + 1)qaα+hbβ−hC
β−h
α+βAm,n, (2.430)

where q is defined in (2.414) and −α ≤ h ≤ β.

Proof . For any −α ≤ h ≤ β, from Lemma 2.78, we get

dα+β+1Am−h,n+h ≥ (α + β + 1)q
α+β∑

i=0

aα+β−ibiCiα+βAm−h+α+β−i−α,n+h+i−β

≥ (α + β + 1)qaα+hbβ−hC
β−h
α+βAm,n.

(2.431)

Hence (2.430) holds. The proof is completed. �

Theorem 2.82. Assume that α > 0 and β > 0. Further assume that there exist non-

negative constants qi ≥ 0, θi ≥ 0, and ω ∈ [0, 1] such that μ∗{p(i)
m,n < qi} = θi ≥ 0,

i = 1, 2, . . . , r,

dα+β+1 ≤ q2
{
Dd−1aα+1bβC

β
α+β+1 +Dd−1aαbβ+1C

β+1
α+β+1

+ (α + β + 1)2Ea2αb2βC
2β
2α+2β + d−1(α + β)BaαbβC

β
α+β

}
,

(4u+2v+ 1)(2u+ 4v+ 1)
(
θ1 + θ2+ · · ·+ θr

)
+ (5u+ 2v+ 2)(2u+ 5v+ 2)ω < 1,

(2.432)

where q is defined in (2.414) and

B =
aαbβC

β
α+β

(
dα+β − (q/d)(α + β)aαbβC

β
α+β

) ,

E = 1
dα+β+1 ,

D =
(α + β)aα−1bβC

β
α+β−1

{
dα+β − qd−1aαbβ(1 + β)C

β
α+β

} ,

D =
(α + β)aαbβ−1C

β−1
α+β−1

{
dα+β − qd−1aαbβ(1 + α)C

β
α+β

} .

(2.433)

Then every solution of (2.398) is frequently oscillatory of lower degree ω.



Frequent oscillations 89

Proof . Suppose to the contrary, let A = {Am,n} be a frequently positive solution
of (2.398) such that μ∗{A ≤ 0} ≤ ω. In view of Lemmas 2.74 and 2.76, we have

μ∗

{

N2
0

∖ r∑

s=1

2u+v∑

i=−2u−v

u+2v∑

j=−u−2v

XiY j
(
ps(m,n) < qs

)
}

+ μ∗
{

N2
0

∖ 3u+v∑

i=−2u−v−1

u+3v∑

j=−u−2v−1

XiY j
(
A ≤ 0

)
}

= 2 − μ∗
{ r∑

s=1

2u+v∑

i=−2u−v

u+2v∑

j=−u−2v

XiY j
(
ps(m,n) < qs

)
}

− μ∗

{ 3u+v∑

i=−2u−v−1

u+3v∑

j=−u−2v−1

XiY j(A ≤ 0)

}

≥ 2 − (4u + 2v + 1)(2u + 4v + 1)
(
θ1 + · · · + θu

)

− (5u + 2v + 2)(2u + 5v + 2)ω > 1.

(2.434)

Hence by Lemma 2.75, the intersection

{

N2
0

∖ r∑

s=1

2u+v∑

i=−2u−v

u+2v∑

j=−u−2v

XiY j
(
ps(m,n) < qs

)
}

⋂
{

N2
0

∖ 3u+v∑

i=−2u−v−1

u+3v∑

j=−u−2v−1

XiY j
(
A ≤ 0

)
} (2.435)

is an infinite subset of N2
0 , which together with (2.401) implies that there exists a

lattice point (m,n) such that Ai, j > 0 for i ∈ {m− 3u− v,m− 3u− v + 1, . . . ,m +
2u+ v+ 1} and j ∈ {n−3v−u,n−3v−u+ 1, . . . ,n+u+ 2v+ 1}, and ps(i, j) ≥ qs
for i ∈ {m− 2u− v,m− 2u− v + 1, . . . ,m+ 2u+ v} and j ∈ {n− 2v− u,n− 2v−
u + 1, . . . ,n + u + 2v}, s = 1, 2, . . . , r. If α ≥ β, then from (2.417) and Corollaries
2.79–2.81, we get

Am−h,n+h ≥ E(α + β + 1)qaα+hbβ−hC
β−h
α+βAm,n for − α ≤ h ≤ β,

dAm+α+1,n+β ≥ qAm+1,n, dAm+α,n+β+1 ≥ qAm,n+1,

Am+1,n ≥ DqAm,n, Am,n+1 ≥ DqAm,n,

Am−α−1,n−β ≥ BAm−1,n, dAm−1,n ≥ aAm,n, dAm,n−1 ≥ bAm,n.

(2.436)
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Hence, from Lemma 2.78,

dα+β+1Am,n ≥
α+β+1∑

i=0

aα+β+1−ibiCiα+β+1Am+α+β+1−i,n+i

+ (α + β + 1)q
α+β∑

i=0

aα+β−ibiCiα+βAm+α+β−i−α,n+i−β

+ q2
α+β∑

i=1

idα+β−i
i−1∑

j=0

ai−1− jb jC
j
i−1Am+i−1− j−2α,n+ j−2β

> aα+1bβC
β
α+β+1Am+α+1,n+β + aαbβ+1C

β+1
α+β+1Am+α,n+β+1

+ q(α + β + 1)
2β∑

i=0

aα+β−ibiCiα+βAm+β−i,n+i−β

+ q2(α + β)aα−1bβC
β
α+β−1Am−α−1,n−β

+ q2(α + β)aαbβ−1C
β−1
α+β−1Am−α,n−β−1

≥
(
q2Dd−1aα+1bβC

β
α+β+1 + q2Dd−1aαbβ+1C

β+1
α+β+1

)
Am,n

+ (α + β + 1)2q2Ea2αb2β

( 2β∑

i=0

Ciα+βC
2β−i
α+β

)

Am,n

+ q2d−1B(α + β)aαbβC
β
α+βAm,n.

(2.437)

In view of the equality
∑2β

i=0 C
i
α+βC

2β−i
α+β = C

2β
2α+2β, we have

dα+β+1 > q2
{
Dd−1aα+1bβC

β
α+β+1 +Dd−1aαbβ+1C

β+1
α+β+1

+ (α + β + 1)2Ea2αb2βC
2β
2α+2β + d−1B(α + β)aαbβC

β
α+β

}
,

(2.438)

which is contrary to (2.432).
If α < β, similar to the above proof, we have

dα+β+1Am,n >
(
q2Dd−1aα+1bβC

β
α+β+1 + q2Dd−1aαbβ+1C

β+1
α+β+1

)
Am,n

+ (α + β + 1)2q2Ea2αb2β

( α+β∑

i=β−α
Ciα+βC

2β−i
α+β

)

Am,n

+ q2d−1B(α + β)aαbβC
β
α+βAm,n.

(2.439)



Frequent oscillations 91

In view of the equality

α+β∑

i=β−α
Ciα+βC

2β−i
α+β =

α+β∑

i=β−α
C
α+β−i
α+β C

2α−(α+β−i)
α+β =

2α∑

i=0

Ciα+βC
2α−i
α+β = C2α

2α+2β = C
2β
2α+2β,

(2.440)

we also obtain a contradiction to (2.432). The proof is completed. �

Corollary 2.83. Assume that α > 0 and β > 0. Further assume that there exist positive

constants qi ≥ 0 such that μ{p(i)
m,n < qi} = 0, i = 1, 2, . . . , r, and

q ≥ dα+β+1

(α + β + 1)aαbβ
√

C
2β
2α+2β

. (2.441)

Then every solution of (2.398) is frequently oscillatory of lower degree ω (and hence
oscillatory), where ω ∈ [0, [(5u + 2v + 2)(2u + 5v + 2)]−1).

In fact, in view of dα+β+1 = Ed2(α+β+1), from (2.441), then

dα+β+1 ≤ q2(α + β + 1)2Ea2αb2βC
2β
2α+2β. (2.442)

Hence (2.432) holds. By Theorem 2.82, Corollary 2.83 follows.
Similarly, from Theorem 2.82, it is easy to obtain the following corollaries.

Corollary 2.84. Assume that σ > 0 and τ > 0, and

μ
{
pm,n > Θ

} = 1, (2.443)

where

Θ = {(σ + τ)
[
Cτσ+τ−1C

τ
σ+τ+1 + Cτ−1

σ+τ−1C
τ+1
σ+τ+1 +

(
Cτσ+τ

)2]
+ (σ + τ + 1)2C2τ

2σ+2τ

}−1/2
.

(2.444)

Then every solution of equation

Am+1,n +Am,n+1 − Am,n + pm,nAm−σ ,n−τ = 0 (2.445)

is frequently oscillatory of lower degreeω (and hence oscillatory), whereω ∈ [0, [(5u+
2v + 2)(2u + 5v + 2)]−1).

Corollary 2.85. Assume that σ > 0 and τ > 0, and

lim inf
m,n→∞ pm,n > Θ, (2.446)

whereΘ is defined above. Then every solution of (2.445) is frequently oscillatory (and
hence oscillatory).
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In the sequel, we give two examples to illustrate the above results.

Example 2.86. Consider the partial difference equation with two delays of the form

Am+1,n + Am,n+1 − Am,n + pm,nAm−1,n−2 + qm,nAm−2,n−1 = 0, (2.447)

where pm,n = −1 and qm,n = −1 for (m,n) ∈ S = {(i, j) | i = 2s, j = 2t, s, t =
0, 1, 2, . . . }, and pm,n = 0.05 and qm,n = 0.07 for any (m,n) /∈ S. Let a = b = d = 1,
r = 2, σ1 = 1, τ1 = 2 and σ2 = 2 and τ2 = 1, then α = 1 and β = 1. It is obvious
that μ{pm,n ≥ 0.05 = q1} = 1 and μ{qm,n ≥ 0.07 = q2} = 1, E = 1, and

q =
r∑

s=1

qsaσs−αbτs−βC
τs−β
σs−α+τs−β

dσs−α+τs−β = q1 + q2 = 0.12,

B =
aαbβC

β
α+β

(
dα+β − q(α + β)d−1aαbβC

β
α+β

) > 2,

D =
(α + β)aα−1bβC

β
α+β−1

(
dα+β − qd−1aαbβ(1 + β)C

β
α+β

) > 2,

D =
(α + β)aαbβ−1C

β−1
α+β−1

(
dα+β − qd−1aαbβ(1 + α)C

β
α+β

) > 2.

(2.448)

Obviously,

1
√
D × C1

3 +D × C2
3 + 9 × C2

4 + 2 × B × C1
2

<
1√

6 + 6 + 54 + 8
= 1√

74
< q.

(2.449)

Hence (2.432) holds with u = v = 2 and θ1 = θ2 = 0. By Theorem 2.82, every
solution of (2.447) is frequently oscillatory of lower degree ω ∈ [0, 1/256] and
hence oscillatory.

Example 2.87. Consider the partial difference equation of the form

Am+1,n + Am,n+1 − Am,n + pm,nAm−1,n−2 = 0, (2.450)

where pm,n = 1/16 for any m,n = 0, 1, 2, . . . . Let σ = 1 and τ = 2. It is easy to see
that pm,n = 1/16 = 0.0625,

(σ + τ)σ+τ

(σ + τ + 1)σ+τ+1
= 33

44
≈ 0.1055, Θ = 1√

309
≈ 0.0569. (2.451)

Hence from Corollary 2.85, every solution of (2.450) is frequently oscillatory and
hence oscillatory. This conclusion cannot be obtained from Corollary 2.18.
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2.8. Linear PDEs with unbounded delays

In this section, we will consider the partial difference equation

Am+1,n + am,nAm,n+1 − bm,nAm,n + pm,nAσ(m),τ(n) = 0, (2.452)

where {am,n}, {bm,n}, and {pm,n} are three real double sequences, m,n ∈ N0. For
(2.452), we always assume that the following hypotheses, designated by (H), hold:

(i) σ and τ: N → Z are nondecreasing;
(ii) σ(n) < n and τ(n) < n for all n ∈ N ;

(iii) limn→∞ σ(n) = limn→∞ τ(n) = ∞;
(iv) am,n ≥ a and bm,n ≤ b, pm,n ≥ 0 for all large m and n, where a and b are

two positive constants.
For example, we see that σ(m) = [m/2] and τ(n) = [n/2] satisfy condition (H),
where [·] denotes the greatest integer. Hence, (2.452) includes partial difference
equations with unbounded delay.

Lemma 2.88. For m ≥M and n ≥ N , the following formal identity holds:

m∑

i=M

n∑

j=N

(
Ai+1, j + aAi, j+1 − bAi, j

)

= (1 + a− b)
m∑

i=M+1

n∑

j=N+1

Ai, j +
n∑

j=N+1

Am+1, j + (a− b)
n∑

j=N+1

AM, j

+ a
m∑

i=M
Ai,n+1 + (1 − b)

m∑

i=M+1

Ai,N + Am+1,N − bAM,N

= (1 + a− b)
m∑

i=M+1

n∑

j=N+1

Ai, j + a
m∑

i=M+1

Ai,n+1 + (a− b)
n∑

j=N+1

AM, j

+
n∑

j=N
Am+1, j + (1 − b)

m∑

i=M+1

Ai,N + aAM,n+1 − bAM,N .

(2.453)

Lemma 2.89. Assume that (H) holds and {Ai, j} is an eventually positive solution of
(2.452) such that Ai, j > 0 and pi, j ≥ 0 for i ≥ σ(M) and j ≥ τ(N), where M and N
are two sufficiently large integers. Then for any integer k ≥ 0 andm ≥M and n ≥ N ,

bk+1Am,n ≥
k+1∑

i=0

aiCik+1Am+k+1−i,n+i. (2.454)
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Proof . In view of (2.452) and (H), for m ≥M and n ≥ N , we have

bAm,n ≥ Am+1,n + aAm,n+1, (2.455)

and thus,

bAm+1,n ≥ Am+2,n + aAm+1,n+1, bAm,n+1 ≥ Am+1,n+1 + aAm,n+2. (2.456)

Hence, from (2.455), we have

b2Am,n ≥ Am+2,n + 2aAm+1,n+1 + a2Am,n+2 =
2∑

i=0

aiCi2Am+2−i,n+i. (2.457)

Assume that for any positive integer k ≥ 1,

bkAm,n ≥
k∑

i=0

aiCikAm+k−i,n+i. (2.458)

Then for 0 ≤ i ≤ k, from (2.455) we have

Am+k+1−i,n+i + aAm+k−i,n+1+i ≤ bAm+k−i,n+i. (2.459)

Combining the last two inequalities, we obtain

bk+1Am,n ≥
k∑

i=0

aiCik
(
Am+k+1−i,n+i + aAm+k−i,n+1+i

)
. (2.460)

Since

k∑

i=0

aiCik
(
Am+k+1−i,n+i + aAm+k−i,n+1+i

)

= Am+k+1,n +
k∑

i=1

aiCikAm+k+1−i,n+i

+
k−1∑

i=0

ai+1CikAm+k−i,n+1+i + ak+1Am,n+k+1

= Am+k+1,n +
k∑

i=1

ai
(
Cik + Ci−1

k

)
Am+k+1−i,n+i

+ ak+1Am,n+k+1 =
k+1∑

i=0

aiCik+1Am+k+1−i,n+i,

(2.461)
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then we have

bk+1Am,n ≥
k+1∑

i=0

aiCik+1Am+k+1−i,n+i. (2.462)

The proof is completed by induction. �

Corollary 2.90. Assume that (H) holds and {Am,n} is an eventually positive solution
of (2.452) and a ≥ b, b ≤ 1. Then Am,n tends to zero as m,n→∞.

Proof . Assume that Am,n > 0 and pm,n ≥ 0 for m ≥ σ(M) and n ≥ τ(N), where M
and N are two positive integers. By means of Lemma 2.89, for all positive integers
k and l,

bk+lAM,N ≥ alClk+lAM+k,N+l . (2.463)

Thus,

AM+k,N+l ≤ bkAM,N

Clk+l

(
b

a

)l
�→ 0 as k, l �→∞. (2.464)

The proof is completed. �

By Lemma 2.89, it is easy to obtain the following corollary.

Corollary 2.91. Assume that (H) holds and {Am,n} is an eventually positive solution
of (2.452) so that Am,n > 0 and pm,n ≥ 0 for m ≥ σ2(M) and n ≥ τ2(N). Then

bm−σ(m)+n−τ(n)Aσ(m),τ(n) ≥ an−τ(n)Cn−τ(n)
m−σ(m)+n−τ(n)Am,n (2.465)

for m ≥M and n ≥ N , where M and N are two positive integers.

Lemma 2.92. Assume that (H) holds, a ≥ b, b ≤ 1, and {Am,n} is an eventually
positive solution of (2.452). If there exists B > 0 such that for sufficiently large M and
N ,

m∑

i=M

n∑

j=N
pi, j

1
bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≥ B, (2.466)

then

bAM,N ≥ Am+1,N + BAσ(m),τ(n), (2.467)

bAM,N ≥ aAM,n+1 + BAσ(m),τ(n). (2.468)
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Proof . In view of (2.452), (2.453), and Corollary 2.91, for sufficiently large M and
N , we obtain

0 ≥
m∑

i=M

n∑

j=N

(
Ai+1, j + aAi, j+1 − bAi, j + pi, jAσ(i),τ( j)

)

≥
m∑

i=M

n∑

j=N
pi, jAσ(i),τ( j) + Am+1,N − bAM,N

≥
m∑

i=M

n∑

j=N
pi, j

1
bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)Aσ(m),τ(n)

+ Am+1,N − bAM,N

≥ BAσ(m),τ(n) + Am+1,N − bAM,N

(2.469)

and hence, inequality (2.467) holds. On the other hand, from (2.452) and (2.453)
we find

0 ≥
m∑

i=M

n∑

j=N
pi, jAσ(i),τ( j) + aAM,n+1 − bAM,N . (2.470)

By a similar argument as above, we obtain (2.468). The proof is completed. �

Lemma 2.93. Assume that (H) holds, a ≥ b, b ≤ 1, and {Am,n} is an eventually
positive solution of (2.452), and for all large m and n, then

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≥ B > 0. (2.471)

Then for all large m and n, then

Aσ2(m),τ(n)

Aσ(m),n
≤
(

2b
B

)4

, (2.472)

where σ0(m) = m and σk(m) = σ(σk−1(m)), k = 1, 2, . . . .

Proof . In view of (2.471), for large m and n, there exists an integer m such that
m ∈ {σ(m), σ(m) + 1, . . . ,m} and

m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≥

B

2
,

m∑

i=m

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≥

B

2
.

(2.473)
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By Lemma 2.92, we have

bAσ(m),τ(n) ≥ Am+1,τ(n) +
B

2
Aσ(m),τ(n),

bAm,τ(n) ≥ Am+1,τ(n) +
B

2
Aσ(m),τ(n).

(2.474)

Hence, Am,τ(n) ≥ (B/2b)2Aσ(m),τ(n) for large m and n. Similarly, Aσ(m),n ≥ (B/
2b)2Aσ(m),τ(n) for large m and n. Thus, for all large m and n, we have

Aσ2(m),τ(n)

Aσ(m),n
= Aσ2(m),τ(n)

Aσ(m),τ(n)
· Aσ(m),τ(n)

Aσ(m),n
≤
(

2b
B

)4

. (2.475)

The proof is completed. �

Theorem 2.94. Assume that (H) holds and

lim sup
m,n→∞

pm,n
1

bm−σ(m)+1

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n) > 1. (2.476)

Then every solution of (2.452) is oscillatory.

Proof . Suppose to the contrary, there is an eventually positive solution {Am,n} of
(2.452) such that Am,n > 0 and pm,n ≥ 0 for m ≥ σ2(M) and n ≥ τ2(N), where M
and N are two positive integers. By means of Corollary 2.91, we have for m ≥ M
and n ≥ N ,

Am+1,n + aAm,n+1 − bAm,n + pm,n
1

bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n)Am,n ≤ 0,

(2.477)

that is,

pm,n
1

bm−σ(m)+1

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n) ≤ 1 for m ≥M, n ≥ N , (2.478)

which is a contradiction to (2.476). The proof is completed. �

The following two corollaries can be easily derived from Theorem 2.94, and
their proofs are thus omitted.

Corollary 2.95. Assume that (H) holds, a > b, and b ≤ 1. If either limm→∞(m −
σ(m)) = ∞ or limn→∞(n− τ(n)) = ∞ holds, and lim supm,n→∞ pm,n > 0, then every
solution of (2.452) is oscillatory.
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Corollary 2.96. Assume that (H) holds, σ(m) = m− σ , and τ(n) = n− τ, where σ
and τ are two positive integers. If

lim sup
m,n→∞

pm,n >
bσ+1

Cτσ+τ

(
b

a

)τ
, (2.479)

then every solution of (2.452) is oscillatory.

If (2.476) does not hold, then we have the following result.

Theorem 2.97. Assume that (H) holds and

lim sup
m,n→∞

1
dm,n

m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) > 1.

(2.480)

Then every solution of (2.452) is oscillatory, where

dm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b, a ≥ b, b ≤ 1,

bm−σ(m)+1, a ≥ b, b ≥ 1,

b
(
b

a

)n−τ(n)

, a ≤ b, b ≤ 1,

b
[(

b

a

)n−τ(n)

− 1 + bm−σ(m)
]

, a ≤ b, b ≥ 1, b− a ≤ 1,

b
[(

b

a

)n−τ(n)

− 1 + bm−σ(m)
]
− (1 + a− b)

×
m∑

i=σ(m)+1

n∑

j=τ(n)+1

bi−σ(m)

C
j−τ(n)
i−σ(m)+ j−τ(n)

(
b

a

) j−τ(n)

, a ≤ b, b ≥ 1, b− a ≥ 1.

(2.481)

Proof . Assume that there exists an eventually positive solution {Am,n} of (2.452)
such that Am,n > 0 and pm,n ≥ 0 for m ≥ σ2(M) and n ≥ τ2(N), where M and N
are two sufficiently large positive integers. Then in view of (2.452), Lemmas 2.88
and 2.89, for m ≥M and n ≥ N , we have

Am+1,n + aAm,n+1 − bAm,n + pm,nAσ(m),τ(n) ≤ 0, (2.482)
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and thus,

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

(
Ai+1, j + aAi, j+1 − bAi, j + pi, jAσ(i),τ( j)

)

=
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j)

+ (1 + a− b)
m∑

i=σ(m)+1

n∑

j=τ(n)+1

Ai, j +
n∑

j=τ(n)+1

Am+1, j

+ a
m∑

i=σ(m)

Ai,n+1 + (a− b)
n∑

j=τ(n)+1

Aσ(m), j

+ (1 − b)
m∑

i=σ(m)+1

Ai,τ(n) + Am+1,τ(n) − bAσ(m),τ(n).

(2.483)

Case A (a ≥ b, b ≤ 1). Inequality (2.483) provides

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j) − bAσ(m),τ(n). (2.484)

By Lemma 2.89, we have for σ(m) ≤ i ≤ m and τ(n) ≤ j ≤ n,

bσ(m)−σ(i)+τ(n)−τ( j)Aσ(i),τ( j) ≥ aτ(n)−τ( j)C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)Aσ(m),τ(n). (2.485)

It follows that

0 ≥
{ m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) − b

}

Aσ(m),τ(n),

(2.486)

or equivalently,

m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≤ b, (2.487)

which is a contradiction to (2.480).
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Case B (a ≥ b, b ≥ 1). It follows from (2.483) and Lemma 2.89 that

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j) + (1 − b)
m∑

i=σ(m)+1

Ai,τ(n) − bAσ(m),τ(n)

≥
{ m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)

+ (1 − b)
m∑

i=σ(m)+1

bi−σ(m) − b

}

Aσ(m),τ(n).

(2.488)

A similar contradiction as in Case A is thus obtained.

Case C (a ≤ b, b ≤ 1). Since b ≤ 1, we have 1 + a − b > 0. Consequently, from
(2.483) and Lemma 2.89, we find

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j) + (a− b)
n∑

j=τ(n)+1

Aσ(m), j − bAσ(m),τ(n)

≥
{ m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)

+ (a− b)
n∑

j=τ(n)+1

(
b

a

) j−τ(n)

− b

}

Aσ(m),τ(n),

(2.489)

which contradicts to (2.480).

Case D (a ≤ b, b ≥ 1, b − a ≤ 1). Since b − a ≤ 1, then 1 + a − b ≥ 0. Hence, it
follows from (2.483) that

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j)

+ (a− b)
n∑

j=τ(n)+1

Aσ(m), j + (1 − b)
m∑

i=σ(m)+1

Ai,τ(n) − bAσ(m),τ(n)

≥
{ m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)

+ (a− b)
n∑

j=τ(n)+1

(
b

a

) j−τ(n)

+ (1 − b)
m∑

i=σ(m)+1

bi−σ(m) − b

}

Aσ(m),τ(n).

(2.490)

The rest of the proof is similar to that of Cases A–C.
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Case E (a ≤ b, b ≥ 1, b − a ≥ 1). Since b − a ≥ 1, then 1 + a− b ≤ 0. Therefore,
from (2.483) and Lemma 2.89, we find

0 ≥
m∑

i=σ(m)

n∑

j=τ(n)

pi, jAσ(i),τ( j) + (1 + a− b)
m∑

i=σ(m)+1

n∑

j=τ(n)+1

Ai, j

+ (a− b)
n∑

j=τ(n)+1

Aσ(m), j + (1 − b)
m∑

i=σ(m)+1

Ai,τ(n) − bAσ(m),τ(n)

≥
{ m∑

i=σ(m)

n∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j)

+ (a− b)
n∑

j=τ(n)+1

(
b

a

) j−τ(n)

+ (1 + a− b)
m∑

i=σ(m)+1

n∑

j=τ(n)+1

bi−σ(m)

C
j−τ(n)
i−σ(m)+ j−τ(n)

(
b

a

) j−τ(n)

+ (1 − b)
m∑

i=σ(m)+1

bi−σ(m) − b

}

Aσ(m),τ(n),

(2.491)

which leads to the required contradiction. The proof is completed. �

Noting that if σ(m) = m− σ and τ(n) = n− τ, then dm,n(= d) is a constant.
Thus, from Theorem 2.97, we can obtain the following corollary.

Corollary 2.98. Assume that (H) holds, σ(m) = m− σ , and τ(n) = n− τ, where σ
and τ are two positive integers. If

lim sup
m,n→∞

m∑

i=m−σ

n∑

j=n−τ
pi, j

1
bm−i

(
a

b

)n− j
C
n− j
m−i+n− j > d, (2.492)

then every solution of (2.452) oscillates.

In view of (H), a ≥ b, and b ≤ 1, we have

1
bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) ≥ 1 for i ≤ m, j ≤ n. (2.493)

Hence, from Theorem 2.97, it is easy to obtain the next corollary.
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Corollary 2.99. Assume that (H) holds, a ≥ b, and b ≤ 1. If

lim sup
m,n→∞

m∑

i=σ(m)

n∑

j=τ(n)

pi, j > b, (2.494)

then every solution of (2.452) oscillates.

If (2.476) and (2.480) do not hold, then we have the following results.

Theorem 2.100. Assume that (H) holds, a ≥ b, and b ≤ 1. If

lim sup
m,n→∞

1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n) = ∞, (2.495)

lim inf
m,n→∞

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j
1

bσ(m)−σ(i)

(
a

b

)τ(n)−τ( j)

C
τ(n)−τ( j)
σ(m)−σ(i)+τ(n)−τ( j) > 0, (2.496)

then every solution of (2.452) oscillates.

Proof . In view of (2.495) and Corollary 2.91, we obtain

Aσ(m),τ(n)

Am,n
≥ 1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n) �→∞ as m �→∞, n �→∞.

(2.497)

On the other hand, from (2.496) and Lemma 2.93, we have that

lim sup
m,n→∞

Aσ(m),τ(n)

Am,n
(2.498)

exists, which is a contradiction. The proof is completed. �

Corollary 2.101. Assume that (H) holds, a ≥ b, and b ≤ 1. If either limm→∞(m −
σ(m)) = ∞ or limn→∞(n− τ(n)) = ∞ holds, and

lim inf
m,n→∞

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j > 0, (2.499)

then every solution of (2.452) oscillates.
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Noting that if a ≥ b and b ≤ 1 and either limm→∞(m − σ(m)) = ∞ or
limn→∞(n− τ(n)) = ∞, then (2.495) holds, and it is easy to see that (2.496) holds.
Therefore, Corollary 2.101 holds.

As a matter of convenience, let

λ = λm,n =
2
(
m− σ(m)

)(
n− τ(n)

)

m− σ(m) + n− τ(n)
, (2.500)

θ = θm,n =
m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j
1

bi−σ(i)

(
a

b

) j−τ( j)

C
j−τ( j)
i−σ(i)+ j−τ( j), (2.501)

k = km,n =
(
m− σ(m)

)2

m− σ(m) + n− τ(n)
, (2.502)

l = lm,n =
(
n− τ(n)

)2

m− σ(m) + n− τ(n)
, (2.503)

s = sm,n =
2λm,n

(
1 + λm,n

)1+λm,n

λ
λm,n
m,n
(
m− σ(m)

)(
n− τ(n)

)
Cn−τ(n)
m−σ(m)+n−τ(n)

. (2.504)

Theorem 2.102. Assume that (H) holds. If lim infm,n→∞(bm,n/pm,n) <∞, and

lim inf
m,n→∞

1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n) > 0, (2.505)

lim inf
m,n→∞ sm,nθm,n

1
b1+km,n

(
a

b

)lm,n

= lim inf
m,n→∞ sθ

1
b1+k

(
a

b

)l
> 1, (2.506)

then every solution of (2.452) oscillates.

Proof . Suppose to the contrary, there exists an eventually positive solution {Am,n}
of (2.452) such that Am,n > 0 and pm,n ≥ 0 for m ≥ σ3(M) and n ≥ τ3(N), where
M and N are two positive integers. From (2.452), we have for m ≥M and n ≥ N ,

2
√
a

b
·
(
Am+1,nAm,n+1

)1/2

Am,n
≤ Am+1,n + aAm,n+1

bAm,n
≤ 1 − pm,n

Aσ(m),τ(n)

bAm,n
. (2.507)
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Hence, by means of Corollary 2.91 and the well-known inequality between the
arithmetic and geometric means, we obtain

(
2
√
a

b

)(m−σ(m))(n−τ(n)) m−1∏

i=σ(m)

n−1∏

j=τ(n)

(
Ai+1, jAi, j+1

)1/2

Ai, j

≤
m−1∏

i=σ(m)

n−1∏

j=τ(n)

(
1 − pi, j

Aσ(i),τ( j)

bAi, j

)

≤
(

1 − 1
b
(
m− σ(m)

)(
n− τ(n)

)
m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j
Aσ(i),τ( j)

Ai, j

)(m−σ(m))(n−τ(n))

≤
(

1 − 1
b
(
m− σ(m)

)(
n− τ(n)

)

×
m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j
1

bi−σ(i)

(
a

b

) j−τ( j)

C
j−τ( j)
i−σ(i)+ j−τ( j)

)(m−σ(m))(n−τ(n))

=
(

1 − θm,n

b
(
m− σ(m)

)(
n− τ(n)

)
)(m−σ(m))(n−τ(n))

.

(2.508)

Since

m−1∏

i=σ(m)

n−1∏

j=τ(n)

(
Ai+1, jAi, j+1

)1/2

Ai, j

=
m−1∏

i=σ(m)

(
Ai,n
Ai,τ(n)

)1/2 n−1∏

j=τ(n)

(
Am, j

Aσ(m), j

)1/2

≥
(

Am,n

Aσ(m),τ(n)

)(m−σ(m)+n−τ(n))/2 m−1∏

i=σ(m)

1
bm−i ·

1
bi−σ(m)

×
n−1∏

j=τ(n)

(
a

b

)n− j
·
(
a

b

) j−τ(n)

= a(n−τ(n))2

b(m−σ(m))2+(n−τ(n))2

(
Am,n

Aσ(m),τ(n)

)(m−σ(m)+n−τ(n))/2

,

(2.509)
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then from (2.508) and the inequality x(1 − x)λ ≤ λλ/(1 + λ)1+λ for x ∈ (0, 1), we
have

Aσ(m),τ(n)

Am,n
≥
(

2
√
a

b

)λ 1
b2k

(
a

b

)2l(
1 − θ

[
b
(
m− σ(m)

)(
n− τ(n)

)]
)−λ

≥
(

2
√
a

b

)λ 1
b2k

(
a

b

)2l θ

b
(
m− σ(m)

)(
n− τ(n)

)
(1 + λ)1+λ

λλ

= sθ
1

bk+1

(
a

b

)l 1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n),

(2.510)

where λ, θ, l, k, and s are defined by (2.500)–(2.504). In view of (2.506), there is a
constant r > 1 such that

sθ
1

bk+1

(
a

b

)l
> r ∀ large m,n. (2.511)

Hence from (2.510), we have

Aσ(m),τ(n) ≥ r

bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n)Am,n. (2.512)

Substituting (2.512) into (2.452), we get for all large m and n,

2
√
a

b
·
(
Am+1,nAm,n+1

)1/2

Am,n
≤ Am+1,n + aAm,n+1

bAm,n
≤ 1 − pm,n

Aσ(m),τ(n)

bAm,n

≤ 1 − r

b
pm,n

1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n).

(2.513)

Hence, for all large m and n,

(
2
√
a

b

)(m−σ(m))(n−τ(n)) m−1∏

i=σ(m)

n−1∏

j=τ(n)

(
Ai+1, jAi, j+1

)1/2

Ai, j

≤
m−1∏

i=σ(m)

n−1∏

j=τ(n)

(

1 − r

b
pi, j

1
bi−σ(i)

(
a

b

) j−τ( j)

Cn−τ(n)
i−σ(i)+ j−τ( j)

)

.

(2.514)
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Thus, as in the above proof, for all large m and n we can obtain

Aσ(m),τ(n)

Am,n
≥
(

2
√
a

b

)λ 1
b2k

(
a

b

)2l(
1 − rθ

[
b
(
m− σ(m)

)(
n− τ(n)

)]
)−λ

≥ rsθ
1

bk+1

(
a

b

)l 1
bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n)

≥ r2

bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n).

(2.515)

By induction, we get for any positive integer N ,

Aσ(m),τ(n)

Am,n
≥ rN

bm−σ(m)

(
a

b

)n−τ(n)

Cn−τ(n)
m−σ(m)+n−τ(n), (2.516)

for all large m and n. In view of (2.505), we get

lim
m,n→∞

Aσ(m),τ(n)

Am,n
= +∞. (2.517)

On the other hand, in view of (2.452), we have, for all large m and n,

Aσ(m),τ(n)

Am,n
≤ bm,n

pm,n
. (2.518)

Since lim infm,n→∞(bm,n/pm,n) <∞, then

lim inf
m,n→∞

Aσ(m),τ(n)

Am,n
< +∞, (2.519)

which is a contradiction to (2.517). The proof is completed. �

Corollary 2.103. Assume that (H) holds, σ(m) = m− σ , and τ(n) = n− τ, where σ
and τ are two positive integers. If a ≥ b, b ≤ 1, and

lim inf
m,n→∞

1
στ

m−1∑

i=m−σ

n−1∑

j=n−τ
pi, j >

λλb1+k+σ

2λ(1 + λ)1+λ
·
(
a

b

)l+τ
, (2.520)

then every solution of (2.452) is oscillatory, where λ = 2στ/(σ + τ), and k, l are
defined by (2.502) and (2.503).

Example 2.104. Consider the partial difference equation

Am+1,n + Am,n+1 − Am,n + pm,nA[m/2],[n/2] = 0, (2.521)
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where pm,n = 1/(m+1)(n+1),m,n = 0, 1, 2, . . . . We can see that ifm = 2k, n = 2l,
k, l = 1, 2, . . . , then

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j =
2k−1∑

i=k

2l−1∑

j=l

1
(i + 1)( j + 1)

≥
2k−1∑

i=k

1
i + 1

· 1
2l
>

1
2
· k

2k
= 1

4
,

(2.522)

and in the same method, if m = 2k and n = 2l − 1 or m = 2k − 1 and n = 2l or
m = 2k − 1 and n = 2l − 1, k, l = 1, 2, . . . , then

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j ≥ 1
4
. (2.523)

Hence,

lim inf
m,n→∞

m−1∑

i=σ(m)

n−1∑

j=τ(n)

pi, j ≥ 1
4
> 0. (2.524)

Thus, by means of Corollary 2.101, every solution of (2.521) oscillates.

2.9. Linear PDEs with positive and negative coefficients

In this section, we consider the delay partial difference equations with positive and
negative coefficients of the form

Am+1,n + Am,n+1 − Am,n + pm,nAm−k,n−l − qm,nAm−k′,n−l′ = 0, (2.525)

wherem,n ∈ N0, and k, k′, l′, l ∈ N0, pm,n, qm,n ∈ [N2
0 , (0,∞)], k ≥ k′+1, l ≥ l′+1.

The following lemma is a special case of Lemma 2.88.

Lemma 2.105.

m∑

i=m−k

n∑

j=n−l

(
Ai+1, j + Ai, j+1 − Ai, j

)

=
m+1∑

i=m+1−k

n∑

j=n+1−l
Ai, j +

m∑

i=m−k
Ai,n+1 − Am−k,n−l + Am+1,n−l .

(2.526)

Assume that there exist positive integers s, t such that s ≥ m, t ≥ n, and

Cs,t = As,t − (3)s+t−m−n
(m+k′∑

i=s
qi,nAi−k′,n−l′ +

n+l′∑

j=t
qm, jAm−k′, j−l′

)

− 1
2

(m+k′∑

i=s
qi+k′−k,n+l′−lAi−k,n−l +

n+l′∑

j=t
qm+k′−k, j+l′−lAm−k, j−l

)

.

(2.527)
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Let

αm,n = pm,n − qm+k′−k,n+l′−l > 0 for m ≥ k − k′, n ≥ l − l′. (2.528)

From (2.527), we obtain the following results.

Lemma 2.106. Assume that {Am,n} is an eventually positive solution of (2.525), that
is, there exist positive integers M, N such that Am,n > 0 as m ≥M, n ≥ N . Then

(i) Cm,n is monotone decreasing in m, n, that is,

Cm+1,n ≤ Cm,n, Cm,n+1 ≤ Cm,n; (2.529)

(ii) Cm,n ≤ Am,n;
(iii) Cm+1,n + Cm,n+1 − Cm,n = −αm,nAm−k,n−l − βm,n(A),

where

βm,n(A) = 3qm,nAm−k′ ,n−l′ + 5θ1 +
1
2
θ2,

θ1 =
m+k′∑

i=m+1

qi,nAi−k′,n−l′ +
n+l′∑

j=n+1

qm, jAm−k′, j−l′ ,

θ2 =
m+k′∑

i=m
qi+k′−k,n+l′−lAi−k,n−l +

n+l′∑

j=n
qm+k′−k, j+l′−lAm−k, j−l .

(2.530)

Proof . (i) From (2.527), we obtain

Cm+1,n = Am+1,n − 3θ1 − 1
2
θ2 − 3qm,nAm−k′,n−l′ +

1
2
qm+k′−k,n+l′−lAm−k,n−l,

Cm,n = Am,n − θ1 − 1
2
θ2 − 2qm,nAm−k′,n−l′ .

(2.531)

We note that Am,n > 0, thus we have

Cm+1,n − Cm,n ≤ Am+1,n + Am,n+1 − Am,n − 2θ1 − qm,nAm−k′,n−l′

+
1
2
qm+k′−k,n+l′−lAm−k,n−l

< −pm,nAm−k,n−l + qm,nAm−k′,n−l′ − 2θ1

− qm,nAm−k′,n−l′ + qm+k′−k,n+l′−lAm−k,n−l

= −αm,nAm−k,n−l − 2θ1 ≤ −αm,nAm−k,n−l ≤ 0,

(2.532)

that is, Cm+1,n − Cm,n < 0. Similarly, we have also Cm,n+1 − Cm,n < 0.
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(ii) From (2.531), we immediately obtain (ii).
(iii) From (2.527), we have

Cm,n+1 = Am,n+1 − 3θ1 − 1
2
θ2 − 3qm,nAm−k′,n−l′ +

1
2
qm+k′−k,n+l′−lAm−k,n−l .

(2.533)

By the above equality and (2.531), we obtain

Cm+1,n + Cm,n+1 − Cm,n = −αm,nAm−k,n−l − 3qm,nAm−k′,n−l′ − 5θ1 − 1
2
θ2

= −αm,nAm−k,n−l − βm,n(A).
(2.534)

Hence, Cm+1,n + Cm,n+1 − Cm,n = −αm,nAm−k,n−l − βm,n(A). Note that βm,n(A) > 0,
thus we also have

Cm+1,n + Cm,n+1 − Cm,n < −αm,nAm−k,n−l < 0. (2.535)

�

Lemma 2.107. Assume that (2.528) holds. Further, assume that for m ≥ k − k′,
n ≥ l − l′,

(m+k′∑

i=m
qi,n +

n+l′∑

j=n
qm, j

)

+
1
2

(m+k′∑

i=m
qi+k′−k,n+l′−l +

n+l′∑

j=n
qm+k′−k, j+l′−l

)

< 1. (2.536)

Let {Am,n} be an eventually positive solution of (2.525). Then {Cm,n} defined by
(2.527) is decreasing and eventually positive in m, n.

Proof . By Lemma 2.106, {Cm,n} is decreasing in m, n. Next, we will show that
{Cm,n} is eventually positive in m, n. Because {Cm,n} is monotone decreasing in
m, n, thus the limit limm,n→∞ Cm,n exists. If limm,n→∞ Cm,n = −∞, then {Am,n}
must be unbounded. Hence, there exists a double sequence {(mk,nk)} such that
limk→∞mk = ∞, limk→∞ nk = ∞,Amk ,nk = maxN≤n≤nk+l,M≤m≤mk+k{Am−k,n−l} and

lim
k→∞

Amk ,mk = ∞. (2.537)
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On the other hand, we have

Cmk ,nk = Amk ,nk −
(mk+k′∑

i=mk

qi,nkAi−k′,nk−l′ +
nk+l′∑

j=nk
qmk , jAmk−k′ , j−l′

)

− 1
2

(mk+k′∑

i=mk

qi+k′−k,nk+l′−lAi−k,nk−l +
nk+l′∑

j=nk
qmk+k′−k, j+l′−lAmk−k, j−l

)

≥ Amk ,nk

[

1 −
(mk+k′∑

i=mk

qi,nk +
nk+l′∑

j=nk
qmk , j

)

− 1
2

(mk+k′∑

i=mk

qi+k′−k,nk+l′−l +
nk+l′∑

j=nk
qmk+k′−k, j+l′−l

)]

≥ 0,

(2.538)

a contradiction. Hence limm,n→∞ Cm,n = β exists, where β is finite. As before,
if {Am,n} is unbounded, then β ≥ 0. Now we consider the case that {Am,n} is
bounded. Let β̄ = lim supm,n→∞ Am,n = limm′,n′→∞ Am′,n′ . Then

Am′,n′ − Cm′,n′ =
(m′+k′∑

i=m′
qi,n′Ai−k′,n′−l′ +

n′+l′∑

j=n′
qm′, jAm′−k′, j−l′

)

+
1
2

(m′+k′∑

i=m′
qi+k′−k,n′+l′−lAi−k,n′−l +

n′+l′∑

j=n′
qm′+k′−k, j+l′−lAm′−k, j−l

)

≤ A
(
ξm,ηn

)
[(m′+k′∑

i=m′
qi,n′ +

n′+l′∑

j=n′
qm′, j

)

+
1
2

(m′+k′∑

i=m′
qi+k′−k,n′+l′−l +

n′+l′∑

j=n′
qm′+k′−k, j+l′−l

)]

≤ A
(
ξm,ηn

)
,

(2.539)

whereA(ξ′m,η′n) = max{Ai−k, j−l | i = m′,m′+1, . . . ,m′+k′, j = n′,n′+1, . . . ,n′+
l′}. Taking superior limit on both sides of the above inequality, we have β̄− β ≤ β̄,
therefore β ≥ 0. Hence Cm,n > 0 for m ≥M, n ≥ N . �

Theorem 2.108. Assume that (2.528) and (2.536) hold. Further, assume that either

lim inf
m,n→∞

(
1
kl

m−1∑

i=m−k

n−1∑

j=n−l

(
pi, j − qi−k+k′, j−l+l′

)
)

>
ωω

(ω + 1)ω+1
, (2.540)
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where ω = max(k, l), or for all large m and n

(
pm,n − qm−k+k′,n−l+l′

) ≥ ξ >
(k + l)k+l

(k + l + 1)k+l+1
. (2.541)

Then every solution of (2.525) oscillates.

Proof . Suppose to the contrary, assume that (2.525) has an eventually positive
solution {Am,n}. By Lemmas 2.106 and 2.107, it follows that the sequence {Cm,n}
is eventually decreasing and positive and

Cm+1,n + Cm,n+1 − Cm,n +
(
pm,n − qm−k+k′,n−l+l′

)
Am−k,n−l ≤ 0. (2.542)

Hence, we have

Cm+1,n + Cm,n+1 − Cm,n +
(
pm,n − qm−k+k′,n−l+l′

)
Cm−k,n−l ≤ 0. (2.543)

In view of (2.540) and (2.541), by Corollaries 2.18 and 2.60, difference inequality
(2.543) cannot have an eventually positive solution. The proof is complete. �

Example 2.109. Consider the partial difference equation

Am+1,n + Am,n+1 − Am,n +
(

3
4
− 1

2n

)
Am−2,n−1 − 1

n
Am−1,n = 0, (2.544)

where m ≥ 2, n ≥ 4, pm,n = 3/4− 1/2n, qm,n = 1/n, k = 2, k′ = l = 1, l′ = 0. Since
k = 2 > 1 = k′, l > l′ and for m ≥ 2, n ≥ 4, we have

pm,n − qm−k+k′,n−l+l′ = 3
4
− 1

2n
− 1
n− 1

> 0,

lim inf
m,n→∞

[
1
kl

m−1∑

i=m−k

n−1∑

j=n−l

(
pi, j − qi−k+k′, j−l+l′

)
]

= lim inf
m,n→∞

[
1
2

m−1∑

i=m−2

n−1∑

j=n−1

(
3
4
− 1

2 j
− 1
j − 1

)]

= lim inf
m,n→∞

(
3
4
− 1

2(n− 1)
− 1
n− 2

)
= 3

4
>

4
27

= ωω

(ω + 1)ω+1
.

(2.545)

Hence, all the hypotheses of Theorem 2.108 are satisfied. Therefore, all solu-
tions of (2.544) are oscillatory. In fact, (2.544) has an oscillatory solution {Amn} =
{(−1)m(1/2n)} for m ≥ 2, n ≥ 4.
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2.10. Nonexistence of monotone solutions of neutral PDEs

We consider the partial difference equation of the form

T
(
Δm,Δn

)(
Am,n − pm,nAm−r,n−h

)
+ qm,nAm−k,n−l = 0, (2.546)

where T(Δm,Δn) = aΔmΔn + bΔm + cΔn + dI , a, b, c, d are nonnegative constants,
ΔmAm,n = Am+1,n − Am,n, ΔnAm,n = Am,n+1 − Am,n, and IAm,n = Am,n. The delays
r, h, k, l are positive integers, 0 ≤ pm,n ≤ 1 and qm,n ≥ 0 on N2

0 .
By a solution of (2.546), we mean a nontrivial double sequence {Am,n} satis-

fying (2.546) for m ≥ m0, n ≥ n0. A sequence {Am,n} is nondecreasing (nonin-
creasing) if ΔmAm,n ≥ (≤)0 and ΔnAm,n ≥ (≤)0. A solution {Am,n} is called to be
a monotone solution, if it is either nondecreasing or nonincreasing.

Throughout this section, we assume that
(i) a ≥ 0, d ≥ 0, b, c > a, b + c > a + d;

(ii) 0 ≤ pm,n ≤ 1 and qm,n ≥ 0 on N2
0 and

lim sup
m,n→∞

qm,n > 0. (2.547)

For the sake of convenience, we set p1 = a, p2 = b − a, p3 = c − a, p4 =
b + c − a− d. Furthermore, we define the set E by

E = {λ > 0 | p4 − λqm,n > 0 eventually
}
. (2.548)

Theorem 2.110. Assume that there exist integers M ≥ m0, N ≥ n0 such that one of
the following conditions holds:

(i) for k > l and r > h,

inf
λ∈E,m≥M,n≥N

{
1
λ

(
p1 +

2p2p3

p4

)l( p2

p4

)k−l
×
[ k−l∏

j=1

l∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(k−l)

+ pm−k,n−l

(
p1 +

2p2p3

p4

)h( p2

p4

)r−h

×
[ r−h∏

j=1

h∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(r−h)}

> 1;

(2.549)
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(ii) for k > l and r < h,

inf
λ∈E,m≥M,n≥N

{
1
λ

(
p1 +

2p2p3

p4

)l( p2

p4

)k−l
×
[ k−l∏

j=1

l∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(k−l)

+ pm−k,n−l

(
p1 +

2p2p3

p4

)r( p3

p4

)h−r

×
[ h−r∏

j=1

r∏

i=1

(
p4 − λqm−i,n−i− j

)
]−1/(h−r)}

> 1;

(2.550)

(iii) for k < l and r > h,

inf
λ∈E,m≥M,n≥N

{
1
λ

(
p1 +

2p2p3

p4

)k( p3

p4

)l−k
×
[ l−k∏

j=1

k∏

i=1

(
p4 − λqm−i,n−i− j

)
]−1/(l−k)

+ pm−k,n−l

(
p1 +

2p2p3

p4

)h( p2

p4

)r−h

×
[ r−h∏

j=1

h∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(r−h)}

> 1;

(2.551)

(iv) for k < l and r < h,

inf
λ∈E,m≥M,n≥N

{
1
λ

(
p1 +

2p2p3

p4

)k( p3

p4

)l−k
×
[ l−k∏

j=1

k∏

i=1

(
p4 − λqm−i,n−i− j

)
]−1/(l−k)

+ pm−k,n−l

(
p1 +

2p2p3

p4

)r( p3

p4

)h−r

×
[ h−r∏

j=1

r∏

i=1

(
p4 − λqm−i,n−i− j

)
]−1/(h−r)}

> 1.

(2.552)

Then, (2.546) has no eventually positive (negative) and nondecreasing (nonincreas-
ing) solution.

Proof . Let {Am,n} be an eventually positive and nondecreasing solution of (2.546).
Then

Am,n ≥ Am−1,n ≥ · · · ≥ Am−r,n ≥ Am−r,n−1 ≥ · · · ≥ Am−r,n−h ≥ pm,nAm−r,n−h.
(2.553)
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Let

ωm,n = Am,n − pm,nAm−r,n−h. (2.554)

Then,

0 ≤ ωm,n ≤ Am,n, (2.555)

T
(
Δm,Δn

)
ωm,n = −qm,nAm−k,n−l ≤ 0, (2.556)

which implies

aωm+1,n+1 + (b − a)ωm+1,n + (c − a)ωm,n+1 ≤ (b + c − a− d)ωm,n, (2.557)

that is,

p1ωm+1,n+1 + p2ωm+1,n + p3ωm,n+1 ≤ p4ωm,n. (2.558)

Define the set S(λ) as follows:

S(λ) = {λ > 0 | T(Δm,Δn
)
ωm,n + λqm,nωm,n ≤ 0 eventually

}
. (2.559)

From (2.558), we have

ωm+1,n+1 ≤
p4

p2
ωm,n+1, ωm+1,n+1 ≤

p4

p3
ωm+1,n. (2.560)

Hence, we obtain

ωm,n ≤
p4

p2
ωm−1,n ≤ · · · ≤

(
p4

p2

)k
ωm−k,n

≤
(
p4

p2

)k( p4

p3

)
ωm−k,n−1 ≤ · · · ≤

(
p4

p2

)k( p4

p3

)l
ωm−k,n−l .

(2.561)

From (2.555) and (2.556), we have

T
(
Δm,Δn

)
ωm,n = −qm,nAm−k,n−l ≤ −qm,nωm−k,n−l ≤ −

(
p2

p4

)k( p3

p4

)l
qm,nωm,n,

(2.562)

which implies (p2/p4)k(p3/p4)l ∈ S(λ). Hence, S(λ) is nonempty. For λ ∈ S(λ), we
have eventually

p1ωm+1,n+1 + p2ωm+1,n + p3ωm,n+1 −
(
p4 − λqm,n

)
ωm,n ≤ 0. (2.563)
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Hence,

p4 − λqm,n > 0, (2.564)

which implies that S(λ) ⊂ E. Due to the condition (2.547), the set E is bounded,
and hence S(λ) is bounded.

We consider the following cases.
(i) k > l and r > h. Let μ ∈ S(λ). By (2.560), we have

(
p1 +

2p2p3

p4

)
ωm+1,n+1 ≤ p1ωm+1,n+1 + p2ωm+1,n + p3ωm,n+1 ≤

(
p4 − μqm,n

)
ωm,n,

(2.565)

and hence

ωm,n ≤
(
p1 +

2p2p3

p4

)−l l∏

i=1

(
p4 − μqm−i,n−i

)
ωm−l,n−l . (2.566)

For j = 1, 2, . . . , k − l, we have

ωm− j,n ≤
(
p1 +

2p2p3

p4

)−l l∏

i=1

(
p4 − μqm−i− j,n−i

)
ωm−l− j,n−l

≤
[(

p1 +
2p2p3

p4

)−l l∏

i=1

(
p4 − μqm−i− j,n−i

)
](

p4

p2

)k−l− j
ωm−k,n−l .

(2.567)

Now, from (2.560) and (2.567), it follows that

ωk−lm,n ≤
k−l∏

j=1

(
p4

p2

) j
ωm− j,n

≤
k−l∏

j=1

{(
p4

p2

) j[(
p1 +

2p2p3

p4

)−l l∏

i=1

(
p4 − μqm−i− j,n−i

)
]

×
(
p4

p2

)k−l− j
ωm−k,n−l

}

=
(
p1 +

2p2p3

p4

)−l(k−l)( p4

p2

)(k−l)2

×
[ k−l∏

j=1

l∏

i=1

(
p4 − μqm−i− j,n−i

)
]

ωk−lm−k,n−l,

(2.568)
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that is,

ωm−k,n−l ≥
(
p1 +

2p2p3

p4

)l( p2

p4

)k−l
×
[ k−l∏

j=1

l∏

i=1

(
p4 − μqm−i− j,n−i

)
]−1/(k−l)

ωm,n.

(2.569)

Similarly,

ωm−r,n−h ≥
(
p1 +

2p2p3

p4

)h( p2

p4

)r−h
×
[ r−h∏

j=1

h∏

i=1

(
p4 − μqm−i− j,n−i

)
]−1/(r−h)

ωm,n.

(2.570)

From (2.549), there exists a constant α1 > 1 such that

inf
λ∈E,m≥M,n≥N

{
1
λ

(
p1 +

2p2p3

p4

)l( p2

p4

)k−l
×
[ k−l∏

j=1

l∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(k−l)

+ pm−k,n−l

(
p1 +

2p2p3

p4

)h( p2

p4

)r−h

×
[ r−h∏

j=1

h∏

i=1

(
p4 − λqm−i− j,n−i

)
]−1/(r−h)}

> α1.

(2.571)

We will show that α1μ ∈ S(λ). In fact, μ ∈ S(λ) implies that

T
(
Δm,Δn

)
ωm,n + μqm,nωm,n ≤ 0. (2.572)

From (2.556), we have

0 ≥ T
(
Δm,Δn

)
ωm,n + μqm,nωm,n

= −qm,nAm−k,n−l + μqm,nωm,n = qm,n
(
μωm,n − Am−k,n−l

)
,

(2.573)
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and hence μωm,n ≤ Am−k,n−l. By (2.554), (2.556), (2.569), and (2.570), we see that

T
(
Δm,Δn

)
ωm,n = −qm,nAm−k,n−l = −qm,n

(
ωm−k,n−l + pm−k,n−lAm−k−r,n−l−h

)

≤ −qm,n
(
ωm−k,n−l + pm−k,n−lμωm−r,n−h

)

≤ −qm,nωm,n

{(
p1 +

2p2p3

p4

)l( p2

p4

)k−l

×
[ k−l∏

j=1

l∏

i=1

(
p4 − μqm−i− j,n−i

)
]−1/(k−l)

+ pm−k,n−lμ
(
p1 +

2p2p3

p4

)h( p2

p4

)r−h

×
[ r−h∏

j=1

h∏

i=1

(
p4 − μqm−i− j,n−i

)
]−1/(r−h)}

.

(2.574)

Combining (2.571) and (2.574), we have

T
(
Δm,Δn

)
ωm,n ≤ −α1μqm,nωm,n, (2.575)

that is, α1μ ∈ S(λ). Repeating the above argument with μ replaced by α1μ, we
obtain αθ1μ ∈ S(λ), θ = 1, 2, . . . , where α1 > 1. This contradicts the boundedness
of S(λ). The proof of (i) is complete.

(ii) k > l and r < h. From (2.565), we have

ωm,n ≤
(
p1 +

2p2p3

p4

)−r r∏

i=1

(
p4 − μqm−i,n−i

)
ωm−r,n−r . (2.576)

For j = 1, 2, . . . ,h− r, we have

ωm,n− j ≤
(
p1 +

2p2p3

p4

)−r
×

r∏

i=1

(
p4 − μqm−i,n−i− j

)
ωm−r,n−r− j

≤
[(

p1 +
2p2p3

p4

)−r r∏

i=1

(
p4 − μqm−i,n−i− j

)
]

×
(
p4

p3

)h−r− j
ωm−r,n−h.

(2.577)
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Now, from (2.560) and (2.577), it follows that

ωh−rm,n ≤
h−r∏

j=1

(
p4

p3

) j
ωm,n− j

≤
h−r∏

j=1

{(
p4

p3

) j[(
p1 +

2p2p3

p4

)−r r∏

i=1

(
p4 − μqm−i,n−i− j

)
]

×
(
p4

p3

)h−r− j
ωm−r,n−h

}

=
(
p1 +

2p2p3

p4

)−r(h−r)( p4

p3

)(h−r)2

×
[ h−r∏

j=1

r∏

i=1

(
p4 − μqm−i,n−i− j

)
]

ωh−rm−r,n−h,

(2.578)

that is,

ωm−r,n−h ≥
(
p1 +

2p2p3

p4

)r( p3

p4

)h−r

×
[ h−r∏

j=1

r∏

i=1

(
p4 − μqm−i,n−i− j

)
]−1/(h−r)

ωm,n.

(2.579)

The rest of the proof is similar to that of (i), and thus is omitted.
(iii) k < l and r > h. We only need to note that (2.569) now changes to

ωm−k,n−l ≥
(
p1 +

2p2p3

p4

)k( p3

p4

)l−k

×
[ l−k∏

j=1

k∏

i=1

(
p4 − μqm−i,n−i− j

)
]−1/(l−k)

ωm,n.

(2.580)

The rest of the proof is similar to that of (i), and thus is omitted.
(iv) k < l and r < h. We only need to note that (2.569) and (2.570) now change

to (2.580) and (2.579), respectively. The rest of the proof is similar to that of (i),
and thus is omitted. The proof of Theorem 2.110 is complete. �

From Theorem 2.110, we can derive some explicit sufficient conditions for the
nonexistence of monotone solutions of (2.546).
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Corollary 2.111. Assume that k > l, r > h, pm,n ≥ p0, and

(
p1 +

2p2p3

p4

)l( p2

p4

)k−l q̄(l + 1)l+1

pl+1
4 ll

+ p0

(
p1 +

2p2p3

p4

)h( p2

p4

)r−h q̄(h + 1)h+1

ph+1
4 hh

> 1,

(2.581)

where

lim inf
m,n→∞ qm,n = q̄. (2.582)

Then the conclusion of Theorem 2.110 holds.

2.11. Existence of positive solutions of linear PDEs

2.11.1. Equation with delay type

Consider the linear partial difference equation

aAm+1,n+1 + bAm,n+1 + cAm+1,n − dAm,n + Pm,nAm−k,n−l = 0, (2.583)

where Pm,n > 0 on N2
0 , k, l ∈ N0. Throughout this paper, we assume that a, b, c, d

are positive constants. The oscillation of (2.583) has been studied in Section 2.5.
In the following, we mainly consider the existence of positive solutions of (2.583).

Theorem 2.112. Assume that a ≥ d, b ≥ d, c ≥ d, and one of the following three
conditions holds:

(i) there exists a positive double sequence {λm,n} such that for all sufficiently
large m, n,

1
dλm,n

{ ∞∑

j=0

∞∑

i=0

(a− d)λm+1+i,n+1+i+ j +
∞∑

j=0

∞∑

i=1

bλm+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=0

cλm+1+i,n+i+ j +
∞∑

j=0

(b− d)λm,n+1+ j

+
∞∑

j=0

∞∑

i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

}

≤ 1;

(2.584)
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(ii) there exists a positive double sequence {λm,n} such that for all sufficiently
large m, n,

1
dλm,n

{ ∞∑

j=0

∞∑

i=0

(a− d)λm+1+i+ j,n+1+i +
∞∑

j=0

∞∑

i=0

bλm+i+ j,n+1+i

+
∞∑

j=0

∞∑

i=1

cλm+1+i+ j,n+i +
∞∑

j=0

(c − d)λm+1+ j,n

+
∞∑

j=0

∞∑

i=0

Pm+i+ j,n+iλm−k+i+ j,n−l+i

}

≤ 1;

(2.585)

(iii) there exists a positive double sequence {λm,n} such that for all sufficiently
large m, n,

1
dλm,n

{ ∞∑

i=0

∞∑

j=0

aλm+1+i,n+1+ j +
∞∑

i=0

∞∑

j=0

(b− d)λm+i,n+1+ j

+
∞∑

i=0

∞∑

j=1

cλm+1+i,n+ j +
∞∑

i=0

(c − d)λm+1+i,n

+
∞∑

i=0

∞∑

j=0

Pm+i,n+ jλm−k+i,n−l+ j

}

≤ 1.

(2.586)

Then (2.583) has an eventually positive solution {Am,n} which satisfies 0 < Am,n ≤
λm,n.

Proof . We only give the proof of (i), and the other cases are similar.
Let X be the set of all real bounded double sequence y = {ym,n}∞,∞

m=m0,n=n0
with

the norm ‖y‖ = supm≥m0,n≥n0
|ym,n| < ∞. X is a Banach space. We define a subset

Ω of X as follows:

Ω = {y = {ym,n} ∈ X | 0 ≤ ym,n ≤ 1, m ≥ m0, n ≥ n0
}

(2.587)

and define a partial order on X in the usual way, that is,

x, y ∈ X , x ≤ y means that xm,n ≤ ym,n for m ≥ m0, n ≥ n0. (2.588)
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It is easy to see that for any subset S of Ω, there exist inf S and sup S. We choose
m1 > m0, n1 > n0 sufficiently large such that (i) holds.

Set

D = Nm0 ×Nn0 , D1 = Nm1 ×Nn1 ,

D2 =
(
Nm0 ×Nn1

) \D1, D3 =
(
Nm1 ×Nn0

) \D1,

D4 = D \ (D1 ∪D2 ∪D3
)
.

(2.589)

Clearly, D = D1 ∪D2 ∪D3 ∪D4. Define a mapping T : Ω→ X as follows:

Tym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
dλm,n

×
{ ∞∑

j=0

∞∑

i=0

(a− d)λm+1+i,n+1+i+ j ym+1+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=1

bλm+i,n+1+i+ j ym+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=0

cλm+1+i,n+i+ j ym+1+i,n+i+ j

+
∞∑

j=0

(b− d)λm,n+1+ j ym,n+1+ j

+
∞∑

j=0

∞∑

i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

×ym−k+i,n−l+i+ j

}

, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(2.590)
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From (2.590) and noting that ym,n ≤ 1, we have

0 ≤ Tym,n ≤ 1
dλm,n

{ ∞∑

j=0

∞∑

i=0

(a− d)λm+1+i,n+1+i+ j +
∞∑

j=0

∞∑

i=1

bλm+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=0

cλm+1+i,n+i+ j +
∞∑

j=0

(b − d)λm,n+1+ j

+
∞∑

j=0

∞∑

i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

}

≤ 1, for (m,n) ∈ D1

(2.591)

and 0 ≤ Tym,n ≤ 1 for (m,n) ∈ D2 ∪ D3 ∪ D4. Therefore, TΩ ⊂ Ω. Clearly, T is
nondecreasing. By Theorem 1.9, there is a y ∈ Ω such that Ty = y, that is,

ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
dλm,n

×
{ ∞∑

j=0

∞∑

i=0

(a− d)λm+1+i,n+1+i+ j ym+1+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=1

bλm+i,n+1+i+ j ym+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=0

cλm+1+i,n+i+ j ym+1+i,n+i+ j

+
∞∑

j=0

(b− d)λm,n+1+ j ym,n+1+ j

+
∞∑

j=0

∞∑

i=0

Pm+i,n+i+ jλm−k+i,n−l+i+ j

×ym−k+i,n−l+i+ j

}

, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(2.592)

It is easy to see that ym,n > 0 for (m,n) ∈ D2 ∪D3 ∪D4 and hence ym,n > 0 for all
(m,n) ∈ D1. Set

xm,n = λm,nym,n, (2.593)
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then from (2.592) and (2.593), we have

xm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
d

{ ∞∑

j=0

∞∑

i=0

(a− d)xm+1+i,n+1+i+ j +
∞∑

j=0

∞∑

i=1

bxm+i,n+1+i+ j

+
∞∑

j=0

∞∑

i=0

cxm+1+i,n+i+ j +
∞∑

j=0

(b− d)xm,n+1+ j

+
∞∑

j=0

∞∑

i=0

Pm+i,n+i+ jxm−k+i,n−l+i+ j

}

, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(2.594)

And so

axm+1,n+1 + bxm,n+1 + cxm+1,n − dxm,n + Pm,nxm−k,n−l = 0, (m,n) ∈ D1,
(2.595)

which implies x = {xm,n} is a positive solution of (2.583). The proof is complete.
�

Remark 2.113. Similar results for (2.583) have been obtained for the following
cases: (i) a ≥ d, b ≥ d, c < d; (ii) a ≥ d, b < d, c ≥ d; (iii) a ≥ d, b < d, c < d; (iv)
a < d, b ≥ d, c ≥ d; (v) a < d, b ≥ d, c < d; (vi) a < d, b < d, c ≥ d; (vii) a < d,
b < d, c < d.

2.11.2. Equation with neutral delay type

We consider the higher order partial difference equation of neutral type

ΔhnΔ
r
m

(
Am,n + cAm−k,n−l

)
+

u∑

s=1

p(s)
m,nAm−τs,n−σs = fm,n, (2.596)

where h, r,u ∈ N1, k, l, τs, σs ∈ N0, c ∈ R, and p(s), f : Nm0 × Nn0 → R, s =
1, 2, . . . ,u.

The higher order partial differences for any positive integers r and h are de-
fined as ΔrmAm,n = Δm(Δr−1

m Am,n), Δ0
mAm,n = Am,n, ΔhnAm,n = Δn(Δh−1

n Am,n),
and Δ0

nAm,n = Am,n. For t ∈ R we define the usual factorial expression (t)(m) =
t(t − 1) · · · (t −m + 1) with (t)(0) = 1.
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Let δ = max1≤s≤u{k, τs}, η = max1≤s≤u{l, σs} and M0 ≥ m0, N0 ≥ n0 be
fixed nonnegative integers. By a solution of (2.596), we mean a nontrivial double
sequence {Am,n} which is defined on Nm0−δ ×Nn0−η and satisfies (2.596) on Nm0 ×
Nn0 .

In this section, we consider the existence of positive solutions of (2.596) in the
case when {p(s)

m,n}, s = 1, 2, . . . ,u and { fm,n} can change sign.

Theorem 2.114. Assume that c �= −1 and that

∞∑

m=m0

∞∑

n=n0

(m)(r−1)(n)(h−1)
∣∣p(s)

m,n

∣∣ <∞, s = 1, 2, . . . ,u,

∞∑

m=m0

∞∑

n=n0

(m)(r−1)(n)(h−1)
∣
∣ fm,n

∣
∣ <∞.

(2.597)

Then (2.596) has a bounded positive solution.

Proof . The proof of this theorem will be divided into five cases in terms of c. Let X
be the set of all real double sequence A = {Am,n}∞ ∞

m=m0,n=n0
with the norm ‖A‖ =

supm≥m0,n≥n0
|Am,n| <∞. X is a Banach space.

Case 1. For the case −1 < c ≤ 0, choose m1 > m0, n1 > n0 sufficiently large such
that m1 − max{δ, r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
u∑

s=1

∣
∣p(s)

i, j

∣
∣ ≤ 1 + c

8
,

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
∣
∣ fi, j

∣
∣ ≤ 1 + c

6
.

(2.598)

Set

D = Nm0 × Nn0 , D1 = Nm1 × Nn1 ,

D2 = Nm0 × Nn1 \D1, D3 = Nm1 × Nn0\D1,

D4 = D\(D1 ∪D2 ∪D3
)
.

(2.599)

Clearly, D = D1 ∪D2 ∪D3 ∪D4.
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We define a closed, bounded, and convex subset Ω of X as follows:

Ω =
{
A = {Am,n

} ∈ X | 2(1 + c)
3

≤ Am,n ≤ 4
3

, (m,n) ∈ D
}
. (2.600)

Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + c − cAm−k,n−l +
(−1)r+h+1

(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τs, j−σs − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.
(2.601)

We will show that TΩ ⊂ Ω. In fact, for every A ∈ Ω and m ≥ m1, n ≥ n1, we get

TAm,n ≤ 1 + c − cAm−k,n−l +
1

(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1)

×
( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ 1 + c − 4
3
c +

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
(

4
3

u∑

s=1

∣
∣p(s)

i, j

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ 1 + c − 4
3
c +

4
3

1 + c

8
+

1 + c

6
= 4

3
.

(2.602)
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Furthermore, we have

TAm,n ≥ 1 + c − cAm−k,n−l − 1
(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1)

×
( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ 1 + c − 1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
(

4
3

u∑

s=1

∣
∣p(s)

i, j

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ 1 + c − 4
3

1 + c

8
− 1 + c

6
= 2(1 + c)

3
.

(2.603)

Hence,

2(1 + c)
3

≤ TAm,n ≤ 4
3

for (m,n) ∈ D. (2.604)

Thus, we have TΩ ⊂ Ω.
Now, we claim that T is a contraction mapping on Ω. In fact, for B,A ∈ Ω

and (m,n) ∈ D1, we have
∣
∣TBm,n − TAm,n

∣
∣

≤ −c∣∣Bm−k,n−l − Am−k,n−l
∣∣

+
1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1)

×
u∑

s=1

∣∣p(s)
i, j

∣∣∣∣Bi−τs, j−σs − Ai−τs, j−σs
∣∣

≤ −c∣∣Bm−k,n−l − Am−k,n−l
∣
∣

+
1

(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Bi−τs, j−σs − Ai−τs, j−σs

∣
∣

≤ 1 − 7c
8

‖B − A‖.
(2.605)
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This implies that

‖TB − TA‖ ≤ 1 − 7c
8

‖B − A‖. (2.606)

Since 0 < (1 − 7c)/8 < 1, T is a contraction mapping on Ω. Therefore, by the
Banach contraction mapping principle, T has a fixed point A0 in Ω, that is, TA0 =
A0. Clearly, A0 = {A0

m,n} is a bounded positive solution of (2.596). This completes
the proof in this case.

Case 2. For the case c < −1, choose m1 > m0, n1 > n0 sufficiently large so that
m1 − max{δ, r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
u∑

s=1

∣∣p(s)
i, j

∣∣ ≤ −1 + c

8
,

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
∣
∣ fi, j

∣
∣ ≤ c(1 + c)

4
.

(2.607)

We define a closed, bounded, and convex subset Ω of X as follows:

Ω =
{
A = {Am,n

} ∈ X | − c

2
≤ Am,n ≤ −2c, (m,n) ∈ D

}
. (2.608)

Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c − 1 − 1
c
Am+k,n+l +

(−1)r+h+1

c(r − 1)!(h− 1)!

×
∞∑

i=m+k

(i−m− k + r − 1)(r−1)

×
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τs, j−σs − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.

(2.609)
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We will show that TΩ ⊂ Ω. In fact, for every A ∈ Ω and (m,n) ∈ D1, we get

TAm,n ≤ −c − 1 − 1
c
Am+k,n+l − 1

c(r − 1)!(h− 1)!

×
∞∑

i=m+k

(i−m− k + r − 1)(r−1)
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

×
( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ −c − 1 + 2 − 1
c(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)

×
(

− 2c
u∑

s=1

∣
∣p(s)

i, j

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ −c + 1 − 1
c

(
c(1 + c)

4
+
c(1 + c)

4

)
≤ −2c.

(2.610)

Furthermore, we have

TAm,n ≥ −c − 1 − 1
c
Am+k,n+l +

1
c(r − 1)!(h− 1)!

×
∞∑

i=m+k

(i−m− k + r − 1)(r−1)
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

×
( u∑

s=1

∣∣p(s)
i, j

∣∣∣∣Ai−τs, j−σs
∣∣ +

∣∣ fi, j
∣∣
)

≥ −c − 1 − 1
c

(
− c

2

)
+

1
c(r − 1)!(h− 1)!

×
∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)

(

− 2c
u∑

s=1

∣
∣p(s)

i, j

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ −c − 1
2

+
1
c

(
c(1 + c)

4
+
c(1 + c)

4

)
= − c

2
.

(2.611)

Hence,

− c

2
≤ TAm,n ≤ −2c for (m,n) ∈ D. (2.612)

Thus we have proved that TΩ ⊂ Ω.
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Now, we will show that T is a contraction mapping onΩ. In fact, for B,A ∈ Ω,
and (m,n) ∈ D1, we have

∣∣TBm,n − TAm,n
∣∣

≤ −1
c

∣
∣Bm+k,n+l − Am+k,n+l

∣
∣

− 1
c(r − 1)!(h− 1)!

∞∑

i=m+k

(i−m− k + r − 1)(r−1)

×
∞∑

j=n+l

( j − n− l + h− 1)(h−1)
u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Bi−τs, j−σs − Ai−τs, j−σs

∣
∣

≤ −1
c

∣
∣Bm+k,n+l − Am+k,n+l

∣
∣

− 1
c(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Bi−τs, j−σs − Ai−τs, j−σs

∣
∣

≤ c − 7
8c

‖B − A‖.
(2.613)

This implies that

‖TB − TA‖ ≤ c − 7
8c

‖B − A‖. (2.614)

Since 0 < (c − 7)/8c < 1, so T is a contraction mapping on Ω. Therefore, by
the Banach contraction mapping principle, T has a fixed point A0 in Ω, that is,
TA0 = A0. Clearly, A0 = {A0

m,n} is a bounded positive solution of (2.596). This
completes the proof in this case.

Case 3. For the case 0 ≤ c < 1, choose m1 > m0, n1 > n0 sufficiently large such that
m1 − max{δ, r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
u∑

s=1

∣
∣p(s)

i, j

∣
∣ ≤ 1 − c

8
,

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
∣
∣ fi, j

∣
∣ ≤ 1 − c

2
.

(2.615)
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We define a closed, bounded, and convex subset Ω of X as follows:

Ω = {A = {Am,n
} ∈ X | 2(1 − c) ≤ Am,n ≤ 4, (m,n) ∈ D

}
. (2.616)

Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + c − cAm−k,n−l +
(−1)r+h+1

(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τs, j−σs − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.
(2.617)

We will show that TΩ ⊂ Ω. In fact, for every A ∈ Ω and (m,n) ∈ D1, we get

TAm,n ≤ 3 + c − cAm−k,n−l

+
1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)

( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ 3 + c +
1

(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
(

4
u∑

s=1

∣∣p(s)
i, j

∣∣ +
∣∣ fi, j

∣∣
)

≤ 3 + c + 4
1 − c

8
+

1 − c

2
= 4.

(2.618)
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Furthermore, we have

TAm,n ≥ 3 + c − cAm−k,n−l

− 1
(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)

( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ 3 + c − 4c − 1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
(

4
u∑

s=1

∣∣p(s)
i, j

∣∣ +
∣∣ fi, j

∣∣
)

≥ 3 + c − 4c − 4
1 − c

8
− 1 − c

2
= 2(1 − c).

(2.619)

Hence,

2(1 − c) ≤ TAm,n ≤ 4 for (m,n) ∈ D. (2.620)

Thus we have proved that TΩ ⊂ Ω.
Now, we will show that T is a contraction mapping onΩ. In fact, for B,A ∈ Ω

and m ≥ m1, n ≥ n1, we have

∣∣TBm,n − TAm,n
∣∣

≤ c
∣
∣Bm−k,n−l − Am−k,n−l

∣
∣

+
1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)

u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Bi−τs, j−σs − Ai−τs, j−σs

∣
∣

≤ c
∣∣Bm−k,n−l − Am−k,n−l

∣∣

+
1

(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)

×
u∑

s=1

∣∣p(s)
i, j

∣∣∣∣Bi−τs, j−σs − Ai−τs, j−σs
∣∣

≤ 1 + 7c
8

‖B − A‖.

(2.621)
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This implies that

‖TB − TA‖ ≤ 1 + 7c
8

‖B − A‖. (2.622)

Since 0 < (1+7c)/8 < 1,T is a contraction mapping onΩ. Therefore, by the Banach
contraction mapping principle, T has a fixed point A0 in Ω, that is, TA0 = A0.
Clearly, A0 = {A0

m,n} is a bounded positive solution of (2.596). This completes the
proof in this case.

Case 4. For the case c > 1, choose m1 > m0, n1 > n0 sufficiently large such that
m1 − max{δ, r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
u∑

s=1

∣∣p(s)
i, j

∣∣ ≤ c − 1
8

,

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1)
∣
∣ fi, j

∣
∣ ≤ c − 1

2
.

(2.623)

We define a closed, bounded, and convex subset Ω of X as follows:

Ω = {A = {Am,n
} ∈ X | 2(c − 1) ≤ Am,n ≤ 4c, (m,n) ∈ D

}
. (2.624)

Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3c + 1 − 1
c
Am+k,n+l +

(−1)r+h+1

c(r − 1)!(h− 1)!

×
∞∑

i=m+k

(i−m− k + r − 1)(r−1)

×
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τs, j−σs − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.

(2.625)
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We will show that TΩ ⊂ Ω. In fact, for every A ∈ Ω and (m,n) ∈ D1, we get

TAm,n ≤ 3c + 1 − 1
c
Am+k,n+l

+
1

c(r − 1)!(h− 1)!

∞∑

i=m+k

(i−m− k + r − 1)(r−1)

×
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≤ 3c + 1 +
1

c(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)

×
(

4c
u∑

s=1

∣∣p(s)
i, j

∣∣ +
∣∣ fi, j

∣∣
)

≤ 3c + 1 + 4c
c − 1

8c
+
c − 1

2
= 4c.

(2.626)

Furthermore, we have

TAm,n ≥ 3c + 1 − 1
c
Am+k,n+l

− 1
c(r − 1)!(h− 1)!

∞∑

i=m+k

(i−m− k + r − 1)(r−1)

×
∞∑

j=n+l

( j − n− l + h− 1)(h−1)

( u∑

s=1

∣
∣p(s)

i, j

∣
∣
∣
∣Ai−τs, j−σs

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ 3c + 1 − 4 − 1
c(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)

×
(

4c
u∑

s=1

∣
∣p(s)

i, j

∣
∣ +

∣
∣ fi, j

∣
∣
)

≥ 3c − 3 − 4c
c − 1

8c
− c − 1

2
= 2(c − 1).

(2.627)

Hence,

2(c − 1) ≤ TAm,n ≤ 4c for (m,n) ∈ D. (2.628)

Thus we have proved that TΩ ⊂ Ω.
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Now, we will show that T is a contraction mapping onΩ. In fact, for B,A ∈ Ω,
and (m,n) ∈ D1, we can prove that

∣∣TBm,n − TAm,n
∣∣ ≤ c + 7

8c
‖B − A‖. (2.629)

This implies that

‖TB − TA‖ ≤ c + 7
8c

‖B − A‖. (2.630)

Since 0 < (c+7)/8c < 1, T is a contraction mapping onΩ. Therefore, by the Banach
contraction mapping principle, T has a fixed point A0 in Ω, that is, TA0 = A0.
Clearly, A0 = {A0

m,n} is a bounded positive solution of (2.596). This completes the
proof in this case.

Case 5. Finally, we consider the last case when c = 1. Let m1 > m0, n1 > n0 be such
that m1 − max{δ, r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)
u∑

s=1

∣
∣p(s)

i, j

∣
∣ ≤ 1

8
,

1
(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1)| fi, j| ≤ 1
2
.

(2.631)

We define a closed, bounded, and convex subset Ω of X as follows:

Ω = {A = {Am,n
} ∈ X | 2 ≤ Am,n ≤ 4, (m,n) ∈ D

}
. (2.632)

Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 +
(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

w=1

m+2wk−1∑

i=m+(2w−1)k

(i−m + r − 1)(r−1)

×
∞∑

v=1

n+2vl−1∑

j=n+(2v−1)l

( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τ, j−σ − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.
(2.633)
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By a similar argument to that of Cases 1–4, we can easily show that T maps Ω into
Ω and for B,A ∈ Ω,

‖TB − TA‖ ≤ 1
8
‖B − A‖. (2.634)

Therefore, by the Banach contraction principle, T has a fixed point A0 in Ω, that
is,

A0
m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 +
(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

w=1

m+2wk−1∑

i=m+(2w−1)k

(i−m + r − 1)(r−1)

×
∞∑

v=1

n+2vl−1∑

j=n+(2v−1)l

( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j A

0
i−τ, j−σ − fi, j

)

, (m,n) ∈ D1,

A0
m1,n, (m,n) ∈ D2,

A0
m,n1

, (m,n) ∈ D3,

A0
m1,n1

, (m,n) ∈ D4.
(2.635)

It follows that for (m,n) ∈ D1

A0
m,n + A0

m−k,n−l = 6 +
(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)

( u∑

s=1

p(s)
i, j A

0
i−τ, j−σ − fi, j

)

.

(2.636)

Clearly, A0 = {A0
m,n} is a bounded positive solution of (2.596). This completes the

proof of Theorem 2.114. �

Example 2.115. Consider the higher order neutral partial difference equation

ΔhnΔ
r
m(Am,n + cAm−k,n−l) +

1
mαnβ

Am−τ,n−σ = 0, (2.637)
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where r, h, k, l, τ, and σ are positive integers, c ∈ R, α,β ∈ R+ and α > r, β > h.
Since

∞∑

m=m0

∞∑

n=n0

(m)(r−1)(n)(h−1) 1
mαnβ

≤
∞∑

m=m0

1
mα+1−r

∞∑

n=n0

1
nβ+1−h <∞, (2.638)

by Theorem 2.114, (2.637) has a bounded positive solution.

Theorem 2.116. Assume that c = −1 and that

∞∑

m=m0

∞∑

n=n0

m(m)(r−1)n(n)(h−1)
∣∣p(s)

m,n

∣∣ <∞, s = 1, 2, . . . ,u,

∞∑

m=m0

∞∑

n=n0

m(m)(r−1)n(n)(h−1)
∣
∣ fm,n

∣
∣ <∞.

(2.639)

Then (2.596) has a bounded positive solution.

Proof . By a known result [58], (2.639) are equivalent to

∞∑

w=0

∞∑

u=0

∞∑

m=m0+wk

∞∑

n=n0+ul

(m)(r−1)(n)(h−1)
∣
∣p(s)

m,n

∣
∣ <∞, s = 1, 2, . . . ,u,

∞∑

w=0

∞∑

u=0

∞∑

m=m0+wk

∞∑

n=n0+ul

(m)(r−1)(n)(h−1)
∣∣ fm,n

∣∣ <∞,

(2.640)

respectively. We choose sufficiently large m1 > m0, n1 > n0 such that m1 − max{δ,
r} ≥ m0, n1 − max{η,h} ≥ n0 and

1
(r − 1)!(h− 1)!

∞∑

w=0

∞∑

u=0

∞∑

i=m1+wk

(i)(r−1)
∞∑

j=n1+ul

( j)(h−1)
u∑

s=1

∣
∣p(s)

i, j

∣
∣ ≤ 1

8
,

1
(r − 1)!(h− 1)!

∞∑

w=0

∞∑

u=0

∞∑

i=m1+wk

(i)(r−1)
∞∑

j=n1+ul

( j)(h−1)
∣∣ fi, j

∣∣ ≤ 1
2
.

(2.641)

We define a closed, bounded, and convex subset Ω of X as follows:

Ω = {A = {Am,n
} ∈ X | 2 ≤ Am,n ≤ 4, (m,n) ∈ D

}
. (2.642)
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Define a mapping T : Ω→ X as follows:

TAm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 +
(−1)r+h

(r − 1)!(h− 1)!

∞∑

w=1

∞∑

i=m+wk

(i−m + r − 1)(r−1)

×
∞∑

u=1

∞∑

j=n+ul

( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j Ai−τ, j−σ − fi, j

)

, (m,n) ∈ D1,

TAm1,n, (m,n) ∈ D2,

TAm,n1 , (m,n) ∈ D3,

TAm1,n1 , (m,n) ∈ D4.
(2.643)

By a similar argument to that of Cases 1–5 in Theorem 2.114, we can easily show
that T maps Ω into Ω and for B,A ∈ Ω,

‖TB − TA‖ ≤ 1
8
‖B − A‖. (2.644)

Therefore, by the Banach contraction principle, T has a fixed point A0 in Ω, that
is,

A0
m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 +
(−1)r+h

(r − 1)!(h− 1)!

∞∑

w=1

∞∑

i=m+wk

(i−m + r − 1)(r−1)

×
∞∑

u=1

∞∑

j=n+ul

( j − n + h− 1)(h−1)

×
( u∑

s=1

p(s)
i, j A

0
i−τ, j−σ − fi, j

)

, (m,n) ∈ D1,

TA0
m1,n, (m,n) ∈ D2,

TA0
m,n1

, (m,n) ∈ D3,

TA0
m1,n1

, (m,n) ∈ D4.
(2.645)

It follows that for (m,n) ∈ D1

A0
m,n − A0

m−k,n−l = 6 +
(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)

( u∑

s=1

p(s)
i, j A

0
i−τ, j−σ − fi, j

)

.

(2.646)
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Clearly, A0 = {A0
m,n} is a bounded positive solution of (2.596). This completes the

proof of Theorem 2.116. �

2.12. Notes

The material of Section 2.2 is based on Zhang and Liu [171, 172]. The related work
can be seen from Liu and Wang [105]. The results in Section 2.3 are taken from
Zhang and Liu [174]. The material of Section 2.4 is based on Zhang and Liu [167].
The method in Section 2.5.1 is presented first in Zhang and Liu [173]. The mate-
rial of Section 2.5.1 is based on Choi and Zhang [46]. The results in Section 2.5.2
are taken from Zhang and Tian [178]. The material of Section 2.5.3 is taken from
Agarwal and Zhou [7], the related papers can be seen from Zhang [161], Choi et
al. [45], Cui and Liu [50]. The results in Section 2.6.1 are adopted from Zhang and
Zhou [187]. The material of Section 2.6.2 is new [188]. Section 2.6.3 is taken from
Zhang and Liu [170]. The concept of frequent oscillation is posed by Tian et al.
[136]. The material of Section 2.7 is taken from Tian and Zhang [141], the related
work, see Xie and Tian [156]. The material of Section 2.8 is based on Xie et al.
[158]. The material of Section 2.9 is taken from Liu and Zhang [107], the related
work, see Liu et al. [104], Liu et al. [108]. The material of Section 2.10 is taken
from Zhang and Zhou [189]. Theorem 2.112 is taken from Zhang and Xing [182].
In [182], authors discuss the various cases in Remark 2.113 and present another
method to study the existence of positive solutions of (2.583). Theorem 2.114 is
based on Zhou et al. [193]. Theorem 2.116 is new.



3
Oscillations of nonlinear delay partial
difference equations

3.1. Introduction

Nonlinear PDEs are very important in applications. Many phenomena in biolog-
ical, physical, and engineering sciences can be described by nonlinear equations.
First, we consider a class of nonlinear PDEs with the almost linear property. We
present the linearized oscillation theory in Section 3.2, which is similar to the well-
known linearized stability theory in ODEs. In Section 3.3, we present some results
for nonlinear PDEs with variable coefficients. In Section 3.4, we state the existence
of oscillatory solutions for certain nonlinear PDEs. In Section 3.5, we consider the
existence of positive solutions for certain nonlinear PDEs. In Section 3.6, we study
some population models using the results in the former sections. In Section 3.7,
we consider the oscillation of initial boundary value problems of PDEs, which
are discrete analogs of the corresponding initial boundary value problems of par-
tial differential equations. Average techniques are very effective for this case. In
Section 3.8, we consider the oscillation of multidimensional IBVPs.

3.2. Linearized oscillations

3.2.1. Linearized oscillation forAm+1,n +Am,n+1 − pAm,n + qm,n f (xm−k,n−l) = 0

In Chapter 2, the linear delay partial difference equations

xm+1,n + xm,n+1 − pxm,n + qxm−k,n−l = 0, (m,n) ∈ N2
0 , (3.1)

have been investigated and various properties related to the oscillatory behavior of
their solutions have been reported. The purpose of this section is to establish some
connections between (3.1) and a more general nonlinear delay partial difference
equation.

Consider the nonlinear functional inequality of the form

xm+1,n + xm,n+1 − pxm,n + qm,n f
(
xm−k,n−l

) ≤ 0, (m,n) ∈ N2
0 , (3.2)



140 Oscillations of nonlinear PDEs

and the associated nonlinear partial difference equation

xm+1,n + xm,n+1 − pxm,n + qm,n f
(
xm−k,n−l

) = 0, (m,n) ∈ N2
0 . (3.3)

In (3.2) and (3.3), the numbers p, k, l, the sequence {qm,n}, and the function
f will be restricted by appropriate conditions. For now, we will assume through
out this section that p is a positive number, k and l nonnegative integers such that
min(k, l) > 0, {qm,n}(m,n)∈N2

0
a real double sequence, and f a real-valued function

defined on R. By a solution of (3.2) or (3.3), we mean a real double sequence x =
{xm,n},m ≥ −k, n ≥ −l, which satisfies (3.2) or (3.3). It is not difficult to formulate
and prove an existence theorem for the solutions of (3.3) when appropriate initial
conditions are given (e.g., see Chapter 1). As is customary, we say that a solution
x = {xm,n} of (3.3) is eventually positive (eventually negative) if xm,n > 0 (resp.,
xm,n < 0) for all large m and all large n, and is oscillatory if it is neither eventually
positive nor eventually negative.

First of all, we will establish a comparison theorem.

Theorem 3.1. Suppose that p and p are real numbers such that 1 ≥ p ≥ p > 0. Sup-
pose that {qm,n} and {qm,n} are nonnegative sequences which satisfy qm,n ≥ qm,n > 0

for all large m and n. Suppose further that the functions f , f : R → R satisfy
0 < f (x) ≤ f (x) for x > 0. If (3.2) has an eventually positive solution, then so
does the following equation:

xm+1,n + xm,n+1 − pxm,n + qm,n f
(
xm−k,n−l

) = 0, (m,n) ∈ N2
0 . (3.4)

Proof . Let x = {xm,n} be an eventually positive solution of (3.2) such that xm,n > 0
for m ≥ M − k ≥ 0 and n ≥ N − l ≥ 0. Suppose further that f (t) > 0 for t > 0.
Then summing (3.2) with respect to the second independent variable from n to
∞, we obtain

∞∑

j=n
xm+1, j + (1 − p)

∞∑

j=n
xm, j+1 + p

∞∑

j=n

(
xm, j+1 − xm, j

)
+

∞∑

j=n
qm, j f

(
xm−k, j−l

) ≤ 0

(3.5)

so that

∞∑

j=n+1

xm+1, j + p
(
xm+1,n − xm,n

)

+ (1 − p)xm+1,n + (1 − p)
∞∑

j=n
xm, j+1 +

∞∑

j=n
qm, j f

(
xm−k, j−l

) ≤ 0.

(3.6)
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Summing the above inequality with respect to the first independent variable from
m to ∞, we obtain

∞∑

(i, j)=(m,n+1)

xi+1, j +
∞∑

(i, j)=(m,n)

qi, j f
(
xi−k, j−l

)

+ (1 − p)

{ ∞∑

i=m
xi+1,n +

∞∑

(i, j)=(m,n)

xi, j+1

}

≤ pxm,n.

(3.7)

Thus

xm,n ≥ 1
p

{ ∞∑

(i, j)=(m,n+1)

xi+1, j +
∞∑

(i, j)=(m,n)

qi, j f
(
xi−k, j−l

)
}

+
1 − p

p

{ ∞∑

i=m
xi+1,n +

∞∑

(i, j)=(m,n)

xi, j+1

} (3.8)

for m ≥ M and n ≥ N . Let p be a real number such that 1 ≥ p ≥ p, let
{qm,n}(m,n)∈N2

0
be a nonnegative sequence such that qm,n ≥ qm,n for (m,n) ∈ Z2,

and further let f be a real and nondecreasing function defined on R satisfying
f (x) ≤ f (x) for x > 0. Let Ω be the set of all real double sequences of the form
y = {ym,n | m ≥M − k, n ≥ N − l}. Define an operator T : Ω→ Ω by

(Ty)m,n = 1
pxm,n

{ ∞∑

(i, j)=(m,n+1)

xi+1, j yi+1, j +
∞∑

(i, j)=(m,n)

qi, j f
(
xi−k, j−l yi−k, j−l

)
}

+
1 − p

pxm,n

{ ∞∑

i=m
xi+1,nyi+1,n +

∞∑

(i, j)=(m,n)

xi, j+1yi, j+1

}

(3.9)

for m ≥M and n ≥ N , and

(Ty)m,n = 1 (3.10)

elsewhere. Consider the following iteration scheme: y(0) ≡ 1 and y( j+1) = Ty( j)

for j = 0, 1, 2, . . . . Clearly, in view of (3.8),

0 ≤ y
( j+1)
m,n ≤ y

( j)
m,n ≤ 1, m ≥M, n ≥ N , j ≥ 0. (3.11)
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Thus as j → ∞, y( j) converges pointwise to some nonnegative sequence w =
{wm,n} which satisfies

xm,nwm,n = 1
p

{ ∞∑

(i, j)=(m,n+1)

xi+1, jwi+1, j +
∞∑

(i, j)=(m,n)

qi, j f
(
xi−k, j−lwi−k, j−l

)
}

+
1 − p

p

{ ∞∑

i=m
xi+1,nwi+1,n +

∞∑

(i, j)=(m,n)

xi, j+1wi, j+1

} (3.12)

for m ≥ M and n ≥ N and wm,n = 1 elsewhere. Taking differences on both sides
of the above equality, we see that the double sequence {um,n} = {xm,nwm,n} is an
eventually nonnegative solution of (3.4). Finally, we claim that {um,n} is eventually
positive, provided qm,n > 0 for m ≥ M and n ≥ N . To see this, suppose to the
contrary that there exists a pair of integersm∗ ≥M and n∗ ≥ N such that um,n > 0
for (m,n) ∈ {M − k,M − k + 1, . . . ,m∗} × {N − l,N − l + 1, . . . ,n∗}\{(m∗,n∗)}
but um∗,n∗ = 0. Then in view of (3.12),

0 ≥
∞∑

(i, j)=(m∗,n∗+1)

ui+1, j +
∞∑

(i, j)=(m∗,n∗)

qi, j f
(
ui−k, j−l

)
, (3.13)

which implies ui, j = 0 for i ≥ m∗ + 1 and j ≥ n∗ + 1, as well as

qi, j f
(
ui−k, j−l

) = 0 (3.14)

for i ≥ m∗ and j ≥ n∗. This contradicts our assumptions that qm∗,n∗ > 0 and
um∗−k,n∗−l > 0. The proof is complete. �

As an immediate consequence of Theorem 3.1, we have the following con-
nection between the partial difference inequality (3.2) and the partial difference
equation (3.3).

Corollary 3.2. Suppose 0 < p ≤ 1, {qm,n} is eventually positive and f is positive and
nondecreasing for x > 0. Then (3.2) has an eventually positive solution if and only if
(3.3) has an eventually positive solution.

In order to establish the desired connections between (3.1) and (3.3), we first
recall a few facts for (3.1) from Section 2.2.

Every proper solution of (3.1) oscillates if and only if the following character-
istic equation has no positive roots:

λ + μ− p + qλ−kμ−l = 0. (3.15)

Next, note that when p ∈ (0, 1] and q ≥ 0, every eventually positive solution
of (3.1) or (3.3) is proper. Indeed, if x = {xm,n} is such a solution, then

xm,n+1 + xm+1,n − pxm,n ≤ 0 (3.16)



Linearized oscillations 143

eventually, so that x is eventually decreasing in m and also in n. As a consequence,
when p ∈ (0, 1] and q ≥ 0, every solution of (3.1) is oscillatory if and only if every
proper solution oscillates.

Next, note that when q > 0, inequality (2.22) will still be valid when q is de-
creased and p is increased by sufficiently small perturbations. Thus the following
continuous dependence of parameters theorem for (3.1) holds.

Theorem 3.3. Suppose that p, q > 0 and that every proper solution of (3.1) is oscil-
latory. Then there exists a nonnegative number ξ1 > −p and a positive number ξ2 < q
such that for every ε1 ∈ [0, ξ1] and ε2 ∈ [0, ξ2], each proper solution of the following
equation is also oscillatory:

xm+1,n + xm,n+1 −
(
p + ε1

)
xm,n +

(
q − ε2)xm−k,n−l = 0, (m,n) ∈ N2

0 . (3.17)

We are ready to establish several important relations between the linear equa-
tion (3.1) and the nonlinear equation (3.3).

Theorem 3.4. Suppose p ∈ (0, 1]. Suppose further that

lim inf
m,n→∞ qm,n ≥ q > 0. (3.18)

If there is an eventually positive sequence u = {um,n} which satisfies

xm+1,n + xm,n+1 − pxm,n + qm,nxm−k,n−l ≤ 0 (3.19)

for all large m and n, then (3.1) has an eventually positive solution.

Proof . In view of (3.18), for any ε ∈ (0, q), qm,n > q − ε for all large m and n. If
(3.19) has an eventually positive solution, then by Theorem 3.1, the equation

xm+1,n + xm,n+1 − pxm,n + (q − ε)xm−k,n−l = 0 (3.20)

also has an eventually positive solution. Therefore, if every solution of (3.1) is
oscillatory, then by Theorem 3.3, there will exist an ε0 ∈ (0, q) such that (every
proper and hence) every solution of

xm+1,n + xm,n+1 − pxm,n +
(
q − ε0

)
xm−k,n−l = 0 (3.21)

oscillates. This is the desired contradiction.
As an immediate application, suppose that f (x) ≥ x for x > 0 and that (3.18)

holds. If (3.3) has an eventually positive solution u = {um,n}, then

0 = um,n+1 + um+1,n − pum,n + qm,n
f
(
um−k,n−l

)

um−k,n−l
um−k,n−l,

lim inf
m,n→∞ qm,n

f
(
um−k,n−l

)

um−k,n−l
≥ lim inf

m,n→∞ qm,n ≥ q

(3.22)
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would imply, by means of Theorem 3.4, that (3.1) will also have an eventually pos-
itive solution. �

Theorem 3.5. Suppose that p ∈ (0, 1], f (x) ≥ x for x > 0, and (3.18) holds. If (3.3)
has an eventually positive solution, then so does (3.1).

Similar reasoning also leads to the following: suppose that p ∈ (0, 1], that
(3.18) holds, and that

lim inf
x→0+

f (x)
x

≥ 1. (3.23)

If (3.3) has an eventually positive solution x = {xm,n} which satisfies
limm,n→∞ xm,n = 0, then (3.1) has an eventually positive solution.

It is not difficult to impose conditions such that all eventually positive solu-
tions of (3.3) converge to zero as m, n tend to infinity. For example, assume that

∞∑

m=0

∞∑

n=0

qm,n = ∞. (3.24)

In fact, for any eventually positive solution x = {xm,n} of (3.3) where 0 < p ≤ 1,
since it is decreasing in m and n eventually, we may assume that x tends to a non-
negative constant x. If x > 0, then assuming xm,n > 0 for m ≥M−k and n ≥ N− l,
we see from (3.8) that

pxm,n ≥
∞∑

i=m

∞∑

j=n
qi, j f

(
xi−k, j−l

)
. (3.25)

Assuming f is continuous or nondecreasing on (0,∞), the infinite series of the
above inequality will diverge to positive infinity, which is a contradiction. This
shows that x = 0. Finally, note that the condition (3.24) follows from (3.18). The
following result is now clear.

Theorem 3.6. Suppose that p ∈ (0, 1], (2.8) and (2.11) hold and f is either contin-
uous or nondecreasing on (0,∞). If (3.3) has an eventually positive solution, then so
does (3.1).

We now turn to the question as to when the existence of an eventually positive
solution of (3.1) implies the existence of eventually positive solutions of (3.3).

Theorem 3.7. Suppose that p ∈ (0, 1], 0 < qm,n ≤ q for all large m and n, and
f (x) ≤ x for all x in a nonempty right neighborhood (0, δ) of zero. If (3.1) has an
eventually positive solution, then so does (3.3).

Proof . Suppose (3.1) has an eventually positive solution. Then by Theorem 2.1,
the characteristic equation will be satisfied by a pair of positive numbers λ0 and μ0.
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It is not difficult to check that the sequence {xm,n} defined by {λm0 μn0} is an eventu-
ally positive solution of (3.1). Furthermore, since it is easily seen from the charac-
teristic equation that λ0 + μ0 < p ≤ 1, we see that xm,n → 0 as m, n tend to infinity.
Therefore, f (xm,n) ≤ xm,n for all large m and n. As a consequence,

xm+1,n + xm,n+1 − pxm,n + qm,n f
(
xm−k,n−l

)

≤ xm+1,n + xm,n+1 − pxm,n + qxm−k,n−l = 0
(3.26)

for all large m and n. We now see from Theorem 3.1 that (3.3) will have an even-
tually positive solution. The proof is complete. �

Now it is a position to state a linearized oscillation theorem.
In the oscillation theory, it is desirable to show that a nonlinear equation,

when appropriate conditions are imposed, has the same oscillatory behavior as an
associated linear equation. The following result follows directly from Theorems
3.6 and 3.7.

Theorem 3.8. Suppose that p ∈ (0, 1], q > 0, k, l are nonnegative integers such
that min(k, l) > 0, and f : R → R is either continuous or nondecreasing on (0,∞).
Suppose further that 0 < f (x) ≤ x for all x in a (nonempty) right neighborhood
(0, δ) of zero and that lim infx→0+ ( f (x)/x) = 1. Then

xm+1,n + xm,n+1 − pxm,n + qxm−k,n−l = 0, m,n = 0, 1, 2, . . . , (3.27)

has an eventually positive solution if and only if

xm+1,n + xm,n+1 − pxm,n + q f
(
xm−k,n−l

) = 0, m,n = 0, 1, 2, . . . , (3.28)

has an eventually positive solution.

Each of the previous results related to (3.2) and (3.3) has a dual statement
valid for eventually negative solutions. This is clear from the fact that {xm,n} is a
solution of (3.3) if and only if {−xm,n} is a solution of

ym+1,n + ym,n+1 − pym,n + qm,nF
(
ym−k,n−l

) = 0, m,n = 0, 1, 2, . . . , (3.29)

where F(t) = − f (−t) for t ∈ R. Note that sgnF(t) = sgn t for t �= 0, and F is
nondecreasing on (0,∞) when f is nondecreasing on (0,∞). Thus, if in the above
theorem, we assume several additional dual conditions, then we may conclude that
every solution of (3.27) oscillates if and only if every solution of (3.28) oscillates.

Theorem 3.9. Suppose that p ∈ (0, 1], q > 0, k, l are nonnegative integers such that
min(k, l) > 0 and f : R→ R is either continuous or nondecreasing on (−∞,∞)\{0}.
Suppose further that x f (x) > 0 for all x �= 0 and 0 < f (x)/x ≤ 1 in a (nonempty)
deleted neighborhood (−δ, δ)\{0} and that lim infx→0( f (x)/x) = 1. Then every so-
lution of (3.27) oscillates if and only if every solution of (3.28) oscillates.
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Example 3.10. Consider the partial difference equation

xm+1,n + xm,n+1 − pxm,n + q
xm−k,n−l

1 + x2
m−k,n−l

= 0, m,n = 0, 1, 2, . . . , (3.30)

where p ∈ (0, 1], q > 0 and k, l are nonnegative integers. By Theorem 3.8 and its
following remarks, we see that every solution of this equation oscillates if and only
if every solution of (3.27) oscillates. In view of Theorem 2.3, we see further that
every solution of this equation oscillates if and only if q(k+ l+ 1)k+l+1 > kkll pk+l+1.

The linearized oscillation theorem for the delay partial difference equation

aAm+1,n+1 + bAm,n+1 − pAm,n + qm,n f
(
Am−k,n−l

) = 0, (m,n) ∈ N2
0 (3.31)

has been also established.

3.2.2. Linearized oscillation forAm−1,n +Am,n−1 − pAm,n + qm,n f (xm+k,n+l) = 0

We consider a nonlinear advanced partial difference equation

Am−1,n + Am,n−1 − pAm,n + qm,n f
(
Am+k,n+l

) = 0, m,n = 0, 1, . . . , (3.32)

where f ∈ C(R,R), qm,n ≥ 0 on N2
0 and k, l ∈ N1.

In this section, we will show some linearized oscillation theorems for (3.32).
Next, we will show an existence result for positive solutions of (3.32). Finally, we
will obtain a comparison theorem.

Consider (3.32) together with the linear equation

Am−1,n +Am,n−1 − pAm,n + qAm+k,n+l = 0, (3.33)

where k and l are positive integers and p, q > 0.
From Chapter 2, we have the following result.

Lemma 3.11. The following statements are equivalent.
(a) Every proper solution of (3.33) oscillates.
(b) The characteristic equation

λ−1 + μ−1 − p + qλkμl = 0 (3.34)

has no positive roots.
(c)

q
(k + l + 1)k+l+1

kkll pk+l+1
> 1, (3.35)

where 00 = 1.
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(λ,μ) is said to be a positive root of (3.34) if it satisfies (3.34) and λ > 0,
μ > 0. Similar to Theorem 3.3, from Lemma 3.11, we can obtain the following
result easily.

Lemma 3.12. Assume that every proper solution of (3.33) oscillates. Then there exists
ε0 ∈ (0, q) such that for each ε ∈ [0, ε0], every proper solution of the equation

Am−1,n + Am,n−1 − pAm,n + (q − ε)Am+k,n+l = 0 (3.36)

also oscillates.

Theorem 3.13. Assume that
(i) lim infm,n→∞ qm,n = q > 0, p ∈ (0, 1],

(ii) f (x)/x > 0 for |x| ≥ c > 0 and limx→∞( f (x)/x) = 1.
Then every proper solution of (3.33) oscillates implies that every proper solution

of (3.32) oscillates.

Proof . Suppose to the contrary that {Am,n} is an eventually positive proper solu-
tion of (3.32). Then there exist m0 and n0 such that Am,n > 0 for m ≥ m0, n ≥ n0.
Hence Am−1,n < Am,n and Am,n−1 < Am,n, that is, Am,n is increasing in m and n. If
limm,n→∞ Am,n = L > 0, L is finite. From (3.32), we have (2−p)L+q f (L) ≤ 0, which
is a contradiction. Therefore limm,n→∞ Am,n = ∞. Similarly, we have limn→∞ Am,n =
∞ and limm→∞ Am,n = ∞. Let

qm,n = qm,n
f
(
Am+k,n+l

)

Am+k,n+l
. (3.37)

Then lim infm,n→∞ qm,n = q. For each ε ∈ (0, ε0] there exist M > m0 and N > n0

such that qm,n > q − ε, for m ≥M − 1, n ≥ N − 1. Therefore

Am−1,n + Am,n−1 − pAm,n + (q − ε)Am+k,n+l ≤ 0 (3.38)

for m ≥M − 1, n ≥ N − 1.
Summing (3.38) in n from N to n, we have

n∑

i=N
Am−1,i + (1 − p)

n∑

i=N
Am,i−1 + p

n∑

i=N

(
Am,i−1 − Am,i

)
+ (q − ε)

n∑

i=N
Am+k,i+l ≤ 0.

(3.39)

Hence

n∑

i=N
Am−1,i + (1 − p)

n∑

i=N
Am,i−1 + pAm,N−1 − pAm,n + (q − ε)

n∑

i=N
Am+k,i+l ≤ 0.

(3.40)
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We rewrite the above inequality in the form

Am,N−1 + Am−1,n − Am,n +
n−1∑

i=N
Am−1,i

+ (1 − p)
n+1∑

i=N+1

Am,i−1 + (q − ε)
n∑

i=N
Am+k,i+l ≤ 0.

(3.41)

Summing (3.41) in m from M to m, we get

− Am,n +AM−1,n +
m∑

j=M

n−1∑

i=N
Aj−1,i + (1 − p)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 + (q − ε)

m∑

j=M

n∑

i=N
Aj+k,i+l ≤ 0.

(3.42)

Thus

Am,n ≥
m∑

j=M

n−1∑

i=N
Aj−1,i + AM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 + (q − ε)

m∑

j=M

n∑

i=N
Aj+k,i+l, m ≥M, n ≥ N.

(3.43)

Define the set of real double sequences

X = {{Bm,n
} | 0 ≤ Bm,n ≤ 1, m ≥M − 1, n ≥ N − 1

}
(3.44)

and an operator T on X by

(TB)m,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Am,n

[ m∑

j=M

n−1∑

i=N
Aj−1,iBj−1,i + AM−1,nBM−1,n

+(1 − p)
m∑

j=M

n+1∑

i=N+1

Aj,i−1Bj,i−1

+
m∑

j=M
Aj,N−1Bj,N−1

+(q − ε)
m∑

j=M

n∑

i=N
Aj+k,i+lBj+k,i+l

]

, m ≥M, n ≥ N ,

1, otherwise.
(3.45)

In view of (3.43), we see that TX ⊂ X . Define {B(i)
m,n}, i = 0, 1, . . . , as follows:

B(0)
m,n ≡ 1, B(r)

m,n = (TB)(r−1)
m,n , r = 1, 2, . . . . (3.46)
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By induction and (3.43), we can prove that

B(0)
m,n ≥ B(1)

m,n ≥ · · · ≥ B(r)
m,n ≥ B(r+1)

m,n ≥ · · · (3.47)

for m ≥M − 1, n ≥ N − 1. Thus the limit Bm,n = limr→∞ B
(r)
m,n exists and

Bm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Am,n

[ m∑

j=M

n−1∑

i=N
Aj−1,iBj−1,i + AM−1,nBM−1,n

+(1 − p)
m∑

j=M

n+1∑

i=N+1

Aj,i−1Bj,i−1

+
m∑

j=M
Aj,N−1Bj,N−1

+(q − ε)
m∑

j=M

n∑

i=N
Aj+k,i+lBj+k,i+l

]

, m ≥M, n ≥ N ,

1, otherwise.

(3.48)

Clearly, Bm,n > 0 for m ≥ M − 1, n ≥ N − 1. Set xm,n = Am,nBm,n. Then xm,n > 0,
m ≥M − 1, n ≥ N − 1, and

xm,n =
m∑

j=M

n−1∑

i=N
xj−1,i + xM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

xj,i−1

+
m∑

j=M
xj,N−1 + (q − ε)

m∑

j=M

n∑

i=N
xj+k,i+l, m ≥M, n ≥ N.

(3.49)

From the last equation, we get

xm−1,n − xm,n = −
n−1∑

i=N
xm−1,i − (1 − p)

n+1∑

i=N+1

xm,i−1 − xm,N−1 − (q − ε)
n∑

i=N
xm+k,i+l,

(3.50)

or

xm,n =
n∑

i=N
xm−1,i + (1 − p)

n+1∑

i=N+1

xm,i−1 + xm,N−1 + (q − ε)
n∑

i=N
xm+k,i+l . (3.51)
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Hence

xm,n−1 − xm,n =
n−1∑

i=N
xm−1,i + (1 − p)

n∑

i=N+1

xm,i−1 + (q − ε)
n−1∑

i=N
xm+k,i+l

−
n∑

i=N
xm−1,i − (1 − p)

n+1∑

i=N+1

xm,i−1 − (q − ε)
n∑

i=N
xm+k,i+l

= −xm−1,n − (1 − p)xm,n − (q − ε)xm+k,n+l,

(3.52)

that is, (3.36) has a positive solution {xm,n}. In view of xi, j ≤ Ai, j for all large i and
j, {xi, j} is a proper solution. By Lemma 3.12, (3.33) has a positive proper solution,
which is a contradiction. The proof is complete. �

Theorem 3.14. Assume that
(i) 0 ≤ pm,n ≤ p,

(ii) there exists a positive number c such that f (x) is nondecreasing in x for
|x| ≥ c and

0 ≤ f (x)
x

≤ 1, |x| ≥ c. (3.53)

Suppose (3.33) has a positive proper solution, then (3.32) also has a positive proper
solution.

Proof . If (3.33) has a positive proper solution, by Lemma 3.11, its characteristic
equation (3.34) has a positive root (λ,μ) with λ−1 + μ−1 < p and {Am,n} = {λmμn}
is a positive solution of (3.33).

Since λ > 1 and μ > 1, this is an unbounded solution. There exists c > 0 such
that

Am,n ≥ c, m ≥M − 1, n ≥ N − 1. (3.54)

In view of condition (ii), f (Am,n) ≤ Am,n. Similar to the proof of Theorem 3.13,
summing (3.33) we can get

Am,n =
m∑

j=M

n−1∑

i=N
Aj−1,i +AM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 + q

m∑

j=M

n∑

i=N
Aj+k,i+l,

(3.55)
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and hence

Am,n ≥
m∑

j=M

n−1∑

i=N
Aj−1,i +AM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 +

m∑

j=M

n∑

i=N
qj,i f

(
Aj+k,i+l

)
.

(3.56)

Similar to the proof of Theorem 3.13, we can prove that the equation

xm,n =
m∑

j=M

n−1∑

i=N
xj−1,i + xM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

xj,i−1

+
m∑

j=M
xj,N−1 +

m∑

j=M

n∑

i=N
qj,i f

(
xj+k,i+l

)
(3.57)

has a positive solution {xm,n} with xm,n ≤ Am,n, which implies that {xm,n} is a
positive proper solution of (3.32). The proof is complete. �

Combining Theorems 3.13 and 3.14 we obtain the following result.

Theorem 3.15. Assume that qm,n ≡ q > 0, (ii) of Theorem 3.13 and (ii) of Theorem
3.14 hold. Then every proper solution of (3.32) oscillates if and only if every proper
solution of (3.33) oscillates.

Corollary 3.16. Assume that (ii) of Theorem 3.14 holds and

0 ≤ qm,n ≤
kkll pk+l+1

(k + l + 1)k+l+1
. (3.58)

Then (3.32) has a positive solution.

Example 3.17. Consider the nonlinear partial difference equation

Am−1,n +Am,n−1 − pAm,n + q
A3
m+k,n+l

1 + A2
m+k,n+l

= 0, (3.59)

where p ∈ (0, 1], q > 0, k, l ∈ N0. By Theorem 3.15, every solution of this equation
is oscillatory if and only if

q >
kkll pk+l+1

(k + l + 1)k+l+1
. (3.60)

Now we compare the equation

Am−1,n + Am,n−1 − pAm,n + qm,nAm+k,n+l = 0 (3.61)



152 Oscillations of nonlinear PDEs

and the equation

Am−1,n +Am,n−1 − rAm,n + sm,nAm+k,n+l = 0. (3.62)

Theorem 3.18. Assume that 0 < p ≤ r ≤ 1 and qm,n ≥ sm,n for all large m and n.
Then every solution of (3.62) is oscillatory implies the same for (3.61).

Proof . Suppose to the contrary, let {Am,n} be a positive solution of (3.61). As be-
fore, by summing (3.61), we can derive

Am,n =
m∑

j=M

n−1∑

i=N
Aj−1,i +AM−1,n + (1 − p)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 +

m∑

j=M

n∑

i=N
qj,iAj+k,i+l

≥
m∑

j=M

n−1∑

i=N
Aj−1,i + AM−1,n + (1 − r)

m∑

j=M

n+1∑

i=N+1

Aj,i−1

+
m∑

j=M
Aj,N−1 +

m∑

j=M

n∑

i=N
sj,iAj+k,i+l .

(3.63)

As before, the last inequality implies that the equation

xm,n =
m∑

j=M

n−1∑

i=N
xj−1,i + xM−1,n + (1 − r)

m∑

j=M

n+1∑

i=N+1

xj,i−1

+
m∑

j=M
xj,N−1 +

m∑

j=M

n∑

i=N
sj,ix j+k,i+l

(3.64)

has a positive solution, and hence (3.62) has a positive solution, this contradiction
proves the theorem. �

Remark 3.19. The above results can be extended to the more general equation

Am−1,n + Am,n−1 − pAm,n +
u∑

i=1

qi(m,n) fi
(
Am+ki,n+li

) = 0. (3.65)

3.2.3. Linearized oscillation for the equation with continuous arguments

In this section, we attempt to show the linearized oscillation theorems for the non-
linear partial difference equation with continuous arguments of the form

A(x + 1, y) + A(x, y + 1) − A(x, y) + p(x, y) f
(
A(x − σ , y − τ)

) = 0, (3.66)

where x ≥ 0, y ≥ 0, f ∈ C(R,R), u f (u) > 0 for u �= 0, p(x, y) > 0, τ, σ > 0.
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Consider (3.66) together with the linear equation

A(x + 1, y) +A(x, y + 1) − A(x, y) + pA(x − σ , y − τ) = 0, (3.67)

where p, τ, σ > 0.
From Section 2.4, we have the following lemma.

Lemma 3.20. The following statements are equivalent.
(a) Every solution of (3.67) oscillates.
(b) The characteristic equation

λ + μ− 1 + pλ−σμ−τ = 0 (3.68)

has no positive roots.
(c)

p >
σσττ

(σ + τ + 1)σ+τ+1
. (3.69)

From Lemma 3.20, we obtain the following lemma.

Lemma 3.21. Assume that every proper solution of (3.67) oscillates, then there exists
ε0 ∈ (0, p) such that for each ε ∈ [0, ε0], every proper solution of the equation

A(x + 1, y) + A(x, y + 1) − A(x, y) + (p − ε)A(x − σ , y − τ) = 0 (3.70)

also oscillates.

Lemma 3.22. Let A(x, y) be an eventually positive solution of (3.67) and

Z(x, y) =
∫ x+1

x

∫ y+1

y
A(s, q)ds dq. (3.71)

Then ∂Z/∂x < 0, ∂Z/∂y < 0, and limx,y→+∞ Z(x, y) = 0.

Proof . There exist sufficiently large x0 and y0 such that A(x, y) > 0 for x ≥ x0,
y ≥ y0. From (3.67), we have A(x, y) > A(x + 1, y), A(x, y) > A(x, y + 1) for
x ≥ x0 + σ , y ≥ y0 + τ. By (3.71), we obtain

∂Z

∂x
=
∫ y+1

y

[
A(x + 1, q) − A(x, q)

]
dq < 0,

∂Z

∂y
=
∫ x+1

x

[
A(s, y + 1) − A(s, y)

]
ds < 0.

(3.72)
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Since Z(x, y) > 0, the limit limx,y→+∞ Z(x, y) = d exists. We claim that d = 0.
Otherwise, d > 0, integrating (3.67) in y from y to y + 1 and in x from x to x + 1,
we have

Z(x + 1, y) + Z(x, y + 1) − Z(x, y) + pZ(x − σ , y − τ) = 0. (3.73)

Taking the limit on both sides of (3.73), we obtain d + pd = 0, which is a contra-
diction. Therefore we have limx,y→+∞ Z(x, y) = 0. The proof is complete. �

Lemma 3.23 (Jensen integral inequality). If φ(u) is a continuous convex function,

f (x) and p(x) are continuous functions on [a, b], p(x) ≥ 0,
∫ b
a p(x)dx > 0, then the

following inequality holds:

φ

(∫ b
a p(x) f (x)dx
∫ b
a p(x)dx

)

≤
∫ b
a p(x)φ

(
f (x)

)
dx

∫ b
a p(x)dx

. (3.74)

Lemma 3.24. Assume that f (u) is nondecreasing and is convex as u ≥ 0. Set
p(x, y) = min{p(s, q) : x ≤ s ≤ x + 1, y ≤ q ≤ y + 1}. Then (3.66) has an
eventually positive solution if and only if the inequality

A(x + 1, y) + A(x, y + 1) − A(x, y) + p(x, y) f
(
A(x − σ , y − τ)

) ≤ 0 (3.75)

has an eventually positive solution.

Proof . The necessity is obvious, we only need to prove the sufficiency. Let A(x, y)
be an eventually positive solution of (3.75) and let Z(x, y) be defined by (3.71), so
there exist sufficiently large x0 and y0 such that A(x, y) > 0 for x ≥ x0, y ≥ y0.
From (3.75), we have

Z(x + 1, y) + Z(x, y + 1) − Z(x, y) +
∫ x+1

x

∫ y+1

y
p(s, q) f

(
x(s− σ , q − τ)

)
dq ds ≤ 0.

(3.76)

By Lemma 3.23, we have

Z(x + 1, y + i)+Z(x, y + 1 + i)−Z(x, y + i)+p(x, y + i) f
(
Z(x − σ , y − τ + i)

) ≤ 0
(3.77)

for x ≥ x0, y ≥ y0, i ∈ N0. Summing (3.77) in i from 0 to +∞, we get

+∞∑

i=0

Z(x + 1, y + i) − Z(x, y) +
+∞∑

i=0

p(x, y + i) f
(
Z(x − σ , y + i− τ)

) ≤ 0. (3.78)
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From the above inequality, we have

Z(x + 1 + j, y) − Z(x + j, y) +
+∞∑

i=1

Z(x + 1 + j, y + i)

+
+∞∑

i=0

p(x + j, y + i) f
(
Z(x − σ + j, y + i− τ)

) ≤ 0,

(3.79)

where j ∈ N0.
Summing (3.79) in j from 0 to +∞, we obtain

Z(x, y) ≥
+∞∑

j=1

+∞∑

i=1

Z(x + j, y + i) +
+∞∑

j=0

+∞∑

i=0

p(x + j, y + i) f
(
Z(x − σ + j, y + i− τ)

)
.

(3.80)

Define a set of continuous functions

X = {B(x, y) ∈ C | 0 ≤ B(x, y) ≤ Z(x, y), x ≥ x0 − σ , y ≥ y0 − τ
}

(3.81)

and an operator T on X by

TB(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+∞∑

j=1

+∞∑

i=1

B(x + j, y + i) +
+∞∑

j=0

+∞∑

i=0

p(x + j, y + i)

× f
(
B(x − σ + j, y − τ + i)

)
, x ≥ x0, y ≥ y0,

TB
(
x0, y0

)
+ Z(x, y) − Z

(
x0, y0

)
, otherwise.

(3.82)

In view of (3.80), we see that TX ⊂ X .
Define B(i)(x, y), i = 0, 1, 2, . . . , as follows:

B(0)(x, y) = Z(x, y), B(n)(x, y) = TB(n−1)(x, y), n = 1, 2, . . . , (3.83)

so B(1)(x, y) = TB(0)(x, y) ≤ B(0)(x, y), . . . , by induction we can prove that

B(0)(x, y) ≥ B(1)(x, y) ≥ · · · ≥ B(n)(x, y) · · · ≥ 0 (3.84)

for x ≥ x0 − σ , y ≥ y0 − τ. Then the limit limn→+∞ B(n)(x, y) = B(x, y) exists.
Hence we have

B(x, y) =
+∞∑

j=1

+∞∑

i=1

B(x + j, y + i) +
+∞∑

j=0

+∞∑

i=0

p(x + j, y + i) f
(
B(x − σ + j, y − τ + i)

)

(3.85)

for x ≥ x0, y ≥ y0. Clearly, B(x, y) > 0 for x ≥ x0, y ≥ y0 and satisfies (3.66). The
proof is complete. �
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Theorem 3.25. Assume that
(i) lim infx,y→+∞ p(x, y) = p > 0,

(ii) f (z) ∈ C(R,R), f (z) is convex as z ≥ 0 and is concave as z < 0, z f (z) > 0,
for z �= 0, and limz→0( f (z)/z) = 1.

Then every proper solution of (3.67) oscillates implies that every solution of (3.66)
oscillates.

Proof . Suppose to the contrary, let A(x, y) be an eventually positive solution of
(3.66) and let Z(x, y) be defined by (3.71). Then there exist sufficiently large x0

and y0 such that A(x, y) > 0 for x ≥ x0, y ≥ y0. From (3.66), we have

Z(x + 1, y) + Z(x, y + 1) − Z(x, y) +
∫ x+1

x

∫ y+1

y
p(s, q) f

(
A(s− σ , q − τ)

)
dq ds = 0.

(3.86)

By condition (i), we see that for each ε1 ∈ (0, ε0], there exist X1 > x0 and Y1 > y0

such that p(x, y) ≥ p − ε1 for x ≥ X1, y ≥ Y1. So we have

Z(x + 1, y)+Z(x, y + 1)−Z(x, y)+
(
p −ε1

)
∫ x+1

x

∫ y+1

y
f
(
A(s−σ , q −τ)

)
dq ds ≤ 0.

(3.87)

Then, by Lemma 3.23, we have

Z(x + 1, y) + Z(x, y + 1) − Z(x, y) +
(
p − ε1

)
f
(
Z(x − σ , y − τ)

) ≤ 0. (3.88)

By Lemma 3.22, limx,y→∞ Z(x, y) = 0 monotonically. Let

p(x, y) = (p − ε1
) f
(
Z(x − σ , y − τ)

)

Z(x − σ , y − τ)
, (3.89)

then

lim
x,y→∞ p(x, y) = p − ε1. (3.90)

So for each ε2 ∈ [0, ε0] such that ε1 +ε2 ≤ ε0, there exist X2 > x0 and Y2 > y0 such
that p(x, y) ≥ p − ε1 − ε2 for x ≥ X2, y ≥ Y2. Let ε = ε1 + ε2, X = max{X1,X2},
Y = max{Y1,Y2}, then we have p(x, y) ≥ p−ε for x ≥ X , y ≥ Y . Therefore, from
(3.88), we have

Z(x + 1, y) + Z(x, y + 1) − Z(x, y) + (p − ε)Z(x − σ , y − τ) ≤ 0 (3.91)

for x ≥ X , y ≥ Y , that is, the inequality

A(x + 1, y) + A(x, y + 1) − A(x, y) + (p − ε)A(x − σ , y − τ) ≤ 0 (3.92)
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has an eventually positive solution Z(x, y). So by Lemma 3.24, we obtain that
(3.70) has a positive proper solution, which is a contradiction. The proof in the
case of A(x, y) < 0 is similar. The proof is complete. �

Theorem 3.26. Assume that
(i) 0 ≤ p(x, y) ≤ P, min{p(s, q) : x ≤ s ≤ x + 1, y ≤ q ≤ y + 1} = p(x, y),

(ii) there exists a positive number α such that f (z) is convex as z ≥ 0 and is
nondecreasing in z ∈ [−α,α], 0 ≤ f (z)/z ≤ 1 for 0 ≤ |z| < α.

Suppose (3.67) has a positive proper solution, then (3.66) has a positive solution.

Proof . If (3.67) has a positive proper solution, by Lemma 3.20, its characteristic
equation (3.68) has a positive root (λ,μ) with 0 < λ, μ < 1 and λxμy is a positive
proper solution of (3.67). Choose δ > 0 such that A(x, y) = δλxμy < α for all
x ≥ −σ , y ≥ −τ. Obviously, A(x, y) is a positive proper solution of (3.67) and
satisfies f (A(x, y)) ≤ A(x, y), by condition (i) and (3.67) we obtain that

A(x + 1, y) + A(x, y + 1) − A(x, y) + p(x, y) f
(
A(x − σ , y − τ)

) ≤ 0 (3.93)

has an eventually positive proper solution. By Lemma 3.24, we can obtain that
(3.66) has an eventually positive solution. The proof is complete. �

Combining Lemma 3.24 and Theorem 3.25, we obtain the following result.

Corollary 3.27. Assume that p(x, y) ≡ p > 0, (ii) of Theorem 3.25 holds, there
exists a positive number α such that f (z) is nondecreasing in z ∈ [−α,α] and 0 ≤
f (z)/z ≤ 1. Then every solution of (3.66) oscillates if and only if every solution of
(3.67) oscillates.

Corollary 3.28. Assume that condition (ii) of Theorem 3.26 holds and

0 ≤ p(x, y) ≤ σσττ

(σ + τ + 1)σ+τ+1
, (3.94)

then (3.66) has positive solutions.
If f (x) ≡ x and

lim inf
x,y→∞ p(x, y) >

σσττ

(σ + τ + 1)σ+τ+1
, (3.95)

then every solution of (3.66) oscillates.

We consider (3.66) together with the equation

C(x + 1, y) + C(x, y + 1) − C(x, y) + q(x, y)g
(
C(x − σ , y − τ)

) = 0. (3.96)

We have a comparison result as follows.
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Theorem 3.29. Assume that p(x, y) and f satisfy the assumptions in Lemma 3.24
and q(x, y) ≥ p(x, y) ≥ 0, ug(u) ≥ u f (u), u �= 0, then every solution of (3.66)
oscillates implies that every solution of (3.96) oscillates.

Proof . Suppose to the contrary, let C(x, y) be an eventually positive solution of
(3.96). Then we have

C(x + 1, y) + C(x, y + 1) − C(x, y) + p(x, y) f
(
C(x − σ , y − τ)

)

≤ C(x + 1, y) + C(x, y + 1) − C(x, y) + p(x, y)g
(
C(x − σ , y − τ)

)

≤ C(x + 1, y) + C(x, y + 1) − C(x, y) + q(x, y)g
(
C(x − σ , y − τ)

) = 0.
(3.97)

Then by Lemma 3.24, we obtain that (3.66) has an eventually positive solution,
which is a contradiction. The proof is complete. �

3.3. Nonlinear PDEs with variable coefficients

3.3.1. Oscillation for the equation (3.98)

Consider the equation

Am+1,n +Am,n+1 − Am,n +
u∑

i=1

Pi(m,n) fi
(
Am−ki ,n−li

) = 0, (3.98)

where Pi(m,n) ≥ 0, ki, li ∈ N0, fi ∈ C(R,R) and x fi(x) > 0 for x �= 0, i =
1, 2, . . . ,u.

Theorem 3.30. Every solution of (3.98) is oscillatory provided that the following con-
ditions hold:

(i) for 1 ≤ i ≤ u,

lim inf
x→0

fi(x)
x

= Si ∈ (0,∞); (3.99)

(ii) for 1 ≤ i ≤ u,

lim inf
m,n→+∞Pi(m,n) = pi > 0; (3.100)

(iii) for 1 ≤ i ≤ u, fi is nondecreasing;
(iv)

u∑

i=1

2ηiSi pi

(
ηi + 1

)ηi+1

η
ηi
i

> 1, where ηi = min
{
ki, li

}
. (3.101)

Proof . Suppose to the contrary that {Am,n} is an eventually positive solution of
(3.98). By Lemma 2.62, limm,n→+∞ Am,n = ζ ≥ 0.
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We assert that ζ = 0. Otherwise, if ζ > 0, then by taking limits on both sides
of (3.98), we have

0 ≥ ζ +
u∑

i=1

pi fi(ζ) > 0, (3.102)

which is a contradiction.
In view of (3.98), we have

2Am+1,n+1

Am,n
− 1 <

Am,n+1 +Am+1,n

Am,n
− 1

= −
u∑

i=1

Pi(m,n)
fi
(
Am−ki ,n−li

)

Am,n

< −
u∑

i=1

Pi(m,n)
fi
(
Am−ηi ,n−ηi

)

Am,n

= −
u∑

i=1

Pi(m,n)
fi
(
Am−ηi ,n−ηi

)

Am−ηi ,n−ηi

Am−ηi ,n−ηi
Am−ηi+1,n−ηi+1

· · · Am−1,n−1

Am,n

= −
u∑

i=1

Pi(m,n)
fi
(
Am−ηi ,n−ηi

)

Am−ηi ,n−ηi

ηi∏

j=1

Am− j,n− j
Am− j+1,n− j+1

(3.103)

for all large m and n. Letting

αm,n = Am,n

Am+1,n+1
, (3.104)

we see that αm,n > 1 for all large m and n, and

2
αm,n

+
u∑

i=1

Pi(m,n)
fi
(
Am−ηi ,n−ηi

)

Am−ηi ,n−ηi

ηi∏

j=1

αm− j,n− j < 1. (3.105)

If {αm,n} is unbounded, there exists a subsequence {αms,nt} such that

lim sup
s,t→+∞

αms−1,nt−1 = +∞. (3.106)

But in view of the assumptions (i) and (ii), the left-hand side of (3.105) will not
be bounded above. This contradiction shows that {αm,n} is bounded above.

We now let ξ = lim infm,n→+∞ αm,n. Then ξ ∈ [1, +∞). Furthermore, from
(3.105), we see that

2
ξ
≤ 1 −

u∑

i=1

piξ
ηiSi, (3.107)
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which implies ξ > 2 and

u∑

i=1

piSi
ξηi+1

ξ − 2
≤ 1. (3.108)

Note that

min
ξ>2

ξηi+1

ξ − 2
= 2ηi

(
ηi + 1

)ηi+1

η
ηi
i

, (3.109)

thus we have

u∑

i=1

piSi2ηi
(
ηi + 1

)ηi+1

η
ηi
i

≤ 1, (3.110)

which is contrary to assumption (iv). The proof is complete. �

Theorem 3.31. Every solution of (3.98) is oscillatory if conditions (i) and (iii) of
Theorem 3.30 hold and for 1 ≤ t ≤ u,

lim sup
m,n→+∞

u∑

t=1

St

m+k0∑

i=m

n+l0∑

j=n
Pt(i, j) > 1, (3.111)

where k0 = min{k1, k2, . . . , ku} and l0 = min{l1, l2, . . . , lu}.

Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(3.98). Then, as in the proof of Theorem 3.30, we have limm,n→+∞ Am,n = 0. Sum-
ming (3.98), we obtain

m+k0∑

i=m

n+l0∑

j=n

(
Ai+1, j + Ai, j+1 − Ai, j

)
+
m+k0∑

i=m

n+l0∑

j=n

u∑

t=1

Pt(i, j) ft
(
Ai−kt , j−lt

) = 0. (3.112)

By Lemma 2.107,

Am,n ≥
m+k0∑

i=m

n+l0∑

j=n

u∑

t=1

Pt(i, j) ft
(
Ai−kt , j−lt

)
. (3.113)

Since fi is monotone, we see that

Am,n ≥
m+k0∑

i=m

n+l0∑

j=n

u∑

t=1

Pt(i, j) ft
(
Am,n

)
(3.114)
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or

m+k0∑

i=m

n+l0∑

j=n

u∑

t=1

Pt(i, j)
ft(Am,n)

Am,n
≤ 1. (3.115)

But this is contrary to (3.111). The proof is complete. �

Now we consider nonlinear partial difference equations of the form

Am−1,n +Am,n−1 − Am,n +
u∑

i=1

Pi(m,n) fi
(
Am+ki ,n+li

) = 0, (3.116)

where Pi(m,n) ≥ 0, ki, li ∈ N0, fi ∈ C(R,R) and x fi(x) > 0 for x �= 0, i =
1, 2, . . . ,u.

Theorem 3.32. Every solution of (3.116) is oscillatory provided that the following
conditions hold:

(i) for 1 ≤ i ≤ u,

lim inf
x→∞

fi(x)
x

= Hi ∈ (0,∞); (3.117)

(ii) for 1 ≤ i ≤ u,

lim inf
m,n→+∞Pi(m,n) = pi > 0; (3.118)

(iii) for 1 ≤ i ≤ u, fi is nondecreasing;

(iv)

u∑

i=1

2riHi pi

(
ri + 1

)ri+1

rrii
> 1, where ri = min

{
ki, li

}
, i = 1, . . . ,u. (3.119)

Proof . Suppose to the contrary, let {Am,n} be an eventually positive solution of
(3.116). Am,n is increasing in m and n. Then we have limm,n→+∞ Am,n = k.

We assert that k = +∞. Otherwise, if k is finite, then by taking limits on both
sides of (3.116) we have

k +
u∑

i=1

pi fi(k) ≤ 0, (3.120)

which is a contradiction.
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In view of (3.116), we have

2Am−1,n−1

Am,n
− 1 <

Am,n−1 + Am−1,n

Am,n
− 1

= −
u∑

i=1

Pi(m,n)
fi
(
Am+ki ,n+li

)

Am,n

< −
u∑

i=1

Pi(m,n)
fi
(
Am+ri,n+ri

)

Am,n
,

(3.121)

for all large m and n. Letting

αm,n = Am,n

Am−1,n−1
, (3.122)

we see that αm,n > 1 for all large m and n. The above inequality leads to

2
αm,n

< 1 −
u∑

i=1

Pi(m,n)
fi
(
Am+ri,n+ri

)

Am+ri,n+ri

ri∏

j=1

αm+ j,n+ j , (3.123)

which implies that {αm,n} is bounded. We now let ξ = lim infm,n→+∞ αm,n. Then
ξ ∈ [1, +∞). Furthermore, from the last inequality, we see that

2
ξ
≤ 1 −

u∑

i=1

piξ
riHi, (3.124)

which implies ξ > 2 and

u∑

i=1

piHi
ξri+1

ξ − 2
≤ 1. (3.125)

Note that

min
ξ>2

ξri+1

ξ − 2
= 2ri

(
ri + 1

)ri+1

rrii
, (3.126)

thus we have

u∑

i=1

piHi2ri
(
ri + 1

)ri+1

rrii
≤ 1, (3.127)

which is contrary to assumption (iv). The proof is complete. �
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Theorem 3.33. Every solution of (3.116) is oscillatory if conditions (i) and (iii) of
Theorem 3.32 hold and

lim sup
m,n→+∞

u∑

t=1

Ht

m∑

i=m−k0

n∑

j=n−l0
Pt(i, j) > 1, (3.128)

where k0 = min{k1, k2, . . . , ku} and l0 = min{l1, l2, . . . , lu}.

The proof is similar to the proof of Theorem 3.31.

3.3.2. Oscillation for the equation with continuous arguments

We consider nonlinear partial difference equations with continuous arguments of
the form

A(x + a, y) + A(x, y + a) − A(x, y) +
m∑

i=1

hi
(
x, y,A

(
x − σi, y − τi

)) = 0,

(3.129)

where hi ∈ C(R+ × R+ × R,R), uhi(x, y,u) > 0 for u �= 0, hi is nondecreasing
in u, a, σi, τi > 0, i = 1, 2, . . . ,m. Let σ = max1≤i≤m{σi}, τ = max1≤i≤m{τi}, σi =
kia + ζi, τi = lia + ξi, where ki, li are nonnegative integers, ζi, ξi ∈ [0, a).

Lemma 3.34. Assume that A(x, y) is an eventually positive solution of (3.129). De-
fine

Z(x, y) = 1
a2

∫ x+a

x

∫ y+a

y
A(u, v)dudv, (3.130)

then Z(x, y) > 0, ∂Z/∂x < 0, ∂Z/∂y < 0 for all large x and y.

Proof . Because A(x, y) is an eventually positive solution of (3.129), Z(x, y)>0
eventually. From (3.129), we have A(x+a, y) +A(x, y+a)−A(x, y) < 0. Therefore

∂Z

∂x
= 1
a2

∫ y+a

y

(
A(x + a, v) − A(x, v)

)
dv < 0. (3.131)

Similarly, ∂Z/∂y < 0 eventually. �

Remark 3.35. Similar to Lemma 3.34, if A(x, y) is an eventually negative solution
of (3.129), then Z(x, y) < 0, ∂Z/∂x > 0, ∂Z/∂y > 0 eventually.
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Theorem 3.36. Every solution of (3.129) is oscillatory provided that the following
conditions hold:

(i) for 1 ≤ i ≤ m,

lim inf
x,y→∞,u→0

hi(x, y,u)
u

= Si ≥ 0,
m∑

i=1

Si > 0; (3.132)

(ii) for 1 ≤ i ≤ m, hi(x, y,u) is convex in u for u ≥ 0 and concave in u for
u < 0;

(iii) one of the following conditions holds:

m∑

i=1

2ηiSi

(
ηi + 1

)ηi+1

η
ηi
i

> 1, ηi = min
{
ki, li

}
> 0, i = 1, . . . ,m; (3.133)

m∑

i=1

Si
kkii

(
ki − 1

)ki−1 > 1 if min
1≤i≤m

{
ki
}
> 0, min

1≤i≤m
{
li
} = 0; (3.134)

m∑

i=1

Si
llii

(
li − 1

)li−1 > 1 if min
1≤i≤m

{
ki
} = 0, min

1≤i≤m
{
li
}
> 0; (3.135)

m∑

i=1

Si > 1 if min
1≤i≤m

{
ki
} = min

1≤i≤m
{
li
} = 0. (3.136)

Proof . Suppose to the contrary that A(x, y) is an eventually positive solution of
(3.129). By Lemma 3.34, limx,y→+∞ Z(x, y) = ζ ≥ 0.

We claim that ζ = 0. It is easy to see that

Z(x + a, y) + Z(x, y + a) − Z(x, y) +
m∑

i=1

hi
(
x, y,Z

(
x − σi, y − τi

)) ≤ 0.

(3.137)

Hence

Z(x + a, y) + Z(x, y + a) − Z(x, y) ≤ 0. (3.138)

If ζ > 0, then by taking limits on both sides of the above inequality, we have
ζ ≤ 0, which is a contradiction. So ζ = 0.
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In view of (3.137), we have

2Z(x + a, y + a)
Z(x, y)

− 1 <
Z(x + a, y) + Z(x, y + a)

Z(x, y)
− 1

≤ −
m∑

i=1

hi
(
x, y,Z

(
x − σi, y − τi

))

Z(x, y)

≤ −
m∑

i=1

hi
(
x, y,Z

(
x − ηia, y − ηia

))

Z(x, y)

= −
m∑

i=1

hi
(
x, y,Z

(
x − ηia, y − ηia

))

Z
(
x − ηia, y − ηia

)

×
ηi∏

j=1

Z(x − ja, y − ja)
Z
(
x − ( j − 1)a, y − ( j − 1)a

) ,

(3.139)

for all large x and y. Let

α(x, y) = Z(x, y)
Z(x + a, y + a)

. (3.140)

Then α(x, y) > 1 for all large x and y. From the above inequality, we have

2
α(x, y)

+
m∑

i=1

hi
(
x, y,Z

(
x − ηia, y − ηia

))

Z
(
x − ηia, y − ηia

)
ηi∏

j=1

α(x − ja, y − ja) < 1. (3.141)

Condition (i) implies that α(x, y) is bounded. We rewrite (3.141) in the form

2 +
m∑

i=1

hi
(
x, y,Z

(
x − ηia, y − ηia

))

Z
(
x − ηia, y − ηia

)
ηi∏

j=1

α(x − ja, y − ja)α(x, y) < α(x, y).

(3.142)

We now let β = lim infx,y→+∞ α(x, y). Then β ∈ [1, +∞). Furthermore, from
(3.142), taking the inferior limit on both sides, we obtain

2 +
m∑

i=1

Siβ
ηiβ ≤ β. (3.143)

Hence

2
β
≤ 1 −

m∑

i=1

Siβ
ηi , (3.144)



166 Oscillations of nonlinear PDEs

which implies β > 2 and

m∑

i=1

Si
βηi+1

β − 2
≤ 1. (3.145)

Note that

min
β>2

βηi+1

β − 2
= 2ηi

(
ηi + 1

)ηi+1

η
ηi
i

, (3.146)

thus we have

m∑

i=1

Si2ηi
(
ηi + 1

)ηi+1

η
ηi
i

≤ 1, (3.147)

which contradicts assumption (3.133).
For min1≤i≤m{ki} > 0 and min1≤i≤m{li} = 0, from (3.137), we have

Z(x + a, y) + Z(x, y + a) − Z(x, y) +
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − τi

)) ≤ 0.

(3.148)

Hence

Z(x + a, y) + Z(x, y + a)
Z(x, y)

− 1

≤ −
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − τi

))

Z(x, y)

= −
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − τi

))

Z
(
x − kia, y − τi

)
Z
(
x − a, y − τi

)

Z(x, y)

ki∏

j=2

Z
(
x − ja, y − τi

)

Z
(
x − ( j − 1)a, y − τi

) .

(3.149)

Since Z(x, y) is decreasing in x and y, so Z(x − a, y − τi)/Z(x, y) > 1, for all large
x and y. The above inequality leads to

Z(x + a, y)
Z(x, y)

+
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − τi

))

Z
(
x − kia, y − τi

)
ki∏

j=2

Z
(
x − ja, y − τi

)

Z
(
x − ( j − 1)a, y − τi

) < 1.

(3.150)

Let α(x, y) = Z(x, y)/Z(x + a, y) > 1. From (3.150), we have

1
α(x, y)

+
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − τi

))

Z
(
x − kia, y − τi

)
ki∏

j=2

α
(
x − ja, y − τi

)
< 1. (3.151)
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(i) implies that α(x, y) is bounded. Let β = lim infx,y→+∞ α(x, y). The above
inequality leads to

1
β
≤ 1 −

m∑

i=1

Siβ
ki−1, (3.152)

which implies that β > 1 and

m∑

i=1

Si
βki

β − 1
≤ 1. (3.153)

Note that

min
β>1

βki

β − 1
= kkii
(
ki − 1

)ki−1 , (3.154)

we obtain

m∑

i=1

Si
kkii

(
ki − 1

)ki−1 ≤ 1, (3.155)

which contradicts (3.134).
The proof of (3.135) is similar to the proof of (3.134). Now we consider the

last case, min1≤i≤m{ki} = min1≤i≤m{li} = 0.
From (3.137),

Z(x + a, y) + Z(x, y + a) − Z(x, y) +
m∑

i=1

hi
(
x, y,Z(x, y)

)

≤ Z(x + a, y) + Z(x, y + a) − Z(x, y) +
m∑

i=1

hi
(
x, y,Z

(
x − σi, y − τi

)) ≤ 0.

(3.156)

Hence

m∑

i=1

hi
(
x, y,Z(x, y)

)

Z(x, y)
− 1 ≤ 0. (3.157)

Taking the inferior limits on the above inequality, we have

m∑

i=1

Si − 1 ≤ 0, (3.158)

which contradicts (3.136). If A(x, y) is an eventually negative solution of (3.129),
we can lead to a contradiction by the similar method as the above. The proof is
complete. �
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Theorem 3.37. Every solution of (3.129) is oscillatory if conditions (i) and (iii) of
Theorem 3.36 hold and

lim sup
x,y→+∞,u→0

m∑

n=1

k0∑

i=0

l0∑

j=0

hn(x + ia, y + ja,u)
u

> 1, (3.159)

where k0 = min{k1, k2, . . . , km} and l0 = min{l1, l2, . . . , lm}.

Proof . Suppose to the contrary, let A(x, y) be an eventually positive solution of
(3.129). Then, as in the proof of Theorem 3.36, we have limx,y→+∞ Z(x, y) = 0 and

Z(x + a, y) + Z(x, y + a) − Z(x, y) +
m∑

i=1

hi
(
x, y,Z

(
x − kia, y − lia

)) ≤ 0.

(3.160)

Summing the above inequality, we obtain

k0∑

i=0

l0∑

j=0

[
Z
(
x + (i + 1)a, y + ja

)
+ Z

(
x + ia, y + ( j + 1)a

)− Z(x + ia, y + ja)
]

+
k0∑

i=0

l0∑

j=0

( m∑

n=1

hn
(
x + ia, y + ja,Z

(
x +

(
i− kn

)
a, y +

(
j − ln

)
a
))
)

≤ 0.

(3.161)

Similar to Lemma 2.107, the above inequality leads to

Z(x, y) ≥
k0∑

i=0

l0∑

j=0

m∑

n=1

hn
(
x + ia, y + ja,Z

(
x +

(
i− kn

)
a, y +

(
j − ln

)
a
))
.

(3.162)

When k0 = 0, we use σn to substitute kna, when l0 = 0, we use τn to substitute lna.
Since hi is nondecreasing in u, we see that

Z(x, y) ≥
k0∑

i=0

l0∑

j=0

m∑

n=1

hn
(
x + ia, y + ja,Z(x, y)

)
, (3.163)

which contradicts (3.159). In the case where A(x, y) is eventually negative, the
proof is similar to the above. The proof is complete. �

Example 3.38. Consider the partial difference equation

A(x+1, y)+A(x, y+1)−A(x, y)+p(x, y)
(
1+A2(x−2, y−1)

)
A(x−2, y−1)=0,

(3.164)
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where

p(x, y) = (y + 2)(y − 1)3

y(y + 1)
(
y2 − 2y + 1 + sin2(πx)

) ,

h(x, y,u) = p(x, y)
(
1 + u2)u.

(3.165)

We see that lim infx,y→∞,u→0(h(x, y,u)/u) = 1 > 0 and

lim sup
x,y→∞, |u|→|b|

h(x, y,u sgnu) = (1 + b2)|b| > 0 for b �= 0; (3.166)

h(x, y,u) is convex as u ≥ 0 and concave as u < 0 and

m∑

i=1

2ηiSi

(
ηi + 1

)ηi+1

η
ηi
i

= 2(1 + 1)1+1 = 8 > 1, (3.167)

so by Theorem 3.36, every solution of (3.164) is oscillatory. In fact, A(x, y) =
sin(πx)/y is an oscillatory solution of (3.164).

3.3.3. Oscillation for the equation with mix nonlinear type

Consider nonlinear partial difference equations of the form

Am+1,n + Am,n+1 − Am,n + pm,n
∣∣Am−k1,n−l1

∣∣α sgnAm−k1,n−l1

+ qm,n
∣
∣Am−k2,n−l2

∣
∣β sgnAm−k2,n−l2 = 0,

(3.168)

where pm,n ≥ 0 and qm,n ≥ 0 onN2
0 , k1 ≥ k2 ≥ 0, l1 ≥ l2 ≥ 0, li, ki ∈ N0 for i = 1, 2,

α ∈ [0, 1), β > 1.
The following inequality will be used to prove the main result of this section.

Lemma 3.39. Let x, y ≥ 0, m,n > 1 and 1/m + 1/n = 1. Then

x

m
+
y

n
≥ x1/my1/n. (3.169)

Define the subset of the positive reals as follows:

E =
{
λ > 0 | 1 − λp

(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n > 0 eventually

}
. (3.170)

Given an eventually positive solution {Am,n} of (3.168), define the subset S(A) of
the positive reals as follows:

S(A)=
{
λ>0 | Am+1,n + Am,n+1−Am,n

(
1−λp(β−1)/(β−α)

m,n q
(1−α)/(β−α)
m,n

)
≤0 eventually

}
.

(3.171)

If λ ∈ S(A), then 1 − λp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n > 0 eventually. Therefore S(A) ⊂ E.
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It is easy to see that condition

lim sup
m,n→∞

p
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n > 0 (3.172)

implies that the set E is bounded.

Theorem 3.40. Assume that
(i) (3.172) holds;

(ii)

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

< 1, (∗)

where η = min{k2, l2} ≥ 1, θ = min{(β− α)/(β− 1), (β− α)/(1 − α)} > 1, M, N
are large integers. Then every solution of (3.168) oscillates.

Proof . Suppose to the contrary, let {Ai, j} be an eventually positive solution of
(3.168). Then Am,n is decreasing in m,n. Hence we have

Am−k1,n−l1 ≥ Am−k2,n−l2 ,

Am+1,n + Am,n+1 − Am,n + pm,nA
α
m−k2,n−l2 + qm,nA

β
m−k2,n−l2 ≤ 0.

(3.173)

By Lemma 3.39, we have

pm,nA
α
m−k2,n−l2 + qm,nA

β
m−k2,n−l2 ≥ θp

(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−k2,n−l2 . (3.174)

From (3.173) and (3.174), we obtain

Am+1,n + Am,n+1 − Am,n + θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−k2,n−l2 ≤ 0, (3.175)

thus we have

Am+1,n + Am,n+1 − Am,n + θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am,n ≤ 0, (3.176)

so

0 < Am+1,n + Am,n+1 ≤
(

1 − θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n, (3.177)

which implies that S(A) is nonempty. Let μ ∈ S(A), then

Am+1,n ≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n (3.178)
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and so

Am,n ≤
m−1∏

i=m−k2

(
1 − μp

(β−1)/(β−α)
i,n q

(1−α)/(β−α)
i,n

)
Am−k2,n. (3.179)

Similarly, we have

Am,n+1 ≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n (3.180)

and so

Am,n ≤
n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
m, j q

(1−α)/(β−α)
m, j

)
Am,n−l2 . (3.181)

Hence

Al2m,n ≤ Am,n−1 · · ·Am,n−l2 ≤
n−1∏

j=n−l2

m−1∏

i=m−k2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
Al2m−k2,n−l2 .

(3.182)

Similarly, we have

Ak2
m,n ≤

m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
Ak2
m−k2,n−l2 . (3.183)

Combining (3.182) and (3.183), we obtain

Am,n ≤
{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

Am−k2,n−l2 . (3.184)

Substituting (3.184) into (3.175), we obtain

Am+1,n+Am,n+1−Am,n

{

1−θp(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

×
[ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
]−1/η}

≤ 0,

(3.185)

which implies that

θ

{

sup
m≥M,n≥N

[ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
]1/η}−1

∈ S(A).

(3.186)
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From condition (ii), there exists γ ∈ (0, 1) such that

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
}1/η

≤ γ < 1.

(3.187)

Hence

{

sup
m≥M,n≥N

[ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)]1/η}−1

≥ μ

γ
, (3.188)

so that μ/γ ∈ S(A). By induction, μ/γr ∈ S(A), r = 1, 2, . . .. This contradicts the
boundedness of S(A). The proof is complete. �

From Theorem 3.40, we can derive an explicit oscillation criterion.

Corollary 3.41. Assume that

lim inf
m,n→∞

1
k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j >

θaa

(1 + a)1+a
, (3.189)

where a = max{k2, l2}. Then every solution of (3.168) is oscillatory.

Proof . Let g(λ) = λ(1 − cλ)a for λ > 0, c > 0. Then

max
λ>0

g(λ) = aa

c(1 + a)1+a
. (3.190)

Set

c = 1
k2 l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j . (3.191)

Since

{

1 − λ

k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

}a

≥
{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

,

(3.192)
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we obtain

1 > θ
aa

(1 + a)1+a

{
1
k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

}−1

≥ λθ

(

1 − λ

k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)a

≥ λθ

{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

.

(3.193)

Then the conclusion follows from Theorem 3.40. �

Example 3.42. Consider the equation

Am+1,n +Am,n+1 − Am,n + pm,n
∣
∣Am−4,n−2

∣
∣α sgnAm−4,n−2

+ qm,n
∣
∣Am−1,n−1

∣
∣β sgnAm−1,n−1 = 0,

(3.194)

where α = 1/8, β = 9/8, pm,n = e−(7/8)n−5/4(e − 1) ≥ 0, qm,n = e(1/8)n−9/8 ≥ 0,
θ = min{(β− α)/(β− 1), (β− α)/(1 − α)} = 8/7, and a = max{k2, l2} = 1, so

lim inf
m,n→∞

1
k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j = (e − 1)1/8e−73/64>

θaa

(1 + a)1+a
= 2

7
.

(3.195)

Hence every solution of (3.194) oscillates. In fact, e−n sin(π/2)m is an oscillatory
solution.

If qm,n ≡ 0, (3.168) becomes the sublinear equation

Am+1,n + Am,n+1 − Am,n + pm,n
∣
∣Am−k,n−l

∣
∣α sgnAm−k,n−l = 0, (3.196)

where 0 < α < 1.

Theorem 3.43. Assume that pm,n ≥ 0 and

∞∑

(i, j)=(m,n)

pi, j = ∞. (3.197)

Then every solution of (3.196) oscillates.

Proof . Suppose {Am,n} is an eventually positive solution of (3.196). Then Am,n is
decreasing in m, n eventually. Hence Am,n → L ≥ 0 as m,n→∞.
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Summing (3.196) in n from n(≥ N) to ∞, we have

∞∑

i=n
Am+1,i − Am,n +

∞∑

i=n
pm,iA

α
m−k,i−l ≤ 0, (3.198)

we rewrite the above equation in the form

∞∑

i=n+1

Am+1,i + Am+1,n − Am,n +
∞∑

i=n
pm,iA

α
m−k,i−l ≤ 0. (3.199)

Summing (3.199) in m from m(≥M) to ∞, we obtain

−Am,n +
∞∑

j=m

∞∑

i=n+1

Aj+1,i +
∞∑

j=m

∞∑

i=n+1

pj,iA
α
j−k,i−l ≤ 0. (3.200)

Thus

Am,n ≥
∞∑

j=m

∞∑

i=n
pj,iA

α
j−k,i−l, (3.201)

which contradicts (3.197) if L > 0.
If L = 0, then from (3.197), we can see that

∞ =
∞∑

(i, j)=(m,n)

pi, j ≤
∞∑

(i, j)=(m,n)

pi, j
Aαi−k, j−l
Aαi, j

≤
∞∑

(i, j)=(m,n)

Ai, j
Aαi, j

=
∞∑

(i, j)=(m,n)

A1−α
i, j .

(3.202)

Note that γ = 1 − α, then 0 < γ < 1. Notice that

Ai, j > Ai+1, j + Ai, j+1 > Ai+1, j+1 + Ai+1, j+1 = 2Ai+1, j+1, (3.203)

we can get Ai+1, j+1 < (1/2)Ai, j . Thus

∞∑

(i, j)=(m,n)

A1−α
i, j =

∞∑

(i, j)=(m,n)

A
γ
i, j =

∞∑

i=m

∞∑

k=0

A
γ

i+k,n+k
+

∞∑

j=n+1

∞∑

k=0

A
γ

m+k, j+k

<
∞∑

i=m

2γ

2γ − 1
A
γ
i,n +

∞∑

j=n+1

2γ

2γ − 1
A
γ
m, j .

(3.204)

So, if we can show that
∑∞

i=m A
γ
i,n and

∑∞
j=n+1 A

γ
m, j converge, the conclusion can be

drew naturally.
We only discuss the series

∑∞
j=n+1 A

γ
m, j and the next case is similar.
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Note that J j = { j ∈ Z | Am, j+1 ≤ A
γ

m, j < Am, j} for j = n,n + 1, . . .. We can

see for all j = n,n + 1, . . . , J is finite. Let J1 = max j≥n |J j|, where |Ji| denotes the
number of the elements in it, and j1 = min{ j | j ∈ Jn}, so

∞∑

j=n
A
γ
m, j ≤ J1

∞∑

j= j1
Am, j +

j1−1∑

j=n
A
γ
m, j . (3.205)

Then the series
∑∞

j=n A
γ
m, j converges to a constant according to (3.200), which con-

tradicts to (3.202).
If pm,n ≡ 0, (3.168) becomes the superlinear equation

Am+1,n + Am,n+1 − Am,n + qm,n
∣∣Am−k2,n−l2

∣∣β sgnAm−k2,n−l2 = 0, (3.206)

where β > 1. �

Theorem 3.44. If

0 < qm,n ≤ kk2
2 l

l2
2

(
k2 + l2 + 1

)k2+l2+1 , (3.207)

then (3.206) has an eventually positive solution.

In fact, Theorem 3.44 follows from Theorem 3.7.
In the following, the result of Theorem 3.40 will be improved.

Theorem 3.45. Assume that (i) holds and

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − θp

(β−1)/(β−α)
i+η, j+η q

(1−α)/(β−α)
i+η, j+η

− λp
(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

< 1,

(3.208)

where η = min{k2, l2}. Then every solution of (3.168) is oscillatory.

Proof . Suppose to the contrary, let {Ai, j} be an eventually positive solution of
(3.168). As in the proof of Theorem 3.40, set μ ∈ S(A). Then

Am+1,n + Am,n+1 ≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n. (3.209)

Hence

Am+1,n ≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n − Am,n+1

≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n

)
Am,n − Am+η,n+η.

(3.210)
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From (3.174), we have

θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−η,n−η ≤ θp

(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−k2,n−l2 ≤ Am,n.

(3.211)

Substituting (3.211) into (3.210), we obtain

Am+1,n ≤
(

1 − μp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n − θp

(β−1)/(β−α)
m+η,n+η q

(1−α)/(β−α)
m+η,n+η

)
Am,n.

(3.212)

By the similar argument of the proof of Theorem 3.40, we can derive

Am,n ≤
{ m−1∏

i=m−k2

n−1∏

j=n−l2

(
1 − μp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

− θp
(β−1)/(β−α)
i+η, j+η q

(1−α)/(β−α)
i+η, j+η

)}1/η

Am−k2,n−l2 .

(3.213)

Replacing (3.184) by (3.213), the rest of the proof is exactly the same with the
proof of Theorem 3.40. The proof is complete. �

Corollary 3.46. Assume that (i) holds and

lim inf
m,n→∞

1
k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j > θ

aa

(1 + a)1+a
(1 − bθ)a+1,

(3.214)

where

lim inf
m,n→∞

1
k2l2

m−1∑

i=m−k2

n−1∑

j=n−l2
p

(β−1)/(β−α)
i+η, j+η q

(1−α)/(β−α)
i+η, j+η = b. (3.215)

Then every solution of (3.168) oscillates.

The main idea of Theorem 3.45 is to improve the estimation (3.184). There-
fore this method is also available for the linear equation

Am+1,n +Am,n+1 − Am,n + pm,nAm−k,n−l = 0. (3.216)

Theorem 3.47. Assume that η = min{k, l}, lim supm,n→∞ pm,n > 0, and

sup
λ∈E,m≥M,n≥N

λ

{ m−1∏

i=m−k

n−1∏

j=n−l

(
1 − λpi, j − pi+η, j+η

)
}1/η

< 1. (3.217)

Then every solution of (3.216) oscillates.



Nonlinear PDEs with variable coefficients 177

Corollary 3.48. If (3.217) is replaced by

lim inf
m,n→∞

1
kl

m−1∑

i=m−k

n−1∑

j=n−l
pi, j > (1 − d)1+a aa

(1 + a)1+a
, (3.218)

where a = max{k, l} and

d = lim inf
m,n→∞

1
kl

m−1∑

i=m−k

n−1∑

j=n−l
pi+η, j+η. (3.219)

Then every solution of (3.216) oscillates.

Remark 3.49. Equations (3.217) and (3.218) improve the corresponding results in
Chapter 2.

Remark 3.50. If k1 ≥ k2 ≥ 0 and 0 ≤ l1 ≤ l2, then (3.174) becomes

Am+1,n + Am,n+1 − Am,n + θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−k2,n−l1 ≤ 0, (3.220)

(ii) becomes

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k2

n−1∏

j=n−l1

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)
}1/η

< 1, (3.221)

where η = min{k2, l1}. Then Theorem 3.40 is also true.
Similarly, we can easily derive the form of Theorem 3.40 for the case that 0 ≤

k1 ≤ k2 and l1 ≥ l2 ≥ 0.
If 0 ≤ k1 ≤ k2 and 0 ≤ l1 ≤ l2, then (3.174) becomes

Am+1,n + Am,n+1 − Am,n + θp
(β−1)/(β−α)
m,n q

(1−α)/(β−α)
m,n Am−k1,n−l1 ≤ 0, (3.222)

and (ii) becomes

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k1

n−1∏

j=n−l1

(
1 − λp

(β−1)/(β−α)
i, j q

(1−α)/(β−α)
i, j

)}1/η

< 1, (3.223)

where η = min{k1, l1}. Then Theorem 3.40 is also true.

Example 3.51. Consider the equation

Am+1,n + Am,n+1 − Am,n + Am−1,n−2 = 0, (3.224)

we can see that (3.218) is satisfied, so every solution of this equation oscillates. In
fact, sin(π/2)m is an oscillatory solution.
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Next, we consider (3.168) when k2 = 0, l2 > 0 or k2 > 0, l2 = 0 and we can get
the following conclusion.

Theorem 3.52. If k2 = 0, l2 > 0 in (3.168). Assume that (3.172) holds and

sup
λ∈E,m≥M,n≥N

λθ
n−1∏

j=n−l2

(
1 − λp

(β−1)/(β−α)
m, j q

(1−α)/(β−α)
m, j

)
< 1. (3.225)

Then every solution of (3.168) oscillates.

From (3.225), we can drive an explicit oscillation condition.

Corollary 3.53. Assume that k2 = 0, l2 > 0 in (3.168). Further assume that (3.172)
holds and

lim inf
m,n→∞

1
l2

n−1∑

j=n−l2
p

(β−1)/(β−α)
m, j q

(1−α)/(β−α)
m, j >

θll22
(
1 + l2

)1+l2
. (3.226)

Then every solution of (3.168) oscillates.

When k2 > 0, l2 = 0, the similar conclusion holds, we omit it in detail here.
By using the inequality

u∑

i=1

αixi ≥
u∏

i=1

xαii , (3.227)

where αi > 0,
∑u

i=1 αi = 1, xi ≥ 0, i = 1, 2, . . . ,u, we can consider the partial
difference equation with several nonlinear terms of the form

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

Pi(m,n)
∣∣Am−ki,n−li

∣∣αi sgnAm−ki,n−li = 0, (3.228)

where αu > αu−1 > · · · > αk > 1 > αk−1 > · · · > α1 > 0, Pi(m,n) ≥ 0,
i = 1, 2, . . . ,u on N2

0 , ki, li ∈ N0, i = 1, 2, . . . ,u.

Theorem 3.54. Assume that there exist a1 > 0, a2 > 0, . . . , au > 0 such that
∑u

i=1 ai =
1,
∑u

i=1 aiαi = 1,

lim sup
m,n→∞

u∏

i=1

Paii (m,n) > 0,

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k

n−1∏

j=n−l

(

1 − λ
u∏

h=1

Pahh (i, j)

)}1/η

< 1,

(3.229)
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where k = min1≤i≤u{ki}, l = min1≤i≤u{li}, η = min{k, l} ≥ 1, θ = min{1/a1, . . . ,
1/au},

E =
{

λ > 0 | 1 − λ
u∏

h=1

Pahh (m,n) > 0 eventually

}

, (3.230)

M, N are large integers. Then every solution of (3.228) oscillates.

Proof . Suppose to the contrary, let {Ai, j} be an eventually positive solution of
(3.228). Then Am,n is decreasing in m, n. Hence

Am−ki ,n−li > Am−k,n−l, i = 1, 2, . . . ,u. (3.231)

From (3.227), we have

Am+1,n + Am,n+1 − Am,n +
u∑

i=1

Pi(m,n)Aαi
m−k,n−l ≤ 0. (3.232)

Using (3.227) and (3.232), we have

Am+1,n + Am,n+1 − Am,n + θ
u∏

i=1

Paii (m,n)Am−k,n−l ≤ 0. (3.233)

The rest of the proof is similar to those in Theorem 3.40. We omit it in detail. The
proof is complete. �

For example, we consider the case u = 3, α3 > 1 > α2 > α1 > 0. Let

a1 = α3 − 1
2
(
α3 − α1

) , a2 = α3 − 1
2
(
α3 − α2

) ,

a3 =
2
(
1 − α2

)(
α3 − α1

)
+
(
α3 − 1

)(
α2 − α1

)

2
(
α3 − α1

)(
α3 − α2

) .

(3.234)

Then ai > 0, i = 1, 2, 3,
∑3

i=1 ai = 1,
∑u

i=1 αiai = 1.

Theorem 3.55. Assume that

lim sup
m,n→∞

3∏

i=1

Paii (m,n) > 0, (3.235)

sup
λ∈E,m≥M,n≥N

λθ

{ m−1∏

i=m−k

n−1∏

j=n−l

(

1 − λ
3∏

h=1

Pahh (i, j)

)}1/η

< 1, (3.236)
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where k = min{k1, k2, k3}, l = min{l1, l2, l3}, η = min{k, l} ≥ 1, θ = min{1/a1,
1/a2, 1/a3}, M, N are large integers and

E =
{

λ > 0 | 1 − λ
3∏

i=1

Pahh (i, j) > 0 eventually

}

. (3.237)

Then every solution of the equation

Am+1,n + Am,n+1 − Am,n +
3∑

i=1

Pi(m,n)
∣∣Am−ki,n−li

∣∣αi sgnAm−ki ,n−li = 0 (3.238)

is oscillatory.

From (3.236), we can obtain the following explicit oscillation criterion.

Corollary 3.56. Assume that (3.235) holds. Further, assume that

lim inf
m,n→∞

1
k3l3

m−1∑

i=m−k

n−1∑

n−l
Pa1

1 (i, j)Pa2
2 (i, j)Pa3

3 (i, j) >
θaa

(1 + a)1+a
, (3.239)

where a = max{k, l} ≥ 1. Then every solution of (3.238) oscillates.

3.4. Existence of oscillatory solutions of certain nonlinear PDEs

Consider the partial difference equation

ΔhmΔ
r
n

(
xm,n − cxm−k,n−l

)
+ f

(
m,n, xm−τ,n−σ

) = 0, m,n ∈ N0, (3.240)

where c �= 0 is a real constant, h, r, k, l ∈ N1, τ, σ ∈ N , Δ is the forward dif-
ference operator defined by Δmxm,n = xm+1,n − xm,n, Δnxm,n = xm,n+1 − xm,n and
Δhmxm,n = Δm(Δh−1

m xm,n), Δ0
mxm,n = xm,n, Δrnxm,n = Δn(Δr−1

n xm,n), Δ0
nxm,n = xm,n,

f ∈ C(N0 × N0 × R,R). Throughout the section, we assume that there exists a
continuous function F : N0 ×N0 × [0,∞) → [0,∞) such that F(m,n,u) is nonde-
creasing in u and

∣
∣ f (m,n,u)

∣
∣ ≤ F

(
m,n, |u|), (m,n,u) ∈ N0 ×N0 × R. (3.241)
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A solution of (3.240) is a real double sequence defined for all (m,n) ∈ {(m,n) |
m ≥ min{M − k,M − τ}, n ≥ min{N − l,N − σ}} and satisfying (3.240) for all
(m,n) ∈ {(m,n) | m ≥M, n ≥ N}, where M,N ∈ N0.

The definition of oscillatory solutions of (3.240) is same with Chapter 2.
Let X be the linear space of all bounded real sequences x = {xm,n}, m ≥ M,

n ≥ N endowed with the usual norm

‖x‖ = sup
m≥M,n≥N

∣
∣xm,n

∣
∣, (3.242)

then X is a Banach space.
Let Ω be a subset of Banach space X . Ω is relatively compact if every sequence

in Ω has a subsequence converging to an element of X . An ε-net for Ω is a set of
elements of X such that each x in Ω is within a distance ε of some member of the
net. A finite ε-net is an ε-net consisting of a finite number of the elements.

Lemma 3.57. A subset Ω of a Banach space X is relatively compact if and only if for
each ε > 0, it has a finite ε-net.

Definition 3.58. A set Ω of Banach space X is uniformly Cauchy if for every ε > 0
there exist positive integers M1 and N1 such that for any x = {xm,n} in Ω

∣∣xm,n − xm′,n′
∣∣ < ε, (3.243)

whenever (m,n) ∈ D′, (m′,n′) ∈ D′, where D′ = D′
1 ∪D′

2 ∪D′
3,

D′
1 =

{
(m,n) | m > M1, n > N1

}
, D′

2 =
{

(m,n) |M ≤ m ≤M1, n > N1
}

,

D′
3 =

{
(m,n) | m > M1, N ≤ n ≤ N1

}
.

(3.244)

Lemma 3.59 (Discrete Arzela-Ascoli’s theorem). A bounded, uniformly Cauchy
subset Ω of X is relatively compact.

Proof . By Lemma 3.57, it suffices to construct a finite ε-net for any ε > 0. We
know that for any ε > 0, there are integers M1 and N1 such that for any x ∈ Ω

∣
∣xm,n − xm′,n′

∣
∣ <

ε
2

for (m,n) ∈ D′, (m′,n′) ∈ D′. (3.245)

Let K be a bound of Ω, that is, ‖x‖ ≤ K , x ∈ Ω. Choose an integer L and real
numbers y1 < y2< · · · < yL such that y1 = −K , yL = K and

∣∣yi+1 − yi
∣∣ <

ε
2

, i = 1, 2, . . . ,L− 1. (3.246)
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We define a double sequence v = {vm,n}, m ≥ M, n ≥ N as follows: let vm,n be
one of the values {y1, y2, . . . , yL} for M ≤ m ≤ M1, N ≤ n ≤ N1; let vm,n =
vm,N1 for (m,n) ∈ D′

2; let vm,n = vM1,n for (m,n) ∈ D′
3; let vm,n = vM1,N1 for

(m,n) ∈ D′
1. Clearly, the double sequence v = {vm,n}, m ≥ M, n ≥ N belongs to

X . Let Y be the set of all double sequences v defined as above. Note that Y includes
L(M1−M+1)(N1−N+1) such double sequences.

We claim that Y is a finite ε-net for Ω. For any x in Ω, we must show that
Y contains a double sequence v which differs from x by less than ε at all positive
integer pairs (m,n), m ≥ M, n ≥ N . For each M ≤ m ≤ M1, N ≤ n ≤ N1, choose
vm,n in {y1, y2, . . . , yL} such that

∣
∣xm,n − vm,n

∣
∣ = min

1≤ j≤L

∣
∣xm,n − yj

∣
∣. (3.247)

Let

vm,n = vm,N1 , (m,n) ∈ D′
2,

vm,n = vM1,n, (m,n) ∈ D′
3,

vm,n = vM1,N1 , (m,n) ∈ D′
1.

(3.248)

Hence, v = {vm,n}, m ≥ M, n ≥ N belongs to Y . In view of (3.246) and (3.247),
we have

∣
∣xm,n − vm,n

∣
∣ <

ε
2

, M ≤ m ≤M1, N ≤ n ≤ N1. (3.249)

For (m,n) ∈ D′
2, (3.241) and (3.249) imply that

∣
∣xm,n − vm,n

∣
∣ = ∣∣xm,n − vm,N1

∣
∣ ≤ ∣∣xm,n − xm,N1

∣
∣ +

∣
∣xm,N1 − vm,N1

∣
∣ < ε.

(3.250)

For (m,n) ∈ D′
3, (3.241) and (3.249) imply that

∣
∣xm,n − vm,n

∣
∣ = ∣∣xm,n − vM1,n

∣
∣ ≤ ∣∣xm,n − xM1,n

∣
∣ +

∣
∣xM1,n − vM1,n

∣
∣ < ε.

(3.251)
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For (m,n) ∈ D′
1, (3.241) and (3.249) imply that

∣
∣xm,n − vm,n

∣
∣ = ∣∣xm,n − vM1,N1

∣
∣ ≤ ∣∣xm,n − xM1,N1

∣
∣ +

∣
∣xM1,N1 − vM1,N1

∣
∣ < ε.

(3.252)

Equations (3.249), (3.250), (3.251), and (3.252) imply that ‖v−x‖ < ε. The proof
is complete. �

From the above we obtain the following Schauder’s fixed point theorem for
the difference equations.

Lemma 3.60. Suppose X is a Banach space and Ω is a closed, bounded, and convex
subset of Ω. Suppose T is a continuous mapping such that T(Ω) is contained in Ω,
and suppose that T(Ω) is uniformly Cauchy. Then T has a fixed point in Ω.

Theorem 3.61. Suppose c ∈ (0, 1] and there exist constants a > 0, b > 0 and d > 0
such that

∞∑

i=1

∞∑

j=1

c−(1/2)(i/k+ j/l)ih+a jr+bF
(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <∞. (3.253)

Then (3.240) has a bounded oscillatory solution {xm,n} such that

xm,n = K1c
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.254)

where K1 is some constant.

Proof . By (3.253), we can choose positive integersM,N sufficiently large such that

∞∑

i=M

∞∑

j=N
c−(1/2)(i/k+ j/l)ih+a jr+bF

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <

d

3
(3.255)

and so that

M = min{M − k,M − τ}, N = min{N − l,N − σ} (3.256)

satisfy

1
ak
M

−a
< 1,

1
bl
N

−b
< 1. (3.257)
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For every pair of positive integers p, q ∈ N , we define a set Sp,q by

Sp,q =
{

(i, j) | i, j ∈ N , i ≥ p, j ≥ q
}
. (3.258)

Let X be the linear space of all bounded real sequences x = {xm,n}, m ≥M, n ≥ N
endowed with the usual norm

‖x‖ = sup
m≥M,n≥N

∣∣xm,n
∣∣, (3.259)

and let

Ω =
{
x ∈ X | ∣∣xm,n

∣
∣ ≤ d

3
c(1/2)(m/k+n/l)m−(1+a)n−(1+b), m ≥M, n ≥ N

}

(3.260)

with the topology of pointwise convergence, that is, if {xu}, u = 1, 2, . . . is a se-
quence of elements in Ω, then {xu} converges to x in Ω means that for every
(m,n) ∈ SM,N , limu→∞ xum,n = xm,n. Thus Ω is a closed, bounded, and convex
subset.

For every x ∈ Ω, we associate the function x : SM,N → R defined by

xm,n = d

3
c(1/2)(m/k+n/l) cos

2π
k
m cos

2π
l
n−

∞∑

i, j=1,i= j
c−(1/2)(i+ j)xm+ik,n+ jl . (3.261)

Notice that

∣
∣∣
∣
∣

∞∑

i, j=1,i= j
c−(1/2)(i+ j)xm+ik,n+ jl

∣
∣∣
∣
∣

≤
∞∑

i=1

∞∑

j=1

c−(1/2)(i+ j) d

3
c(1/2)((m+ik)/k+(n+ jl)/l)(m + ik)−(1+a)(n + jl)−(1+b)

≤ d

3
c(1/2)(m/k+n/l)m

−a

ak

n−b

bl
,

(3.262)

for m ≥M, n ≥ N .
Thus we see that for each x ∈ Ω, x is oscillatory, and moreover,

xm,n − cxm−k,n−l = xm,n,
∣∣xm,n

∣∣ ≤ dc(1/2)(m/k+n/l). (3.263)
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Define an operator L : Ω→ Ω by

Lxm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)h+r+1

(h− 1)!(r − 1)!

×
∞∑

i=m

∞∑

j=n
(i−m + h− 1)(h−1)( j − n + r − 1)(r−1)

× f
(
i, j, xi−τ, j−σ

)
, m ≥M, n ≥ N ,

LxM,N , otherwise,
(3.264)

where n(m) denotes the generalized factorial given by n(m) = n(n−1) · · · (n−m+1).

Claim 1. L(Ω) ⊂ Ω. For every x ∈ Ω and m ≥M, n ≥ N , we have

∣∣Lxm,n
∣∣ ≤ 1

(h− 1)!(r − 1)!

×
∞∑

i=m

∞∑

j=n
(i−m + h− 1)(h−1)( j − n + r − 1)(r−1) × ∣∣ f (i, j, xi−τ, j−σ

)∣∣

≤
∞∑

i=m

∞∑

j=n
ih−1 jr−1F

(
i, j,

∣
∣xi−τ, j−σ

∣
∣)

≤
∞∑

i=m

∞∑

j=n
ih−1 jr−1F

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l))

≤ m−(1+a)n−(1+b)
∞∑

i=m

∞∑

j=n
ih+a jr+bc−(1/2)(i/k+ j/l)F

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l))

≤ d

3
c(1/2)(m/k+n/l)m−(1+a)n−(1+b).

(3.265)

Claim 2. If {xu} converges to x in Ω, then for each pair of integers s ≥ M, t ≥ N ,
we have limu→∞ xus,t = xs,t. For every ε > 0, there exist positive integers M1, N1 with
M1 = N1 such that

d

3

∞∑

i, j=M1+1, i= j
(s + ik)−(1+a)(t + jl)−(1+b) <

ε

4
. (3.266)



186 Oscillations of nonlinear PDEs

For these ε and M1, N1, there exists a positive integer N∗ such that for every u ≥
N∗ and every i ∈ {s, s + k, . . . , s + (M1 − 1)k, s + M1k}, j ∈ {t, t + l, . . . , t + (N1 −
1)l, t +N1l}, we have

∣
∣xui, j − xi, j

∣
∣ ≤ ε

2M1N1
c(1/2)(M1+N1). (3.267)

Then for every u ≥ N∗, we see that

∣
∣xus,t − xs,t

∣
∣ =

∣∣
∣
∣
∣

∞∑

i, j=1, i= j
c−(1/2)(i+ j)(xus+ik,t+ jl − xs+ik,t+ jl

)
∣∣
∣
∣
∣

≤
∣
∣
∣∣
∣

M1∑

i, j=1, i= j
c−(1/2)(i+ j)(xus+ik,t+ jl − xs+ik,t+ jl

)
∣
∣
∣∣
∣

+

∣
∣
∣∣
∣

∞∑

i, j=M1+1, i= j
c−(1/2)(i+ j)(xus+ik,t+ jl − xs+ik,t+ jl

)
∣
∣
∣∣
∣

≤
M1∑

i, j=1, i= j
c−(1/2)(M1+N1)

∣
∣xus+ik,t+ jl − xs+ik,t+ jl

∣
∣

+ 2
∞∑

i, j=M1+1, i= j

d

3
c(1/2)(s/k+t/l)(s + ik)−(1+a)(t + jl)−(1+b) < ε.

(3.268)

Claim 3. L is a continuous operator. Suppose {xu} converges to x in Ω. We will
prove that Lxu converges to Lx in Ω, that is, for every m ≥ M, n ≥ N , we claim
that limu→∞ Lxum,n = Lxm,n. Let ε > 0 be given. By (3.245), there exist M2 ≥ M,
N2 ≥ N such that

∞∑

i=M2+1

∞∑

j=n
ih−1 jr−1F

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <

ε

6
,

∞∑

i=m

∞∑

j=N2+1

ih−1 jr−1F
(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <

ε

6
.

(3.269)

Since f is continuous on {M,M + 1, . . . ,M2} × {N ,N + 1, . . . ,N2} × [−d,d], f
is also uniformly continuous there. From Claim 2, there exists a positive integer
N∗∗ such that for every u ≥ N∗∗, and every i ∈ {M,M + 1, . . . ,M2 − 1,M2},
j ∈ {N ,N + 1, . . . ,N2 − 1,N2}, we have

∣∣ f
(
i, j, xui−τ, j−σ

)− f
(
i, j, xi−τ, j−σ

)∣∣ <
ε

3

( M2∑

i=M

N2∑

j=N
ih−1 jr−1

)−1

. (3.270)
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Then, for every u ≥ N∗∗, we have

∣
∣Lxum,n − Lxm,n

∣
∣ ≤

∞∑

i=m

∞∑

j=n
ih−1 jr−1

∣
∣ f (i, j, xui−τ, j−σ

)− f
(
i, j, xi−τ, j−σ

)∣∣

≤
M2∑

i=m

N2∑

j=n
ih−1 jr−1

∣
∣ f
(
i, j, xui−τ, j−σ

)− f
(
i, j, xi−τ, j−σ

)∣∣

+ 2

( ∞∑

i=M2+1

∞∑

j=n
ih−1 jr−1F

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l))

+
∞∑

i=m

∞∑

j=N2+1

ih−1 jr−1F
(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l))

)

< ε.

(3.271)

Claim 4. L(Ω) is uniformly Cauchy. The proof is similar to Claim 3, so we omit it
here.

Now, by Lemma 3.60, L has a fixed point w ∈ Ω, that is,

wm,n = (−1)h+r+1

(h− 1)!(r − 1)!

×
∞∑

i=m

∞∑

j=n
(i−m + h− 1)(h−1)( j − n + r − 1)(r−1) f

(
i, j,wi−τ, j−σ

)
.

(3.272)

Since

wm,n − cwm−k,n−l = wm,n, (3.273)

we have

ΔhmΔ
r
n

(
wm,n − cwm−k,n−l

)
+ f

(
m,n,wm−τ,n−σ

) = 0, (3.274)

which implies that {wm,n} is an oscillatory solution of (3.240). From (3.261), wm,n

satisfies (3.254). The proof is complete. �

Theorem 3.62. Let c > 1. If there exist constants a > 0, b > 0 and d > 0 such that

∞∑

i=1

∞∑

j=1

ih+a jr+bF
(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <∞, (3.275)
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then (3.240) has an unbounded oscillatory solution {xm,n} such that

xm,n = K2c
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.276)

where K2 is a constant.

Proof . By the assumption, we can choose positive integers M, N large enough so
that

∞∑

i=M

∞∑

j=N
ih+a jr+bF

(
i, j,dc(1/2)((i−τ)/k+( j−σ)/l)) <

d

3
c(1/2)(m/k+n/l) (3.277)

and so that

M = min{M − k,M − τ}, N = min{N − l,N − σ} (3.278)

satisfy

1
ak
M

−a
< 1,

1
bl
N

−b
< 1. (3.279)

Let Ω be defined as in the proof of Theorem 3.61. For each x ∈ Ω, define x by

xm,n = d

3
c(1/2)(m/k+n/l) cos

2π
k
m cos

2π
l
n +

∞∑

i, j=0, i= j
c−(1/2)(i+ j)xm+ik,n+ jl . (3.280)

Thus we can prove that xm,n is oscillatory, xm,n − (1/c)xm+k,n+l = xm,n and |xm,n| <
dc(1/2)(m/k+n/l).

Next define an operator L : Ω→ Ω by

Lxm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (−1)h+r+1

c(h− 1)!(r − 1)!

×
∞∑

i=m+k

∞∑

j=n+l

(i−m− k + h− 1)(h−1)

×( j − n− l + r − 1)(r−1)

× f
(
i, j, xi−τ, j−σ

)
, m ≥M, n ≥ N ,

0, otherwise.
(3.281)

The remainder of the proof is similar to the proof of Theorem 3.61 and we omit
the details here. �
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Theorem 3.63. Suppose c < 0 and let λ = −c > 0. If there exist constants a > 0,
b > 0, and d > 0 such that

∞∑

i=1

∞∑

j=1

ih+a jr+bF
(
i, j,dλ(1/2)((i−τ)/k+( j−σ)/l)) <∞, (3.282)

then (3.240) has an oscillatory solution {xm,n} such that

xm,n = K3λ
(1/2)(m/k+n/l)

(
cos

π

k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.283)

or

xm,n = K4λ
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

π

l
n + o(1)

)
as m,n �→∞, (3.284)

where K3 and K4 are constants.

In fact, we define

xm,n = d

3
λ(1/2)(m/k+n/l) cos

π

k
m cos

2π
l
n−

∞∑

i, j=1, i= j
(−λ)−(1/2)(i+ j)xm+ik,n+ jl,

(3.285)

or

xm,n = d

3
λ(1/2)(m/k+n/l) cos

2π
k
m cos

π

l
n−

∞∑

i, j=1,i= j
(−λ)−(1/2)(i+ j)xm+ik,n+ jl,

(3.286)

thus it satisfies xm,n + λxm−k,n−l = xm,n, define an operator L : Ω → Ω as Theorem
3.61, we can prove Theorem 3.63.

As an application of the above results, we consider the following equation:

ΔhmΔ
r
n

(
xm,n − cxm−k,n−l

)
+ pm,nxm−τ,n−σ = qm,n, (3.287)

where pm,n and qm,n are positive real double sequences. Let f (m,n, xm−τ,n−σ) =
pm,nxm−τ,n−σ−qm,n. From Theorems 3.61–3.63, we obtain the following corollaries.

Corollary 3.64. Suppose c ∈ (0, 1] and there exist constants a > 0, b > 0, and d > 0
such that

∞∑

i=1

∞∑

j=1

c−(1/2)(i/k+ j/l)ih+a jr+b
(∣∣pi, j

∣∣dc(1/2)((i−τ)/k+( j−σ)/l) +
∣∣qi, j

∣∣) <∞. (3.288)
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Then (3.287) has a bounded oscillatory solution {xm,n} such that

xm,n = K1c
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.289)

where K1 is some constant.

Corollary 3.65. Let c > 1. If there exist constants a > 0, b > 0, and d > 0 such that

∞∑

i=1

∞∑

j=1

ih+a jr+b
(∣∣pi, j

∣∣dc(1/2)((i−τ)/k+( j−σ)/l) +
∣∣qi, j

∣∣) <∞, (3.290)

then (3.287) has an unbounded oscillatory solution {xm,n} such that

xm,n = K2c
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.291)

where K2 is a constant.

Corollary 3.66. Suppose c < 0 and let λ = −c > 0. If there exist constants a > 0,
b > 0, and d > 0 such that

∞∑

i=1

∞∑

j=1

ih+a jr+b
(∣∣pi, j

∣
∣dλ(1/2)((i−τ)/k+( j−σ)/l) +

∣
∣qi, j

∣
∣) <∞, (3.292)

then (3.287) has an oscillatory solution {xm,n} such that

xm,n = K3λ
(1/2)(m/k+n/l)

(
cos

π

k
m cos

2π
l
n + o(1)

)
as m,n �→∞, (3.293)

or

xm,n = K4λ
(1/2)(m/k+n/l)

(
cos

2π
k
m cos

π

l
n + o(1)

)
as m,n �→∞, (3.294)

where K3 and K4 are constants.

Example 3.67. Consider the equation

ΔhmΔ
r
n

(
xm,n − xm−2,n−2

)
+

1
mαnβ

arctan xm−2,m−3 = 0, m ≥ 2, n ≥ 3,

(3.295)

where α, β are real numbers.
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We only notice that c = 1 and F(m,n,u) = (1/mαnβ)u, and here take 0 < a <
1, 0 < b < 1, and α ≥ h + 1, β ≥ r + 1, then (3.253) comes to

∞∑

i=1

∞∑

j=1

ih+a jr+b
1
iα jβ

d <∞. (3.296)

By Theorem 3.61, (3.295) has an oscillatory solution which satisfies (3.254).

3.5. Existence of positive solutions of certain nonlinear PDEs

3.5.1. Existence of positive solutions for the neutral-type equation

We consider nonlinear partial difference equations of the form

ΔhnΔ
r
m

(
xm,n − cxm−k,n−l

)
+ (−1)h+r+1pm,n f

(
xm−τ,n−σ

) = 0. (3.297)

With respect to (3.297), throughout we will assume that
(i) c ∈ R, h, r, k, l ∈ N1, τ, σ ∈ N , {pm,n}∞,∞

m=m0,n=n0
is a double sequence of

real numbers,
(ii) f ∈ C(R,R) is nondecreasing, x f (x) ≥ 0 for any x �= 0, and | f (x)| ≤

| f (y)| as |x| ≤ |y|.
Let δ = max{k, τ}, η = max{l, σ} be fixed nonnegative integers.

Theorem 3.68. Assume that 0 ≤ c < 1, pm,n ≥ 0, and that there exists a positive
double sequence {λm,n} such that for all sufficiently large m, n

c
λm−k,n−l
λm,n

+
1
λm,n

∞∑

i=m

∞∑

j=n

(
i−m + r − 1

r − 1

)(
j − n + h− 1

h− 1

)

pi, j f
(
λi−τ, j−σ

) ≤ 1.

(3.298)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ λm,n.

Proof . Let X be the set of all real-bounded double sequences y = {ym,n} with the
norm ‖y‖ = supm≥m0,n≥n0

|ym,n| < ∞. Then X is a Banach space. We define a
subset Ω of X as

Ω = {y = {ym,n
} ∈ X | 0 ≤ ym,n ≤ 1, m ≥ m0, n ≥ n0

}
, (3.299)
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where a partial order on X is defined in the usual way, that is,

x, y ∈ X , x ≤ y means that xm,n ≤ ym,n for m ≥ m0, n ≥ n0. (3.300)

It is easy to see that for any subset S of Ω, there exist inf S and sup S. We choose
m1 > m0, n1 > n0 sufficiently large such that (3.298) holds. Set

D = Nm0 ×Nn0 , D1 = Nm1 ×Nn1 ,

D2 = Nm0 ×Nn1\D1, D3 = Nm1 ×Nn0\D1,

D4 = D\(D1 ∪D2 ∪D3
)
.

(3.301)

Clearly, D = D1 ∪D2 ∪D3 ∪D4. Define a mapping T : Ω→ X as follows:

Tym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
λm−k,n−l
λm,n

ym−k,n−l +
1
λm,n

∞∑

i=m

∞∑

j=n

⎛

⎝i−m + r − 1

r − 1

⎞

⎠

×
⎛

⎝ j − n + h− 1

h− 1

⎞

⎠ pi, j f
(
λi−τ, j−σ yi−τ, j−σ

)
, (m,n) ∈ D1,

n

n1
Tym1,n +

(

1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(3.302)

From (3.302) and noting that ym,n ≤ 1 we have

0 ≤ Tym,n ≤ c
λm−k,n−l
λm,n

+
1
λm,n

∞∑

i=m

∞∑

j=n

(
i−m + r − 1

r − 1

)

×
(
j − n + h− 1

h− 1

)

pi, j f
(
λi−τ, j−σ

) ≤ 1 for (m,n) ∈ D1,

0 ≤ Tym,n ≤ 1 for (m,n) ∈ D2 ∪D3 ∪D4.

(3.303)
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Therefore, TΩ ⊂ Ω. Clearly, T is nondecreasing. By Knaster’s fixed point theo-
rem—Theorem 1.9, there is y ∈ Ω such that Ty = y, that is,

ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
λm−k,n−l
λm,n

ym−k,n−l +
1
λm,n

∞∑

i=m

∞∑

j=n

⎛

⎝i−m + r − 1

r − 1

⎞

⎠

×
⎛

⎝ j − n + h− 1

h− 1

⎞

⎠ pi, j f
(
λi−τ, j−σ yi−τ, j−σ

)
, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(3.304)

It is easy to see that ym,n > 0 for (m,n) ∈ D2 ∪D3 ∪D4 and hence ym,n > 0 for all
(m,n) ∈ D1. Set

xm,n = λm,nym,n, (3.305)

then from (3.304) and (3.305) we have

xm,n = cxm−k,n−l +
∞∑

i=m

∞∑

j=n

(
i−m + r − 1

r − 1

)

×
(
j − n + h− 1

h− 1

)

pi, j f
(
xi−τ, j−σ

)
, (m,n) ∈ D1,

(3.306)

and so

ΔhnΔ
r
m

(
xm,n − cxm−k,n−l

)
+ (−1)r+h+1pm,n f

(
xm−τ,n−σ

) = 0, (m,n) ∈ D1,
(3.307)

which implies that {xm,n} is a bounded positive solution of (3.297). The proof of
Theorem 3.68 is complete. �
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Inequality (3.298) is not easy to verify, but we can derive some explicit suffi-
cient conditions by choosing different {λm,n} in (3.298) for the existence of posi-
tive solutions of (3.297). For example, by choosing λm,n = am+n or λm,n = 1/mn,
respectively, we obtain the following results.

Corollary 3.69. Assume that 0 ≤ c < 1, pm,n ≥ 0, and that there exists a positive
number a such that for all sufficiently large m, n

ca−k−l +
1

am+n

∞∑

i=m

∞∑

j=n

(
i−m + r − 1

r − 1

)(
j − n + h− 1

h− 1

)

pi, j f
(
ai+ j−τ−σ

) ≤ 1.

(3.308)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ am+n.

Corollary 3.70. Assume that 0 ≤ c < 1, pm,n ≥ 0, and that for all sufficiently large
m, n

c
mn

(m− k)(n− l)
+mn

∞∑

i=m

∞∑

j=n

(
i−m + r − 1

r − 1

)

×
(
j − n + h− 1

h− 1

)

pi, j f
(

1
(i− τ)( j − σ)

)
≤ 1.

(3.309)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ 1/mn.

Theorem 3.71. Assume that c > 1, pm,n ≤ 0, and that there exists a positive double
sequence {λm,n} such that for all sufficiently large m, n

λm+k,n+l

cλm,n
− 1
cλm,n

∞∑

i=m+k

∞∑

j=n+l

(
i−m− k + r − 1

r − 1

)

×
(
j − n− l + h− 1

h− 1

)

pi, j f
(
λi−τ, j−σ

) ≤ 1.

(3.310)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ λm,n.

Proof . Let X andΩ be the sets as in the proof of Theorem 3.68. We define a partial
order on X in the usual way. It is easy to see that for any subset S of Ω, there exist
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inf S and sup S. We choose m1 > m0, n1 > n0 sufficiently large such that (3.310)
holds. Set

D = Nm0 ×Nn0 , D1 = Nm1 ×Nn1 ,

D2 = Nm0 ×Nn1\D1, D3 = Nm1 ×Nn0\D1,

D4 = D\(D1 ∪D2 ∪D3
)
.

(3.311)

Clearly, D = D1 ∪D2 ∪D3 ∪D4. Define a mapping T : Ω→ X as follows:

Tym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cλm+k,n+l

λm,n
ym+k,n+l

− 1
cλm,n

∞∑

i=m+k

∞∑

j=n+l

⎛

⎝i−m− k + r − 1

r − 1

⎞

⎠

×
⎛

⎝ j − n− l + h− 1

h− 1

⎞

⎠ pi, j f
(
λi−τ, j−σ yi−τ, j−σ

)
, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(3.312)

From (3.312) and noting that ym,n ≤ 1 and pm,n ≤ 0, we have

0 ≤ Tym,n ≤ λm+k,n+l

cλm,n
− 1
cλm,n

∞∑

i=m+k

∞∑

j=n+l

(
i−m− k + r − 1

r − 1

)

×
(
j − n− l + h− 1

h− 1

)

pi, j f
(
λi−τ, j−σ

) ≤ 1 for (m,n) ∈ D1,

0 ≤ Tym,n ≤ 1 for (m,n) ∈ D2 ∪D3 ∪D4.

(3.313)
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Therefore, TΩ ⊂ Ω. Clearly, T is nondecreasing. By Knaster’s fixed point theorem
there is y ∈ Ω such that Ty = y, that is,

ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cλm+k,n+l

λm,n
ym+k,n−l

− 1
cλm,n

∞∑

i=m+k

∞∑

j=n+l

⎛

⎝i−m− k + r − 1

r − 1

⎞

⎠

×
⎛

⎝ j − n− l + h− 1

h− 1

⎞

⎠ pi, j f
(
λi−τ, j−σ yi−τ, j−σ

)
, (m,n) ∈ D1,

n

n1
Tym1,n +

(
1 − n

n1

)
, (m,n) ∈ D2,

m

m1
Tym,n1 +

(
1 − m

m1

)
, (m,n) ∈ D3,

mn

m1n1
Tym1,n1 +

(
1 − mn

m1n1

)
, (m,n) ∈ D4.

(3.314)

It is easy to see that ym,n > 0 for (m,n) ∈ D2 ∪D3 ∪D4 and hence ym,n > 0 for all
(m,n) ∈ D1. Set

xm,n = λm,nym,n, (3.315)

then from (3.314) and (3.315) we have

xm,n = 1
c
xm+k,n+l − 1

c

∞∑

i=m+k

∞∑

j=n+l

(
i−m− k + r − 1

r − 1

)

×
(
j − n− l + h− 1

h− 1

)

pi, j f
(
xi−τ, j−σ

)
, (m,n) ∈ D1,

(3.316)

and so

ΔhnΔ
r
m

(
xm,n − cxm−k,n−l

)
+ (−1)r+h+1pm,n f

(
xm−τ,n−σ

) = 0, (m,n) ∈ D1,
(3.317)

which implies that {xm,n} is a bounded positive solution of (3.297). The proof of
Theorem 3.71 is complete. �
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By choosing λm,n = am+n and λm,n = 1/mn, respectively, we can obtain the
following explicit sufficient conditions for the existence of positive solutions.

Corollary 3.72. Assume that c > 1, pm,n ≤ 0, and that there exists a positive number
a such that for all sufficiently large m, n

ak+l

c
− 1
cam+n

∞∑

i=m+k

∞∑

j=n+l

(
i−m− k + r − 1

r − 1

)

×
(
j − n− l + h− 1

h− 1

)

pi, j f
(
ai+ j−τ−σ

) ≤ 1.

(3.318)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ am+n.

Corollary 3.73. Assume that c > 1, pm,n ≤ 0, and that for all sufficiently large m, n

mn

c(m + k)(n + l)
− mn

c

∞∑

i=m+k

∞∑

j=n+l

(
i−m− k + r − 1

r − 1

)

×
(
j − n− l + h− 1

h− 1

)

pi, j f
(

1
(i− τ)( j − σ)

)
≤ 1.

(3.319)

Then (3.297) has a positive solution {xm,n} which satisfies 0 < xm,n ≤ 1/mn.

Example 3.74. Consider the partial difference equation

ΔnΔmxm,n − pm,nx
1/3
m−1,n−1 = 0, m ≥ 2, n ≥ 2, (3.320)

where

pm,n = (4mn + 2m + 2n + 1)(m− 1)2/3(n− 1)2/3

(m + 1)2(n + 1)2m2n2
. (3.321)

We take c = 0, h = r = 1, f (x) = x1/3, τ = σ = 1 in Corollary 3.70. Obviously,
conditions of Corollary 3.70 are satisfied for (3.320). By Corollary 3.70, (3.320)
has a positive solution {xm,n}, which satisfies 0 < xm,n ≤ 1/mn. In fact, {xm,n} =
1/m2n2 is such a solution of (3.320).
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3.5.2. Existence of nonoscillatory solutions for the neutral-type equation

In this section, we consider the existence of nonoscillatory solutions of the non-
linear partial difference equation of the form

ΔhnΔ
r
m

(
ym,n + cym−k,n−l

)
+ F

(
m,n, ym−τ,n−σ

) = 0, (3.322)

where h, r, k, l ∈ N1, τ, σ ∈ N0, c ∈ R. F : N0 ×N0 × R→ R is continuous.

Theorem 3.75. Assume that c �= −1 and that there exists an interval [a, b] ⊂ R(0 <
a < b) such that

∞∑

m=m0

∞∑

n=n0

(m)(r−1)(n)(h−1) sup
w∈[a,b]

∣∣F(m,n,w)
∣∣ <∞. (3.323)

Then (3.322) has a bounded nonoscillatory solution.

Proof . The proof of this theorem will be divided into five cases in terms of c. Let
X be the set of all bounded real double sequence y = {ym,n}, m ≥ M, n ≥ N with
the norm ‖y‖ = supm≥M,n≥N |ym,n| < ∞. X is a Banach space. We define a closed,
bounded, and convex subset Ω of X as follows:

Ω = {y = {ym,n
} ∈ X | a ≤ ym,n ≤ b, m ≥M, n ≥ N

}
. (3.324)

Case 1. For the case −1 < c ≤ 0, choose m1 > M, n1 > N sufficiently large such
that m1 − max{k, τ} ≥M, n1 − max{l, σ} ≥ N and

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ ≤ (c + 1)(b − a)

2
.

(3.325)

Set

D = {(m,n) | m ≥M, n ≥ N
}

, D1 =
{

(m,n) | m ≥ m1, n ≥ n1
}

,

D2 =
{

(m,n) |M ≤ m < m1, n > n1
}

, D3 =
{

(m,n) | m > m1, N ≤ n < n1
}

,

D4 =
{

(m,n) |M ≤ m ≤ m1, N ≤ n ≤ n1
}
.

(3.326)

Clearly, D = D1 ∪D2 ∪D3 ∪D4.
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Define two maps T1 and T2 : Ω→ X by

T1ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(c + 1)(b + a)
2

− cym−k,n−l, (m,n) ∈ D1,

T1ym1,n, (m,n) ∈ D2,

T1ym,n1 , (m,n) ∈ D3,

T1ym1,n1 , (m,n) ∈ D4.

T2ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n
( j − n + h− 1)(h−1)F

(
i, j, yi−τ, j−σ

)
, (m,n) ∈ D1,

T2ym1,n, (m,n) ∈ D2,

T2ym,n1 , (m,n) ∈ D3,

T2ym1,n1 , (m,n) ∈ D4.
(3.327)

(i) We claim that for any x, y ∈ Ω, T1x + T2y ⊂ Ω.
In fact, for every x, y ∈ Ω and m ≥ m1, n ≥ n1, we get

T1xm,n + T2ym,n

≤ (c + 1)(b + a)
2

− cb +
1

(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1) sup

w∈[a,b]

∣
∣F(i, j,w)

∣
∣

≤ (c + 1)(b + a)
2

− cb +
(c + 1)(b − a)

2
= b.

(3.328)

Furthermore, we have

T1xm,n + T2ym,n

≥ (c + 1)(b + a)
2

− ca− 1
(r − 1)!(h− 1)!

×
∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(h−1) sup

w∈[a,b]

∣
∣F(i, j,w)

∣
∣

≥ (c + 1)(b + a)
2

− ca− (c + 1)(b − a)
2

= a.

(3.329)
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Hence

a ≤ T1xm,n + T2ym,n ≤ b for (m,n) ∈ D. (3.330)

Thus we have proved that T1x + T2y ⊂ Ω for any x, y ∈ Ω.
(ii) We claim that T1 is a contraction mapping on Ω.
In fact, for x, y ∈ Ω and (m,n) ∈ D1, we have

∣
∣T1xm,n − T1ym,n

∣
∣ ≤ −c∣∣xm−k,n−l − ym−k,n−l

∣
∣ ≤ −c‖x − y‖. (3.331)

This implies that

∥
∥T1x − T1y

∥
∥ ≤ −c‖x − y‖. (3.332)

Since 0 < −c < 1, we conclude that T1 is a contraction mapping on Ω.
(iii) We claim that T2 is completely continuous.

First, we will show that T2 is continuous. For this, let y(v) = {y(v)
m,n} ∈ Ω be

such that y(v)
m,n → ym,n as v →∞. BecauseΩ is closed, y = {ym,n} ∈ Ω. Form ≥ m1,

n ≥ n1, we have

∣
∣T2y

(v)
m,n − T2ym,n

∣
∣

≤ 1
(r − 1)!(h− 1)!

∞∑

i=m1

(i−m + r − 1)(r−1)
∞∑

j=n1

( j − n + h− 1)(h−1)

× ∣∣F(i, j, y(v)
i−τ, j−σ

)− F
(
i, j, yi−τ, j−σ

)∣∣.
(3.333)

Since

(i−m + r − 1)(r−1)( j − n + h− 1)(h−1) × ∣∣F(i, j, y(v)
i−τ, j−σ

)− F
(
i, j, yi−τ, j−σ

)∣∣

≤ ir−1 jh−1(∣∣F
(
i, j, y(v)

i−τ, j−σ
)∣∣ +

∣
∣F
(
i, j, yi−τ, j−σ

)∣∣)

≤ 2ir−1 jh−1 sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣

(3.334)

and that |F(i, j, y(v)
i−τ, j−σ) − F(i, j, yi−τ, j−σ)| → 0 as v → ∞, in view of (3.325)

and applying the Lebesgue dominated convergence theorem, we conclude that
limv→∞ ‖T2y(v) − T‖ = 0. This means that T2 is continuous.

Next, we will show that T2Ω is relatively compact. For any given ε > 0, by
(3.323), there exist M1 ≥ m1 and N1 ≥ n1 such that

1
(r − 1)!(h− 1)!

∞∑

i=M1

(i + r − 1)(r−1)
∞∑

j=N1

( j + h− 1)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ <

ε

2
.

(3.335)
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By (3.323), we have

∞∑

m=m0

N1+1∑

n=n1

(m)(r−1)(n)(h−1) sup
w∈[a,b]

∣∣F(m,n,w)
∣∣ <∞. (3.336)

Hence, there exists an M′ ≥M1 such that

1
(r − 1)!(h− 1)!

∞∑

i=M′
(i + r − 1)(r−1)

N1+1∑

j=n1

( j + h− 1)(h−1) sup
w∈[a,b]

∣∣F(i, j,w)
∣∣ < ε.

(3.337)

Similarly, there exists N ′ ≥ N1 such that

1
(r − 1)!(h− 1)!

M1+1∑

i=m1

(i + r − 1)(r−1)
∞∑

j=N ′
( j + h− 1)(h−1) sup

w∈[a,b]

∣
∣F(i, j,w)

∣
∣ < ε.

(3.338)

Then, for any y={ym,n}∈Ω, when (m,n), (m′,n′)∈{(m,n) : m≥M1, n≥N1},

∣
∣T2ym,n − T2ym′,n′

∣
∣

≤ 1
(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

i=n
( j − n + h− 1)(h−1) × ∣∣F(i, j, yi−τ, j−σ

)∣∣

+
1

(r − 1)!(h− 1)!

∞∑

i=m′
(i−m + r − 1)(r−1)

×
∞∑

i=n′
( j − n + h− 1)(h−1) × ∣∣F(i, j, yi−τ, j−σ

)∣∣

≤ 1
(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

i=n
( j − n + h− 1)(h−1) sup

w∈[a,b]

∣
∣F(i, j,w)

∣
∣ +

1
(r − 1)!(h− 1)!

×
∞∑

i=m′
(i−m + r − 1)(r−1)

∞∑

i=n′
( j − n + h− 1)(h−1) sup

w∈[a,b]

∣
∣F(i, j,w)

∣
∣

<
ε

2
+
ε

2
= ε.

(3.339)
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When (m,n), (m′,n′) ∈ {(m,n) : m ≥M1, n1 ≤ n ≤ N1 + 1}, we have

∣∣T2ym,n − T2ym′,n′
∣∣ ≤ 1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
N1∑

i=n1

( j − n + h− 1)(h−1) × ∣∣F(i, j, yi−τ, j−σ
)∣∣

≤ 1
(r − 1)!(h− 1)!

∞∑

i=M
(i + r − 1)(r−1)

×
N ′
∑

j=n1

( j + h− 1)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ < ε.

(3.340)

Similarly, when (m,n), (m′,n′) ∈ {(m,n) : m1 ≤ m ≤M1 + 1, n ≥ N1}, we have

∣
∣T2ym,n − T2ym′,n′

∣
∣ < ε. (3.341)

Let

D′
1 =

{
(m,n) | m > M1, n > N1

}
, D′

2 =
{

(m,n) | m1 ≤ m ≤M1, n > N1
}

,

D′
3 =

{
(m,n) | m > M1, n1 ≤ n ≤ N1

}
.

(3.342)

Then

∣∣T2ym,n − T2ym′,n′
∣∣ < ε, for (m,n), (m′,n′) ∈ D = D′

1 ∪D′
2 ∪D′

3. (3.343)

This means thatT2Ω is uniformly Cauchy. Hence, by Lemma 3.59,T2Ω is relatively
compact. By Theorem 1.14, there is a y = {ym,n} ∈ Ω such that T1y + T2y = y.
Clearly, y = {ym,n} is a bounded positive solution of (3.322). This completes the
proof in this case.

Case 2. For the case c < −1, by (3.323), we choose m1 > M, n1 > N sufficiently
large such that

−1
c

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ ≤ (c + 1)(b − a)

2c
.

(3.344)
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Define two maps mapping T1 and T2 : Ω→ Ω by

T1ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(c + 1)(a + b)
2c

− 1
c
y(m + k,n + l), (m,n) ∈ D1,

T1ym1,n, (m,n) ∈ D2,

T1ym,n1 , (m,n) ∈ D3,

T1ym1,n1 , (m,n) ∈ D4.

T2ym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)r+h+1

c(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

×
∞∑

j=n+l

( j − n + h− 1)(h−1)

×F(i, j, yi−τ, j−σ
)
, (m,n) ∈ D1,

T2ym1,n, (m,n) ∈ D2,

T2ym,n1 , (m,n) ∈ D3,

T2ym1,n1 , (m,n) ∈ D4.

(3.345)

The rest of the proof is similar to that of Case 1 and it is thus omitted.

Case 3. For the case 0 ≤ c < 1, by (3.323), we choose m1 > m0, n1 > n0 sufficiently
large such that

1
(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1) sup
w∈[a,b]

∣∣F(i, j,w)
∣∣ ≤ (1 − c)(b− a)

2
.

(3.346)

Define two maps mapping T1 and T2 : Ω → Ω as in Case 1, the rest of the proof is
similar to that of Case 1 and thus it is omitted.

Case 4. For the case c > 1, by (3.323), we choose m1 > m0, n1 > n0 sufficiently
large such that

1
c(r − 1)!(h− 1)!

∞∑

i=m1

(i)(r−1)
∞∑

j=n1

( j)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ ≤ (c − 1)(b− a)

2c
.

(3.347)

Define two maps mapping T1 and T2 : Ω → Ω as in Case 2, the rest of the proof is
similar to that of Case 1 and thus it is omitted.
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Case 5. For the case c = 1, by (3.323), we choose m1 > m0, n1 > n0 sufficiently
large such that

1
(r − 1)!(h− 1)!

∞∑

i=m1+k

(i)(r−1)
∞∑

j=n1+l

( j)(h−1) sup
w∈[a,b]

∣
∣F(i, j,w)

∣
∣ ≤ (b− a)

2
.

(3.348)

Define a mapping T : Ω→ Ω by

Tym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b

2
+

(−1)r+h+1

(r − 1)!(h− 1)!

×
∞∑

u=1

m+2uk−1∑

i=m+(2u−1)k

(i−m + r − 1)(r−1)

×
∞∑

v=1

n+2vl−1∑

j=n+(2v−l)l
( j − n + h− 1)(n−1)

×F(i, j, yi−τ, j−σ
)
, (m,n) ∈ D1,

T1ym1,n, (m,n) ∈ D2,

T1ym,n1 , (m,n) ∈ D3,

T1ym1,n1 , (m,n) ∈ D4.

(3.349)

Proceeding similarly as in the proof of Case 1, we obtain TΩ ⊂ Ω and the mapping
T is completely continuous. By Lemma 3.60, there is a y ∈ Ω such that Ty = y,
therefore for (m,n) ∈ D1,

ym,n + ym−k,n−l = a + b +
(−1)r+h+1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(n−1)

×
∞∑

j=n
( j − n + h− 1)(n−1)F

(
i, j, yi−τ, j−σ

)
.

(3.350)

Clearly, y = {ym,n} is a bounded positive solution of (3.322). This completes the
proof of Theorem 3.75. �

Theorem 3.76. Assume that c = −1 and that there exists an interval [a, b] ⊂ R
(0 < a < b) such that

∞∑

m=M

∞∑

n=N
mn(m)(r−1)(n)(n−1) sup

w∈[a,b]

∣
∣F(m,n,w)

∣
∣ <∞. (3.351)

Then (3.322) has a bounded nonoscillatory solution.
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Proof . By the known result, (3.351) is equivalent to

∞∑

u=0

∞∑

m=M+uk

(m)(r−1)
∞∑

v=0

∞∑

n=N+vl

(n)(h−1) sup
w∈[a,b]

∣∣F(m,n,w)
∣∣ <∞. (3.352)

We choose m1 > M, n1 > N sufficiently large such that

1
(r − 1)!(h− 1)!

∞∑

u=0

∞∑

i=m1+uk

(i)(r−1)
∞∑

v=0

∞∑

j=n1+vl

( j)(h−1) sup
w∈[a,b]

∣∣F(i, j,w)
∣∣ ≤ (b− a)

2
.

(3.353)

We define

Ω = {y = {ym,n
} ∈ X | a ≤ ym,n ≤ b, (m,n) ∈ D

}
. (3.354)

Define a mapping T : Ω→ Ω by

Tym,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b

2
+

(−1)r+h

(r − 1)!(h− 1)!

∞∑

u=1

∞∑

i=m+uk

(i−m + r − 1)(r−1)

×
∞∑

v=1

∞∑

j=n1+vl

( j − n + h− 1)(n−1)F
(
i, j, yi−τ, j−σ

)
, (m,n) ∈ D1,

T1ym1,n, (m,n) ∈ D2,

T1ym,n1 , (m,n) ∈ D3,

T1ym1,n1 , (m,n) ∈ D4.
(3.355)

Proceeding similarly as in the proof of Theorem 3.75, we obtain TΩ ⊂ Ω and the
mapping T is completely continuous. By Lemma 3.60, there is a y ∈ Ω such that
Ty = y, therefore for (m,n) ∈ D1,

ym,n−ym−k,n−l

= (−1)r+h+1

(r − 1)!(h− 1)!

∞∑

i=m
(i−m + r − 1)(r−1)

∞∑

j=n
( j − n + h− 1)(n−1)F

(
i, j, yi−τ, j−σ

)
.

(3.356)

Clearly, y = {ym,n} is a bounded positive solution of (3.322). This completes the
proof of Theorem 3.76. �

Example 3.77. Consider the nonlinear partial difference equation

ΔhnΔ
r
m

(
ym,n + cym−k,n−l

)
+

1
mαnβ

yθm−τ,n−σ = 0, (3.357)

where r, h, k, l, τ, σ , and θ are positive integers, c �= −1, α,β ∈ R+.
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If α > r, β > h, for any real number b > a > 0,

∞∑

m=M

∞∑

n=N
(m)(r−1)(n)(h−1) sup

w∈[a,b]

{
wθ

mαnβ

}

≤
∞∑

m=M

∞∑

n=N
mr−1nh−1 bθ

mαnβ
= bθ

∞∑

m=M

1
mα+1−r

∞∑

n=N

1
nβ+1−n <∞.

(3.358)

By Theorem 3.75, (3.357) has a bounded positive solution.
If α > r + 1, β > h + 1, for any real number b > a > 0,

∞∑

m=M

∞∑

n=N
mn(m)(r−1)(n)(h−1) sup

w∈[a,b]

{
wθ

mαnβ

}

≤
∞∑

m=M

∞∑

n=N
mrnh

bθ

mαnβ
= bθ

∞∑

m=m0

1
mα−r

∞∑

n=n0

1
nβ−n

<∞.
(3.359)

By Theorem 3.76, (3.357) has a bounded positive solution.
In the following, we present some results for the existence of unbounded pos-

itive solutions of the nonlinear partial difference equation

ΔhmΔ
r
n

(
xm,n − cm,nxm−k,n−l

)
+ f

(
m,n, xm−τ,n−σ

) = 0, (3.360)

where m,n ∈ N1, cm,n ≥ 0, m ≥ m0, n ≥ n0; h, r, k, l ∈ N1; τ, σ ∈ N0. f (m,n,u)
is of one sign on Nm0 × Nn0 × (0,∞) and | f (m,n,u)| is nondecreasing in u for
u ∈ (0,∞) and (m,n) ∈ Nm0 ×Nn0 .

In the following, we note that

Ri(m,n) = [(Nm+ik \Nm+(i+1)k
)×Nn+il

]∪ [Nm+ik ×
(
Nn+il \Nn+(i+1)l

)]
, i ∈ Z.

(3.361)

Theorem 3.78. Assume that λ, μ are integers with 0 ≤ λ ≤ h− 1, 0 ≤ μ ≤ r − 1 and

that there exists a positive sequence {uλμm,n} defined on Nm0−k ×Nn0−l such that

0 < lim inf
m,n→∞

u
λμ
m,n − cm,nu

λμ
m−k,n−l

mλnμ
≤ lim sup

m,n→∞

u
λμ
m,n − cm,nu

λμ
m−k,n−l

mλnμ
<∞. (3.362)

Then (3.360) has a positive solution {xm,n} such that

xm,n − cm,nxm−k,n−l
mλnμ

�→ const > 0 as m,n �→∞ (3.363)

if and only if

∞∑

i=1

∞∑

j=1

ih−λ−1 jr−μ−1
∣∣ f
(
i, j, au

λμ
i−τ, j−σ

)∣∣ <∞ for some a > 0. (3.364)
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Moreover, if {xm,n} is a solution of (3.360) satisfying (3.363), then

c∗u
λμ
m,n ≤ xm,n ≤ c∗u

λμ
m,n for all large m,n, (3.365)

where c∗, c∗ are positive constants.

To prove this result, we will prove the following lemmas first.

Lemma 3.79. Assume that u, v : Nm0−k ×Nn0−l → R satisfy

um,n − cm,num−k,n−l ≥ vm,n − cm,nvm−k,n−l, m ≥ m0, n ≥ n0,

um,n ≥ vm,n, (m,n) ∈ R−1
(
m0,n0

)
.

(3.366)

Then

um,n ≥ vm,n, m ≥ m0 − k, n ≥ n0 − l. (3.367)

Proof . It is easy to see Nm0−k × Nn0−l = ⋃∞
i=−1 Ri(m0,n0). By the assumption,

um,n ≥ vm,n for (m,n) ∈ R−1(m0,n0).
Assume that um,n ≥ vm,n, (m,n) ∈ Ri(m0,n0) for some i = −1, 0, 1, 2, . . . .

Then

um,n ≥ vm,n − cm,nvm−k,n−l + cm,num−k,n−l ≥ vm,n for (m,n) ∈ Ri+1
(
m0,n0

)
.

(3.368)

By induction, the proof is complete. �
Next, consider the initial value problem(IVP)

(I)

⎧
⎪⎨

⎪⎩

um,n − cm,num−k,n−l = c, m ≥ m0, n ≥ n0,

um,n = cϕm,n, (m,n) ∈ R−1
(
m0,n0

)
,

(3.369)

where c ∈ R, ϕ : R−1(m0,n0) → R satisfies

ϕm0,n0 − cm0,n0ϕm0−k,n0−l = 1,

inf
(m,n)∈R−1(m0,n0)

{
ϕm,n

}
> 0.

(3.370)

By the method of steps, we can show that IVP(I) has a unique solution u on
Nm0−k ×Nn0−l. We denote the solution of IVP(I) by uϕ(m,n, c). By the uniqueness
of solutions of IVP(I), it is clear that, for any γ ∈ R,

γuϕ(m,n, c) = uϕ(m,n, γc), m ≥ m0 − k, n ≥ n0 − l. (3.371)

From Lemma 3.79, we obtain the following lemma.
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Lemma 3.80. Let uϕ(m,n, c) be a solution of (I) and suppose that v : Nm0−k ×
Nn0−l → R satisfies

vm,n − cm,nvm−k,n−l ≤ c, m ≥ m0, n ≥ n0,

vm,n ≤ cϕm,n, (m,n) ∈ R−1
(
m0,n0

)
.

(3.372)

Then

vm,n ≤ uϕ(m,n, c), m ≥ m0 − k, n ≥ n0 − l. (3.373)

Lemma 3.81. Suppose that y, ψ, {yi}, {ψi}, i ∈ N satisfy the following conditions:
(i) yi, y : Nm0 × Nn0 → R, and yi converges to y as i → ∞ for any (m,n) ∈

Nm0 ×Nn0 ;
(ii) ψi, ψ : R−1(m0,n0) → R, and ψi converges to ψ as i→∞ for any (m,n) ∈

R−1(m0,n0).
Let xi, i = 1, 2, . . . and x : Nm0−k ×Nn0−l → R be solutions of

xim,n − cm,nx
i
m−k,n−l = yim,n, m ≥ m0, n ≥ n0,

xim,n = ψim,n, (m,n) ∈ R−1
(
m0,n0

)
,

xm,n − cm,nxm−k,n−l = ym,n, m ≥ m0, n ≥ n0,

xm,n = ψm,n, (m,n) ∈ R−1
(
m0,n0

)
,

(3.374)

respectively. Then xi converges to x as i→∞ for any (m,n) ∈ Nm0−k ×Nn0−l.

Proof . Take a positive constant c and a positive function ϕ on R−1(m0,n0) satisfy-
ing (3.370) and consider the initial value problem (I). We note that

uϕ(m,n, c) > 0, m ≥ m0 − k, n ≥ n0 − l. (3.375)

For any ε > 0, there exists i0 ∈ N such that if i ≥ i0 then

∣
∣yim,n − ym,n

∣
∣ ≤ ε, m ≥ m0, n ≥ n0,

∣
∣ψim,n − ψm,n

∣
∣ ≤ εϕm,n, (m,n) ∈ R−1

(
m0,n0

)
.

(3.376)

Hence we have
(
xim,n − xm,n

)− cm,n
(
xim−k,n−l − xm−k,n−l

) ≤ ε, m ≥ m0, n ≥ n0,

xim,n − xm,n ≤ εϕm,n, (m,n) ∈ R−1
(
m0,n0

)
.

(3.377)

From Lemma 3.80 and (3.371), we obtain

xim,n − xm,n ≤ uϕ(m,n, ε) = εuϕ(m,n, 1) for m ≥ m0 − k, n ≥ n0 − l.

(3.378)
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Similarly, we have

xm,n − xim,n ≤ uϕ(m,n, ε) = εuϕ(m,n, 1) for m ≥ m0 − k, n ≥ n0 − l.
(3.379)

Thus we obtain

∣
∣xim,n − xm,n

∣
∣ ≤ uϕ(m,n, ε) = εuϕ(m,n, 1) for m ≥ m0 − k, n ≥ n0 − l,

(3.380)

which implies the conclusion of Lemma 3.81. �

Lemma 3.82. Let λ, μ be integers with 0 ≤ λ ≤ h− 1, 0 ≤ μ ≤ r − 1, and let vλμ be
a positive function on Nm0−k ×Nn0−l satisfying

v
λμ
m,n − cm,nv

λμ
m−k,n−l

mλnμ
= 1 for m ≥ m0, n ≥ n0. (3.381)

Then, for any positive function uλμ satisfying (3.362), there exist M ≥ m0, N ≥ n0

and positive constants c∗, c∗ such that

c∗v
λμ
m,n ≤ u

λμ
m,n ≤ c∗v

λμ
m,n for m ≥M − k, n ≥ N − l. (3.382)

Proof . We can choose sufficiently large M ≥ m0, N ≥ n0, a sufficiently small
c∗ > 0, and a sufficiently large c∗ > 0 such that

c∗ ≤ u
λμ
m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· u

λμ
m−k,n−l

(m− k)λ(n− l)μ
≤ c∗, m ≥M, n ≥ N ,

c∗v
λμ
m,n

mλnμ
≤ u

λμ
m,n

mλnμ
≤ c∗v

λμ
m,n

mλnμ
, (m,n) ∈ R−1(M,N).

(3.383)

Since by (3.371) and (3.362), we can obtain that there exist two constants d∗ and
d∗ such that

d∗ ≤ u
λμ
m,n − cm,nu

λμ
m−k,n−l

v
λμ
m,n − cm,nv

λμ
m−k,n−l

≤ d∗. (3.384)

Because u
λμ
m,n and v

λμ
m,n are infinity, as m,n→∞, we can obtain that the order of the

infinity u
λμ
m,n and v

λμ
m,n are the same which implies that the latter inequality holds.

Next, we have

c∗v
λμ
m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· c∗v

λμ
m−k,n−l

(m− k)λ(n− l)μ
= c∗, m ≥M, n ≥ N.

(3.385)
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Applying Lemma 3.80 with c, ϕm,n, cm,n replaced by c∗, v
λμ
m,n/mλnμ and cm,n((m −

k)λ(n− l)μ/mλnμ), respectively, we obtain

u
λμ
m,n

mλnμ
≤ c∗v

λμ
m,n

mλnμ
, m ≥M − k, n ≥ N − l. (3.386)

In the same way, we get

u
λμ
m,n

mλnμ
≥ c∗v

λμ
m,n

mλnμ
, m ≥M − k, n ≥ N − l. (3.387)

The proof is complete. �

Proof of Theorem 3.78. Let {vλμm,n} be a positive function satisfying (3.381). For

the function {uλμm,n} in the statement of the theorem, we have (3.382). Assume
that x is a positive solution of (3.360) on NM × NN satisfying (3.363). Applying
Lemma 3.82 to the case of uλμ = x, we also have

c1v
λμ
m,n ≤ xm,n ≤ c2v

λμ
m,n for all large m,n, (3.388)

where c1, c2 are positive constants. From (3.382) and (3.388), we obtain

c1

c∗
u
λμ
m,n ≤ xm,n ≤ c2

c∗
u
λμ
m,n for all large m,n, (3.389)

which implies (3.365).
By (3.363), we have

lim
m,n→∞Δ

i
mΔ

j
n
(
xm,n − cm,nxm−k,n−l

) = 0, (3.390)

(i, j) ∈ [(Nλ+1 \Nh+1) × (N0 \Nr+1)] ∪ [(N0 \Nh) × (Nμ+1 \Nr+1)] \ (h, r) and

lim
m,n→∞Δ

λ
mΔ

μ
n
(
xm,n − cm,nxm−k,n−l

) = const > 0. (3.391)

Then sum (3.360) repeatedly, we have

ΔλmΔ
μ
n
(
xm,n − cm,nxm−k,n−l

)

= const +(−1)h+r−λ−μ−1 1
(h− λ− 1)!(r − μ− 1)!

×
∞∑

i=m

∞∑

j=n
(i−m+h−λ−1)(h−λ−1)( j − n + r − μ− 1)(r−μ−1) f

(
i, j, xi−τ, j−σ

)
.

(3.392)



Existence of positive solutions of certain nonlinear PDEs 211

for m ≥M, n ≥ N . By (3.389), we have

∞∑

i=m

∞∑

j=n
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, au

λμ
i−τ, j−σ

)∣∣ <∞, m ≥M, n ≥ N. (3.393)

Conversely, we assume that (3.364) holds. By virtue of (3.382), we may assume
that

∞∑

i=m

∞∑

j=n
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, av

λμ
i−τ, j−σ

)∣∣ <∞. (3.394)

Therefore we can choose M ≥ m0, N ≥ n0 so large such that

M̃ = min{M − k,M − τ} ≥ m, Ñ = min{N − l,N − σ} ≥ n,

∞∑

i=M

∞∑

j=N
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, av

λμ
i−τ, j−σ

)∣∣ <
1
4
aλ!μ!(h− λ− 1)!(r − μ− 1)!.

(3.395)

LetX denote all functions {ym,n} defined onNM×NN with supm≥M,n≥N |ym,n|/
(mλnμ) <∞. Define the subset Ω in X by

Ω =
{
y ∈ X | 1

2
amλnμ ≤ ym,n ≤ amλnμ, m ≥M, n ≥ N

}
. (3.396)

Clearly Ω is a nonempty, closed, and convex subset of X .
For y ∈ Ω, let x be a solution of the following equation:

xm,n − cm,nxm−k,n−l = ym,n, m ≥M, n ≥ N ,

xm,n =
yM,N

MλNμ v
λμ
m,n, (m,n) ∈ R′,

(3.397)

where R′ = [(NM̃ \NM+1) ×NÑ ] ∪ [NM̃ × (NÑ \NN )]. By the method of steps we
see that x is uniquely determined as a positive function on NM̃ × NÑ . We define
the operator S by

Sym,n = 3
4
a + (−1)h+r−1 1

(h− 1)!(r − 1)!

×
∞∑

i=m

∞∑

j=n
(i−m + h− 1)(h−1)( j − n + r − 1)(r−1) f

(
i, j, xi−τ, j−σ

)
;

(3.398)



212 Oscillations of nonlinear PDEs

for the case of λ = μ = 0 and

Sym,n = 3
4
amλnμ + (−1)h+r−λ−μ−1

m−1∑

s=M

n−1∑

t=N

(m− s)(λ−1)(n− t)(μ−1)

(λ− 1)!(μ− 1)!

×
∞∑

i=s

∞∑

j=t

(i− s + h− λ− 1)(h−λ−1)( j − t + r − μ− 1)(r−μ−1)

(h− λ− 1)!(r − μ− 1)!

× f
(
i, j, xi−τ, j−σ

)
,

(3.399)

for the case of at least one of λ and μ �= 0. Here we assume that the general factor
n(m) = 1 for m ≤ 0. It is obvious that we can draw the conclusion if we can prove
that S has a fixed point in Ω.

First we show that Sy is well defined on NM̃ × NÑ for each y ∈ Ω and that
SΩ ⊂ Ω. Let y ∈ Ω. We see that

xm,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· xm−k,n−l

(m− k)λ(n− l)μ
= ym,n

mλnμ
≤ a, m ≥M, n ≥ N ,

xm,n

mλnμ
= yM,N

MλNμ ·
v
λμ
m,n

mλnμ
≤ a

v
λμ
m,n

mλnμ
, (m,n) ∈ R′.

(3.400)

On the other hand, for m ≥M, n ≥ N , av
λμ
m,n/mλnμ satisfies

a
v
λμ
m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· av

λμ
m−k,n−l

(m− k)λ(n− l)μ
= a. (3.401)

According to Lemma 3.79, we obtain

xm,n

mλnμ
≤ a

v
λμ
m,n

mλnμ
, m ≥ M̃, n ≥ Ñ . (3.402)

Hence,

xm,n ≤ av
λμ
m,n, m ≥ M̃, n ≥ Ñ . (3.403)

In a similar way, we obtain

xm,n ≥ 1
2
av

λμ
m,n, m ≥ M̃, n ≥ Ñ . (3.404)
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Thus, for 0 ≤ λ ≤ h− 1, 0 ≤ μ ≤ r − 1, it follows that

Sym,n ≤ 3
4
amλnμ +

m−1∑

s=M

n−1∑

t=N

(m− s)(λ−1)(n− t)(μ−1)

(λ− 1)!(μ− 1)!

×
∞∑

i=s

∞∑

j=t

(i− s + h− λ− 1)(h−λ−1)( j − t + r − μ− 1)(r−μ−1)

(h− λ− 1)!(r − μ− 1)!

× ∣∣ f (i, j, avλμi−τ, j−σ
)∣∣

≤ 3
4
amλnμ +

1
4
amλnμ = amλnμ

(3.405)

for m ≥M, n ≥ N , and

Sym,n ≥ 3
4
amλnμ −

m−1∑

s=M

n−1∑

t=N

(m− s)(λ−1)(n− t)(μ−1)

(λ− 1)!(μ− 1)!

×
∞∑

i=s

∞∑

j=t

(i− s + h− λ− 1)(h−λ−1)( j − t + r − μ− 1)(r−μ−1)

(h− λ− 1)!(r − μ− 1)!

× ∣∣ f (i, j, avλμi−τ, j−σ
)∣∣

≥ 3
4
amλnμ − 1

4
amλnμ = 1

2
amλnμ

(3.406)

for m ≥ M, n ≥ N . The above observation shows that Sy is well defined on NM ×
NN and that Sy ∈ Ω.

Next, we show that S is continuous on Ω. We assume that yi, y ∈ Ω, i =
1, 2, . . . , yi → y as i → ∞. Let xi, x be solutions of (3.397) corresponding to yi

and y, respectively. Then by virtue of Lemma 3.81, we find that xi → x as i → ∞
on NM̃ × NÑ . By the Lebesgue dominated convergence theorem we conclude that
Syi → Sy as i→∞, which means that S is continuous on Ω.

It is easy to see that SΩ is relatively compact.
By the Schauder fixed point theorem, S has a fixed point in Ω, that is, there

exists a y ∈ Ω such that Sy = y. Then we easily see that x is a positive solution of
(3.360). The proof is complete. �

We can take the case u
λμ
m,n = mλnμ as an example.

Corollary 3.83. Let u
λμ
m,n = mλnμ. Condition (3.362) becomes that there exist two

positive constants a < 1 and b < 1 such that

1 − b ≤ lim inf
m,n→∞ cm,n ≤ lim sup

m,n→∞
cm,n ≤ 1 − a. (3.407)

Then the conclusion of Theorem 3.78 holds.
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Similarly, we can obtain the following conclusion.

Theorem 3.84. Let λ, μ be integers with 0 ≤ λ ≤ h − 1, 0 ≤ μ ≤ r − 1. Further,
assume that there exist two positive functions uλμ and w such that

−∞ < lim inf
m,n→∞

u
λμ
m,n − cm,nu

λμ
m−k,n−l

mλnμ
≤ lim sup

m,n→∞

u
λμ
m,n − cm,nu

λμ
m−k,n−l

mλnμ
< 0, (3.408)

wm,n − cm,nwm−k,n−l = 0, m ≥ m0, n ≥ n0. (3.409)

Then (3.360) has a positive solution satisfying

lim inf
m,n→∞

xm,n

wm,n
> 0, (3.410)

xm,n − cm,nxm−k,n−l
mλnμ

�→ const < 0, m,n �→∞, (3.411)

if and only if

∞∑

i=m

∞∑

j=n
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, awi−τ, j−σ

)∣∣ <∞, a > 0. (3.412)

Moreover, if x is a positive solution of (3.360) satisfying (3.410) and (3.411), then

lim sup
m,n→∞

xm,n

wm,n
<∞. (3.413)

We need the following lemmas in proving Theorem 3.84.

Lemma 3.85. Let λ,μ be integers with 0 ≤ λ ≤ h− 1, 0 ≤ μ ≤ r − 1. The following
three statements (i)–(iii) are equivalent.

(i) There exists a positive function x satisfying (3.411).
(ii) There exists a positive function uλμ satisfying (3.408).

(iii) There exists a positive function vλμ satisfying

v
λμ
m,n − cm,nv

λμ
m−k,n−l

mλnμ
= −1 for all large m,n. (3.414)

Proof . It is clear that (i) implies (ii), and (iii) implies (i). We will prove that (ii)
implies (iii). Suppose that (ii) holds. Then there exists a positive constant c > 0
and M ≥ m0, N ≥ n0 such that

u
λμ
m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· u

λμ
m−k,n−l

(m− k)λ(n− l)μ
≤ −c, m ≥M, n ≥ N.

(3.415)
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We can choose a function ϕ : R−1(M,N) → R such that

u
λμ
m,n

mλnμ
≤ −cϕm,n, (m,n) ∈ R−1(M,N),

ϕM,N − cM,N
(M − k)λ(N − l)μ

MλNμ ϕM−k,N−l = 1.

(3.416)

Let ṽ :
⋃∞
i=−1 Ri(M,N) → R be a solution of the IVP

ṽm,n − cm,n
(m− k)λ(n− l)μ

mλnμ
ṽm−k,n−l = −c, m ≥M, n ≥ N ,

ṽm,n = −cϕm,n, (m,n) ∈ R−1(M,N).
(3.417)

We see from Lemma 3.80 that

ṽm,n ≥ u
λμ
m,n

mλnμ
> 0, m ≥M − k, n ≥ N − l. (3.418)

Then v
λμ
m,n = (1/c)mλnμṽm,n is a positive function defined on

⋃∞
i=−1 Ri(M,N) and

satisfies

v
λμ
m,n − cm,nv

λμ
m−k,n−l

mλnμ
= −1, m ≥M, n ≥ N. (3.419)

Hence (iii) holds. The proof is complete. �

Lemma 3.86. Let both w1 and w2 be positive functions on NM0−k × NN0−l which
satisfy (3.382). Then there exist positive constants c∗ and c∗ such that

c∗w2
m,n ≤ w1

m,n ≤ c∗w2
m,n for m ≥M0 − k, n ≥ N0 − l. (3.420)

Lemma 3.86 is a direct corollary of Lemma 3.79.

Lemma 3.87. Let w and uλμ be positive functions which satisfy (3.408) and (3.397),
0 ≤ λ ≤ h − 1, 0 ≤ μ ≤ r − 1. Then there exist constants c∗ > 0, M ≥ m0, N ≥ n0

such that

u
λμ
m,n ≤ c∗wm,n, m ≥M, n ≥ N. (3.421)

Proof . By (3.408), there are M ≥ m0, N ≥ n0 such that

u
λμ
m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· u

λμ
m−k,n−l

(m− k)λ(n− l)μ
< 0, m ≥M, n ≥ N.

(3.422)
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We note that

wm,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· wm−k,n−l

(m− k)λ(n− l)μ
= 0, m ≥M, n ≥ N.

(3.423)

For a sufficiently large number c∗ > 0, we have

u
λμ
m,n

mλnμ
≤ c∗wm,n

mλnμ
, (m,n) ∈ R−1(M,N). (3.424)

From Lemma 3.79, we obtain

u
λμ
m,n

mλnμ
≤ c∗wm,n

mλnμ
, m ≥M − k, n ≥ N − l. (3.425)

Hence the proof is complete. �

Proof of Theorem 3.84. Assume that xm,n is a positive solution of (3.322) satisfy-
ing (3.388)-(3.389). Since xm,n satisfies (3.389), applying Lemma 3.87 to the case
uλμ = x, we obtain

xm,n ≤ c∗wm,n for all large m,n, (3.426)

where c∗ is a positive constant. Thus we get (3.408). On the other hand, by (3.388),
there exists a positive constant c∗ satisfying

c∗wm,n ≤ xm,n for all large m,n. (3.427)

As in the proof of Theorem 3.78, we can show that (3.397) holds.
Conversely, we suppose that (3.397) holds. Since we assume the existence of a

positive function uλμ satisfying (3.381), by Lemma 3.85, there is a positive function
vλμ satisfying (3.409). Using Lemma 3.87 in the case uλμ = vλμ, we find that

∞∑

i=m

∞∑

j=n
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, c1

(
v
λμ
i−τ, j−σ +wi−τ, j−σ

))∣∣ <∞ (3.428)

for some c1 > 0. By Lemma 3.87, there exist M∗ > m0, N∗ > n0, c2 > c1 such that

(
c2 − c1

)
v
λμ
m,n ≤ 1

3
c1wm,n, m ≥M∗, n ≥ N∗. (3.429)
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Choose M ≥ m0, N ≥ n0 so large that

M̃ ≡ min
{
M − k,M − τ

} ≥M∗, Ñ ≡ min
{
N − l,N − σ

} ≥ N∗,
(3.430)

∞∑

i=M

∞∑

j=N
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, c1

[
v
λμ
i−τ, j−σ +wi−τ, j−σ

])∣∣

<
1
2

(
c2 − c1

)
λ!(h− λ− 1)!μ!(r − μ− 1)!.

(3.431)

Define the set Ω by

Ω =
{

y :
∞⋃

i=−1

Ri(M,N) �→ R | c1m
λnμ ≤ ym,n ≤ c2m

λnμ, m ≥M, n ≥ N

}

.

(3.432)

For y ∈ Ω, let x be a solution of

xm,n − cm,nxm−k,n−l = −ym,n, m ≥M, n ≥ N ,

xm,n =
yM,N

MλNμ v
λμ
m,n +

2
3
c1wm,n, (m,n) ∈ R−1(M,N).

(3.433)

ClearlyΩ is a nonempty, closed, and convex set of Banach spaceX and x is unique-
ly determined by y ∈ Ω.

Let c̃ = (c1 + c2)/2 and define the operator F by

Fym,n = c̃ − (−1)h+r−1 1
(h− 1)!(r − 1)!

×
∞∑

i=m

∞∑

j=n
(i−m + h− 1)(h−1)( j − n + r − 1)r−1

× f
(
i, j, xi−τ, j−σ

)
, m ≥M, n ≥ N ,

(3.434)

for λ = μ = 0,

Fym,n = c̃mλnμ − (−1)h+r−λ−μ−1

×
m−1∑

s=M

n−1∑

t=N

(m− s)(λ−1)(n− t)(μ−1)

(λ− 1)!(μ− 1)!

×
∞∑

i=s

∞∑

j=t

(i− s + h− λ− 1)(h−λ−1)( j − n + r − μ− 1)r−μ−1

(h− λ− 1)!(r − μ− 1)!

× f
(
i, j, xi−τ, j−σ

)
, m ≥M, n ≥ N ,

(3.435)
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for at least one of λ,μ �= 0. We show that Fy is well defined for y ∈ Ω and FΩ ⊂ Ω.
For y ∈ Ω, we see that

xm,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· xm−k,n−l

(m− k)λ(n− l)μ
= − ym,n

mλnμ
, m ≥M, n ≥ N ,

xm,n

mλnμ
= yM,N

MλNμ ·
v
λμ
m,n

mλnμ
+

2
3
· c1wm,n

mλnμ
, (m,n) ∈ R−1(M,N).

(3.436)

By virtue of (3.429) and (3.430), we observe that

c2v
λμ
m,n

mλnμ
+

1
3
· c1wm,n

mλnμ
≤ yM,Nv

λμ
m,n

MλNμmλnμ
+

2
3
· c1wm,n

mλnμ
≤ c1v

λμ
m,n

mλnμ
+
c1wm,n

mλnμ
. (3.437)

Let

x̃m,n = c2v
λμ
m,n +

1
3
c1wm,n, m ≥ M̃, n ≥ Ñ . (3.438)

Then, for m ≥M, n ≥ N , we have

x̃m,n

mλnμ
− cm,n

(m− k)λ(n− l)μ

mλnμ
· x̃m−k,n−l

(m− k)λ(n− l)μ
= −c2 ≤ − ym,n

mλnμ
. (3.439)

From Lemma 3.79, we have

xm,n ≥ x̃m,n = c2v
λμ
m,n +

1
3
c1wm,n, m ≥ M̃, n ≥ Ñ . (3.440)

In a similar way, we obtain

xm,n ≤ c1v
λμ
m,n + c1wm,n, m ≥ M̃, n ≥ Ñ . (3.441)

By (3.440), we see that x is positive for m ≥ M̃, n ≥ Ñ . Furthermore, by (3.428)
and (3.441), Fy is well defined for all y ∈ Ω. From (3.431) and (3.441), it follows
that

Fym,n ≤ c̃mλnμ +
mλnμ

λ!μ!(h− λ− 1)!(r − μ− 1)!

×
∞∑

i=s

∞∑

j=t
ih−λ−1 jr−μ−1

∣
∣ f
(
i, j, c1

[
v
λμ
i−τ, j−σ +wi−τ, j−σ

])∣∣

≤
(
c̃ +

c2 − c1

2

)
mλnμ = c2m

λnμ, m ≥M, n ≥ N ,

Fym,n ≥
(
c̃ − c2 − c1

2

)
mλnμ, m ≥M, n ≥ N ,

(3.442)

which implies that Fy ∈ Ω.
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As in the proof of Theorem 3.78, the continuity of F and the relatively com-
pactness of FΩ are verified. The Schauder fixed point theorem implies that F has
a fixed point in Ω and the x corresponding y is a solution of (3.322). Obviously,
we can see that x satisfies (3.388). The proof is complete. �

Next, we will assume that there exists a function F : Nm0 ×Nn0 × R such that

∣
∣ f (m,n,u)

∣
∣ ≤ F

(
m,n, |u|), (m,n,u) ∈ Nm0 ×Nn0 × R, (3.443)

and for all (m,n) ∈ Nm0 ×Nn0 , F(m,n,u) is nonincreasing in u for u ∈ R.

Theorem 3.88. Let 0 ≤ cm,n ≤ c0 < 1 and λ, μ be integers with 0 ≤ λ ≤ h − 1,
0 ≤ μ ≤ r − 1. If

∞∑

m=M

∞∑

n=N
mh−λ−1nr−μ−1F

(
m,n, c(m− τ)λ(n− σ)μ

)
<∞ for some c > 0,

(3.444)

then (3.322) has an eventually positive solution x satisfying

0 < lim inf
m,n→∞

xm,n

mλnμ
≤ lim sup

m,n→∞

xm,n

mλnμ
<∞. (3.445)

For this result, we prepare the following lemma.

Lemma 3.89. Let 0 ≤ cm,n ≤ c0 < 1 and λ, μ be integers with 0 ≤ λ ≤ h − 1,
0 ≤ μ ≤ r − 1. Let uλμ be a positive function satisfying (3.323). Then

0 < lim inf
m,n→∞

u
λμ
m,n

mλnμ
≤ lim sup

m,n→∞

u
λμ
m,n

mλnμ
<∞. (3.446)

Proof . Define v
λμ
m,n = mλnμ. We observe that

lim
m,n→∞

v
λμ
m,n − c0v

λμ
m−k,n−l

mλnμ
= 1 − c0. (3.447)

Then we can choose sufficiently large M, N , a sufficiently small c∗ > 0, and a
sufficiently large c∗ > 0 such that

c∗
v
λμ
m,n

mλnμ
≤ u

λμ
m,n − cm,nu

λμ
m−k,n−l

mλnμ
≤ c∗

v
λμ
m,n − c0v

λμ
m−k,n−l

mλnμ
, m ≥M, n ≥ N ,

c∗v
λμ
m,n ≤ u

λμ
m,n ≤ c∗v

λμ
m,n, (m,n) ∈ R−1(M,N).

(3.448)
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It follows that

c∗v
λμ
m,n ≤ u

λμ
m,n − cm,nu

λμ
m−k,n−l ≤ c∗v

λμ
m,n − c0c

∗v
λμ
m−k,n−l, m ≥M, m ≥ N ,

c∗v
λμ
m,n ≤ u

λμ
m,n ≤ c∗v

λμ
m,n, (m,n) ∈ R−1(M,N).

(3.449)

So we have

c∗ ≤ u
λμ
m,n

v
λμ
m,n

≤ c∗, m ≥M − k, n ≥ N − l. (3.450)

The proof is complete. �

Proof of Theorem 3.88. From Theorem 3.78, we have that under the condition of
Theorem 3.88

c∗ ≤ xm,n

u
λμ
m,n

≤ c∗ for all large m,n. (3.451)

By Lemma 3.89, we obtain

c∗ ≤ u
λμ
m,n

v
λμ
m,n

≤ c∗ for all large m,n. (3.452)

Hence

0 < lim inf
m,n→∞

xm,n

mλnμ
≤ lim sup

m,n→∞

xm,n

mλnμ
<∞. (3.453)

The proof is complete. �

3.6. Application in population models

In order to describe the population of the Australian sheep blowfly that agrees well
with the experimental data of Nicholson, Gurney et al. proposed the following
nonlinear delay differential equation:

P′(t) = −δP(t) + qP(t − σ)e−aP(t−σ), (3.454)

where P(t) is the size of the population at time t, q is the maximum per capita daily
egg production, 1/a is the size at which the blowfly population reproduces at its
maximum rate, δ is the pair capita daily adult death rate, and σ is the generation
time. Since this equation explains Nicholson’s data of blowfly quite accurately, it is
now referred to as the Nicholson’s blowflies model.
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The discrete analog of (3.454) is the delay difference equation

Pn+1 − Pn = −δPn + qPn−σe−aPn−σ , (3.455)

where q, a ∈ (0,∞), δ ∈ (0, 1) and n ∈ N . The state variable Pn in (3.455) rep-
resents the number of sexually mature blowflies in cycle n as a closed system of
the mature flies surviving from previous cycles plus the flies which have survived
from the previous σ cycle. Specifically, qPn−σe−aPn−σ represents the number of ma-
ture flies that were born in the (n− σ)th cycle and survived to maturity in the nth
cycle.

In this section, we will consider the nonlinear delay partial difference equation

Pm+1,n + Pm,n+1 − Pm,n = −δPm,n + qPm−σ ,n−τe−aPm−σ ,n−τ , (m,n) ∈ N2
0 ,

(3.456)

where q, a ∈ (0,∞), δ ∈ (0, 1), q > e(1+δ), σ and τ ∈ N1. Here Pm,n represents the
number of the population of blowflies at time m and site n. Let Ω = N−σ ×N−τ \
N0 ×N1. Given a function φm,n defined on Ω, it is easy to construct by induction a
double sequence {Pm,n} which equals φm,n on Ω and satisfies (3.456) on N0 × N1.
Such a double sequence is unique and is said to be a solution of (3.456) with the
initial condition

Pm,n = φm,n, (m,n) ∈ Ω. (3.457)

We say that P∗ is an equilibrium of (3.456) if

P∗ = −δP∗ + qP∗e−aP
∗
. (3.458)

From (3.458) it is clear that there are two equilibria for (3.458), P0 = 0, which
represents extinction, and a positive equilibrium

P∗ = 1
a

ln
(

q

1 + δ

)
, (3.459)

provided that q > e(1 + δ).
A solution {Pm,n} of (3.456) is said to be eventually positive if Pm,n > 0 for

all large m and n. It is said to be oscillatory if it is neither eventually positive nor
eventually negative. We consider only such positive solutions of (3.456), which are
nontrivial for all large m, n.

A solution {Pm,n} of (3.456) is said to oscillate about the equilibrium P∗ if the
terms Pm,n−P∗ of the sequence {Pm,n−P∗} are neither all eventually positive nor
all eventually negative.

We will show that every positive solution of (3.456) which does not oscillate
about the positive equilibrium point P∗ converges to P∗ as m,n→ ∞ and present
some sufficient conditions for oscillation of all positive solutions of (3.456) about
P∗.
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Theorem 3.90. Suppose that δ ∈ (0, 1], β ≥ δ, q ≥ 0, σ , τ are positive integers, and
that f : R → R is nondecreasing function. Suppose further that x f (x) > 0 for all
x �= 0. Then every nonoscillatory solution of the nonlinear delay difference equation

xm+1,n + βxm,n+1 − δxm,n + q f
(
xm−σ ,n−τ

) = 0 (3.460)

tends to zero as m,n→∞.

Proof . We will consider only the case when {xm,n} is eventually positive as the
arguments when {xm,n} is eventually negative are similar and hence omitted. Sup-
pose that there exist m0 > 0 and n0 > 0 sufficiently large such that xm+1,n > 0,
xm,n+1 > 0, xm,n > 0, xm−σ ,n−τ > 0 for m ≥ m0 and n ≥ n0. Then, from (3.460) we
have

xm+1,n + βxm,n+1 ≤ δxm,n, m ≥ m0, n ≥ n0, (3.461)

from which it follows that

xm+1,n ≤ δxm,n, xm,n+1 ≤ δ

β
xm,n, m ≥ m0, n ≥ n0. (3.462)

Now, since β ≥ δ and δ ≤ 1, then (3.462) implies that

xm+1,n ≤ xm,n, xm,n+1 ≤ xm,n, m ≥ m0, n ≥ n0, (3.463)

and then {xm,n} is nonincreasing sequence in both m and n; thus xm,n → b ≥ 0 as
m,n→∞. We assert that b = 0. If not, there existm1 ≥ m0 and n1 ≥ n0 sufficiently
large such that xm,n+1 ≥ b > 0, xm+1,n ≥ b > 0, xm,n > b and xm−σ ,n−τ ≥ b > 0 for
m ≥ M = m1 + σ and n ≥ N = n1 + τ. Now, since f is a nondecreasing function
then f (xm−σ ,n−τ) ≥ f (b). From (3.460), we have

xm+1,n + βxm,n+1 − δxm,n ≤ −q f (b). (3.464)

Now, it follows from Lemma 2.74 that

m∑

i=M

n∑

j=N

(
xi+1, j + βxi, j+1 − δxi, j

) ≥ xm,n+1 − δxM,N ≥ b − δxM,N (3.465)

for large M and N . On the other hand, from (3.464) it is clear that for large M and
N ,

m∑

i=M

n∑

j=N

(
xi+1, j + βxi, j+1 − δxi, j

) ≤ −q f (b)(m−M)(n−N). (3.466)
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Combining (3.465) and (3.466), we get

0 ≥ b − δxM,N + q f (b)(m−M)(n−N). (3.467)

If b > 0, then the right-hand side of (3.467) tends to infinity as m,n→∞ and this
leads to a contradiction. Hence b = 0. This completes the proof. �

Now, we are ready to state our main results.

Theorem 3.91. Let {Pm,n} be a positive solution of (3.456) which does not oscillate
about P∗. Then Pm,n tends to P∗ as m,n→∞.

Proof . Let {Pm,n} be an arbitrary positive solution of (3.456) which does not os-
cillate about P∗ and let

Pm,n = P∗ +
1
a
zm,n. (3.468)

Clearly, zm,n does not oscillate, and satisfies the equation

zm+1,n + zm,n+1 − pzm,n + aP∗(δ + 1) f1
(
zm−σ ,n−τ

)− (δ + 1) f2
(
zm−σ ,n−τ

) = 0
(3.469)

with 0 < p = (1 − δ) < 1,

f1(u) = 1 − e−u, f2(u) = ue−u. (3.470)

We observe that f1(u) ≥ f2(u) for all u ∈ R, u f1(u) > 0 and u f2(u) > 0 for all
u �= 0. Since P∗ = (1/a) ln(q/(δ + 1)), thus, in this case, the condition aP∗ > 1 is
the same as ln(q/(δ + 1)) > 1, that is, q > e(δ + 1), then from (3.469) we have

zm+1,n + zm,n+1 − pzm,n + (δ + 1)
(
aP∗ − 1

)
f1
(
zm−σ ,n−τ

) ≤ 0. (3.471)

Note that f1 is nondecreasing function and that (δ + 1)(aP∗ − 1) > 0. Then, from
Corollary 3.27, the equation

zm+1,n + zm,n+1 − pzm,n + (δ + 1)
(
aP∗ − 1

)
f1
(
zm−σ ,n−τ

) = 0 (3.472)

has an eventually positive solution. From (3.470) and since p < 1 and (δ+1)(aP∗−
1) > 0, Theorem 3.90 implies that every nonoscillatory solution of (3.472) tends
to zero as m,n → ∞. Then from the transformation (3.468), we see that every
positive solution of (3.456) tends to P∗ as m,n→∞. The proof is complete. �

Theorem 3.92. Assume that every solution of the equation

zm+1,n + zm,n+1 − pzm,n + (δ + 1)
(
aP∗ − 1

)
zm−σ ,n−τ = 0 (3.473)

oscillates. Then every positive solution of (3.456) oscillates about P∗.
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Proof . Assume for the sake of contradiction that (3.456) has a positive solution
which does not oscillate about P∗. Without loss of generality, we assume that
Pm,n > P∗ and this implies that zm,n > 0. (The case when Pm,n < P∗ implies that
zm,n < 0 for which the proof is similar, since u f1(u) > 0 for all u �= 0.) Again define
zm,n as in (3.468). Then, from the proof of Theorem 3.91 it is clear that zm,n > 0
and satisfies (3.472). From (3.470) we observe that f1 is nondecreasing function,
(δ + 1)(aP∗ − 1) > 0,

u f1(u) > 0 for u �= 0, lim
u→0

f1(u)
u

= 1. (3.474)

Also we claim that

f1(u) ≤ u for u > 0. (3.475)

The proof of (3.475) follows from the observation that f1(0) = 0 and that

d

du

(
f1(u) − u

) = −
(

1 − 1
eu

)
< 0 for u > 0. (3.476)

Then (3.475) holds. Then, from (3.474) and (3.475), Theorem 3.8 implies that
there exists an eventually positive solution of (3.473). This contradiction shows
that every positive solution of (3.456) oscillates about P∗.

Theorem 3.92 shows that the oscillation of every positive solution of (3.456)
about P∗ is equivalent to the oscillation of the delay difference equation (3.473).
Thus, we can use the result in Section 2.2 to obtain an oscillation criterion. We
state such a result in the following theorem. �

Theorem 3.93. Every positive solution of (3.456) oscillates about P∗ if and only if

(δ + 1)
(
aP∗ − 1

) (σ + τ + 1)σ+τ+1

σσττ(1 − δ)σ+τ+1
> 1. (3.477)

It remains an open problem to prove that every oscillatory solution of (3.456) tends
to P∗ as m,n→∞ to complete the proof of global attractivity.

Next, we will consider the discrete partial delay survival red blood cells model

Pm+1,n + Pm,n+1 − Pm,n = −δPm,n + qe−aPm−σ ,n−τ , (3.478)

where Pm,n represents the number of the red blood cells at time m and site n, δ ∈
(0, 1), a and q are positive constants and σ and τ are positive integers. We will show
that (3.478) has a unique positive steady state P∗ and that every positive solution
of (3.478) which does not oscillate about P∗ converges to P∗ as m,n → ∞, and
present necessary and sufficient conditions for oscillation of all positive solutions
of (3.478) about P∗.
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Let Ω = N−σ × N−τ \ N0 × N1. Given a function φm,n defined on Ω, it is easy
to construct by induction a double sequence {Pm,n} which equals φm,n on Ω and
satisfies (3.478) on N0 ×N1. We say that P∗ is an equilibrium of (3.478) if

P∗ = −δP∗ + qe−aP
∗
. (3.479)

Now, we prove that (3.478) has a unique equilibrium P∗. Observe that the equi-
librium points of (3.478) are the solutions of the equation

qe−aP
∗ − (1 + δ)P∗ = 0. (3.480)

Set

f (x) = qe−ax − (1 + δ)x, (3.481)

then f (0)=q>0 and f (∞)=−∞, so that there exists x∗> 0 such that f (x∗) = 0.
Now since f ′(x) = −aqe−ax − δ < 0 for all x > 0, then f ′(x∗) < 0, from which it
follows that f (x) = 0 has exactly one solution x∗, and then (3.478) has a unique
equilibrium point P∗.

Theorem 3.94. Let {Pm,n} be a positive solution of (3.478) which does not oscillate
about P∗. Then Pm,n tends to P∗ as m,n→∞.

Proof . Let {Pm,n} be an arbitrary positive solution of (3.478) which does not os-
cillate about P∗ and let

Pm,n = P∗ +
1
a
zm,n. (3.482)

Clearly, zm,n does not oscillate, and satisfies the equation

zm+1,n + zm,n+1 − pzm,n + qae−aP
∗
f
(
zm−σ ,n−τ

) = 0, (3.483)

where

0 < p = 1 − δ < 1, f (u) = 1 − e−u. (3.484)

Note that, f is a nondecreasing function,

u f (u) > 0 for u �= 0, lim
u→0

f (u)
u

= 1. (3.485)

From (3.485) and since p < 1 and qae−aP
∗
> 0, Theorem 3.90 implies that every

nonoscillatory solution of (3.483) tends to zero asm,n→∞. Then from the trans-
formation (3.482), we see that every positive solution of (3.478) which does not
oscillate about P∗ tends to P∗ as m,n→∞. The proof is complete. �
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Theorem 3.95. Then every positive solution of (3.478) oscillates about P∗ if and only
if

qae−aP
∗ (σ + τ + 1)σ+τ+1

σσττ(1 − δ)σ+τ+1
> 1. (3.486)

Proof . Assume for the sake of contradiction that (3.478) has a positive solution
which does not oscillate about P∗. Without loss of generality, we assume that
Pm,n > P∗ and this implies that zm,n > 0. The case when Pm,n < P∗ implies that
zm,n < 0 for which the proof is similar. In fact, we see that if {zm,n} is a negative so-
lution of (3.483) then {Um,n} = {−zm,n} is a positive solution of (3.483). From the
transformation (3.482) it is clear that Pm,n oscillates about P∗ if and only if zm,n os-
cillates about zero. The transformation (3.482) transforms (3.478) to (3.483) and
(3.485) holds. Also we claim that

f (u) ≤ u for u > 0. (3.487)

The proof of (3.487) follows from the observation that f (0) = 0 and that

d

du

(
f (u) − u

) = −
(

1 − 1
eu

)
< 0 for u > 0. (3.488)

Then (3.487) holds. The linearized equation associated with (3.483) is

zm+1,n + zm,n+1 − pzm,n + qae−aP
∗
zm−σ ,n−τ = 0. (3.489)

Then by Theorem 2.3, every solution of (3.489) oscillates if and only if (3.486)
holds. The proof is now elementary consequence of the linearized oscillation
Theorem 3.9 according to which the following statements are true. If (3.485) and
(3.487) hold, then every solution of (3.483) oscillates if and only if every solu-
tion of (3.489) oscillates. Thus, in conclusion, every positive solution of (3.478)
oscillates about P∗. �

3.7. Oscillations of initial boundary value problems

3.7.1. Parabolic equations

Consider delay partial difference equations of the form

Δ2ui, j = ajΔ
2
1ui−1, j − qi, j f (ui, j−σ), 1 ≤ i ≤ n, j ≥ 0, (3.490)

where the delay σ is a nonnegative integer, aj > 0 for j ≥ 0 and f is a real function
on R. The real function ui, j is dependent on integral variables i, j which satisfy
0 ≤ i ≤ n + 1 and j ≥ −σ . In (3.490), we use the following notations:

Δ2ui, j = ui, j+1 − ui, j , Δ1ui, j = ui+1, j − ui, j ,

Δ2
1ui−1, j = Δ1

(
Δ1ui−1, j

) = ui+1, j − 2ui, j + ui−1, j .
(3.491)
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We assume that ui, j is subject to the conditions

u0, j + αju1, j = 0, j ≥ 0, (3.492)

un+1, j + βjun, j = 0, j ≥ 0, (3.493)

ui, j = ρi, j , −σ ≤ j ≤ 0, 0 ≤ i ≤ n + 1, (3.494)

where αj + 1 ≥ 0 and βj + 1 ≥ 0 for j ≥ 0.
Given an arbitrary function ρi, j which is defined for −σ ≤ j ≤ 0 and 0 ≤ i ≤

n + 1 and arbitrary functions αj and βj for j ≥ 0, we can show that a solution to
(3.490)–(3.494) exists and is unique. In fact, from (3.490), we have

ui,1 = a0ρi+1,0 +
(
1 − 2a0

)
ρi,0 + a0ρi−1,0 − qi,0 f

(
ρi,−σ

)
, 1 ≤ i ≤ n,

u0,1 = −α1u1,1, un+1,1 = −β1un,1.
(3.495)

Inductively, we see that {ui, j+1}n+1
i=1 is determined uniquely by {ui,k}n+1

i=0 , k ≤ j.
Let vi, j be a real function defined for 0 ≤ i ≤ n+ 1 and j ≥ −σ . Suppose there

is some nonnegative integer T such that vi, j > 0 for 1 ≤ i ≤ n and j ≥ T , then
vi, j is said to be eventually positive. An eventually negative vi, j is similarly defined.
The function vi, j is said to be oscillatory for 1 ≤ i ≤ n and j ≥ 0, if it is neither
eventually positive nor eventually negative.

We now assume that qi, j ≥ 0 for 1 ≤ i ≤ n and j ≥ 0. Let

Qj = min
{
qi, j | 1 ≤ i ≤ n

}
. (3.496)

By the average technique we will prove the following result.

Theorem 3.96. Let σ be a positive integer and suppose thatQj ≥ 0 for j ≥ 0. Let f (x)
be a real function defined on R such that x f (x) > 0 for x �= 0, f (x) is nondecreasing
on R, f (x) and − f (−x) are convex on (0, +∞) such that

lim
x→0

x

f (x)
=M > 0. (3.497)

If

lim inf
n→∞

1
σ

n−1∑

j=n−σ
Qj >

Mσσ

(1 + σ)1+σ
(3.498)

then every solution of (3.490)–(3.494) oscillates.

Proof . Suppose to the contrary, let {ui, j} be an eventually positive solution of
(3.490) such that ui, j > 0 for 1 ≤ i ≤ n and j ≥ T . From (3.490), we have

1
n

n∑

i=1

Δ2ui, j =
aj
n

n∑

i=1

Δ2
1ui−1, j −

n∑

i=1

qi, j
n
f
(
ui, j−σ

)
. (3.499)
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Since f is convex, by Jensen’s inequality (1.29), we have

n∑

i=1

qi, j
n
f
(
ui, j−σ

) ≥ Qj f

(
1
n

n∑

i=1

ui, j−σ

)

. (3.500)

By conditions (3.492) and (3.493),

aj

n∑

i=1

Δ2
1ui−1, j = aj

[− (βj + 1
)
un, j −

(
αj + 1

)
u1, j

] ≤ 0 for j ≥ T. (3.501)

Let ωj = (1/n)
∑n

i=1 ui, j . From (3.499)–(3.501), we have

Δωj +Qj f
(
ωj−σ

) ≤ 0, j ≥ T , (3.502)

that is, (3.502) has a positive solution ωj , j ≥ T .
In order to complete the proof of Theorem 3.96, we need the following lem-

mas.

Lemma 3.97. Assume that the assumptions of Theorem 3.96 hold. If the difference
inequality (3.502) has an eventually positive solution, then (3.498) does not hold.

Proof . Let {ωi} be an eventually positive solution of (3.502) such that ωi > 0 for
i ≥ T . Then Δωi < 0 for i ≥ T . Hence limi→∞ ωi exists and

ωi +
i−1∑

j=T+σ

Qj f
(
ωj−σ

) ≤ ωT. (3.503)

Thus

∞∑

j=N
Qj f

(
ωj−σ

)
<∞. (3.504)

If (3.498) holds, then
∑∞

j=N Qj = ∞, which together with (3.504) imply that ωj →
0 as j →∞.

From (3.502),

Δωn +Qn f
(
ωn
) ≤ Δωn +Qn f

(
ωn−σ

) ≤ 0, (3.505)

so that

Qn ≤ ωn
f
(
ωn
)
(

1 − ωn+1

ωn

)
,

1
σ

n−1∑

i=n−σ
Qi ≤ 1

σ

n−1∑

i=n−σ

ωi
f
(
ωi
)
(

1 − ωi+1

ωi

)
.

(3.506)
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Set χ = Mσσ/(σ + 1)σ+1. If (3.498) holds, then there exists a constant τ such that
for sufficiently large n,

χ < τ ≤ 1
σ

n−1∑

i=n−σ
Qi. (3.507)

Since ωj → 0 as j →∞, there exists ε > 0 such that ε < (τ/χ − 1)M and

ωn
f
(
ωn
) ≤M + ε for all large n. (3.508)

From (3.506) and (3.508), by the inequality between the arithmetic and geometric
means, we have

τ ≤ (M + ε)
1
σ

n−1∑

i=n−σ

(
1 − ωi+1

ωi

)
≤ (M + ε)

[

1 −
(
ωn
ωn−σ

)1/σ
]

. (3.509)

By means of the inequality

1 − λ ≤
(

σσ

(σ + 1)σ+1

)1/σ

λ−1/σ , 0 < λ ≤ 1, (3.510)

we obtain

ωn
ωn−σ

≤
(

1 − τ

M + ε

)σ
≤ χ(M + ε)

τM
< 1, (3.511)

for all large n.
Substituting the above inequality into (3.502), we have

Δωn +Qn f
(

τM

χ(M + ε)
ωn

)
≤ Δωn +Qn f

(
ωn−σ

) ≤ 0. (3.512)

A similar procedure then leads to

ωn−σ
ωn

≥
(

τM

χ(M + ε)

)2

for n ≥ n1. (3.513)

Inductively, we see that for every positive integer K , there is nK such that

ωn−σ
ωn

≥
(

τM

χ(M + ε)

)K

for n ≥ nK . (3.514)
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On the other hand, (3.498) implies that there is a positive constant c such that for
all large n,

n∑

i=n−σ
Qi > c,

n′∑

i=n−σ
Qj ≥ c

2
,

n∑

i=n′
Qi ≥ c

2
, (3.515)

where n− σ ≤ n
′ ≤ n.

Since Δωi < 0, from (3.502) we obtain

ωn′+1 − ωn−σ = −
n′∑

i=n−σ
Qi f

(
ωi−σ

) ≤ − f
(
ωn′−σ

) n′∑

i=n−σ
Qi ≤ − c

2
f
(
ωn′−σ

)
,

ωn+1 − ωn′ = −
n∑

i=n′
Qi f

(
ωi−σ

) ≤ − f
(
ωn−σ

) n∑

i=n′
Qi ≤ − c

2
f
(
ωn−σ

)
.

(3.516)

Combining (3.516), we obtain

0≥ωn+1−ωn′ +
c

2
f
(
ωn−σ

)ωn−σ
ωn−σ

≥ ωn+1 − ωn′ +
c

2
f
(
ωn−σ

)

ωn−σ

(
ωn′+1 +

c

2
f
(
ωn′−σ

))
,

(3.517)
so that

−ωn′ +
(
c

2

)2 f
(
ωn−σ

)

ωn−σ
f
(
ωn′−σ

) ≤ 0,

ωn′−σ
ωn′

≤
(

2
c

)2 ωn−σ
f
(
ωn−σ

)
ωn′−σ
f
(
ωn′−σ

) �→
(

2
c

)2

M2,

(3.518)

which contradicts (3.514). In fact, there exists a positive integer K such that

(
τM

χ(M + ε)

)K
>

(
2
c

)2

M2. (3.519)

The proof of Lemma 3.97 is complete. �
We consider (3.502) together with the equation

Δωj +Qj f
(
ωj−σ

) = 0, j ≥ 0. (3.520)

Lemma 3.98. Let σ be a positive integer. Suppose that Qj ≥ 0 for j ≥ 0 and

σ−1∑

j=0

Qn+ j > 0 for all large n. (3.521)

Suppose further that f (x) is a positive and nondecreasing function on (0,∞). If
(3.502) has an eventually positive solution, so does (3.520).
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Proof . Assume that {ωj} is an eventually positive solution of (3.502). There exists
T > 0 such that ωj > 0 for j ≥ T − 2σ , then Δωj < 0 for j ≥ T − σ and

ωi +
i−1∑

j=T
Qj f

(
ωj−σ

) ≤ ωT. (3.522)

Since lim j→∞ ωj = ω∞ exists, so

ωn ≥ ω∞ +
∞∑

j=n
Qj f

(
ωj−σ

)
, n ≥ T. (3.523)

Let X denote the partially ordered Banach space of all bounded real sequences
{xn}∞n=T with the usual supreme norm and the componentwise defined partial or-
dering ≤. Let Ω be a subset of X defined by

Ω = {{xn
} ∈ X | ω∞ ≤ xn ≤ ωn, n ≥ T

}
. (3.524)

For every x ∈ Ω, define

xn =
⎧
⎨

⎩

xn, n ≥ T ,

xT + ωn − ωT , T − σ ≤ n ≤ T.
(3.525)

Note that 0 < xn ≤ ωn for T − σ ≤ n < T .
Define a mapping S on Ω by

(Sx)n = ω∞ +
∞∑

j=n
Qj f

(
x j−σ

)
, n ≥ T. (3.526)

By (3.523), SΩ ⊂ Ω and S is monotone. By Knaster-Tarski’s fixed point theorem
(Theorem 1.9), S has a fixed point z ∈ Ω. Clearly, z satisfies (3.520) for j ≥ T ,
and so the proof will be complete if we can show that zn > 0 for n ≥ T . In fact,
as noted before, zn > 0 for T − σ ≤ n < T . Assume by induction that zn > 0 for
T − σ ≤ n < K , where T ≤ K , then

zK = ω∞ +
∞∑

j=K
Qj f

(
z j−σ

)

≥ ω∞ +
K+σ−1∑

j=K
Qj f

(
z j−σ

)

≥ ω∞ + min
K≤ j≤K+σ−1

f
(
z j−σ

) K+σ−1∑

j=K
Qj > 0.

(3.527)

The proof of Lemma 3.98 is complete. �
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We return to the proof of Theorem 3.96. Suppose that {ui, j} is an eventually
positive solution of (3.490). By Lemma 3.97, (3.498) does not hold, a contradic-
tion.

We note that {ui, j} is a solution of (3.490) if and only if {−ui, j} is a solution
of

Δ2vi, j = ajΔ
2
1vi−1, j − qi, jF

(
vi, j−σ

)
, 1 ≤ i ≤ n, j ≥ 0, (3.528)

where F(t) = − f (−t) for all t. Also, {ωj} is a solution of (3.502) if and only if
{−ωj} is a solution of

Δzj +QjF
(
zj−σ

) ≥ 0, j ≥ 0. (3.529)

Hence if (3.490) has an eventually negative solution, we can derive a contradiction
also. The proof of Theorem 3.96 is complete. �

From the proof of Theorem 3.96, we can obtain a more general result.

Corollary 3.99. Under the assumptions of Theorem 3.96, if every solution of (3.520)
is oscillatory, then every solution of (3.490)–(3.494) is oscillatory.

Remark 3.100. There are some oscillation criteria for (3.520) in the literature.
Therefore we can obtain different oscillation criteria with (3.497) and (3.498) for
the oscillation of (3.490).

3.7.2. Nonhomogeneous parabolic equations

We consider the nonhomogeneous partial difference equations of the form

Δ2ui, j = ajΔ
2
1ui−1, j − pjui, j−σ + fi, j , 1 ≤ i ≤ n, j ≥ 0 (3.530)

with the conditions

u0, j = gj , j ≥ 1,

un+1, j = hj , j ≥ 1,

ui, j = ϕi, j , −σ ≤ j ≤ 0, 0 ≤ i ≤ n + 1.

(3.531)

It is easy to prove that (3.530)-(3.531) have a unique solution.
We will be concerned with conditions which imply that every solution of

(3.530)-(3.531) is oscillatory. The definition of the oscillation is similar to that
in Section 3.7.1.

Theorem 3.101. Suppose the following conditions hold:
(i) aj ≥ 0 and pj ≥ 0 for j ≥ 0;

(ii) ψj = aj(hj + gj) +
∑n

i=1 fi, j , j ≥ 0;
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(iii) the difference inequality

Δvj + pjvj−σ ≤ (≥)ψj (3.532)

has no eventually positive (negative) solutions. Then every solution of (3.530)-
(3.531) is oscillatory.

Proof . Suppose to the contrary, let {ui, j} be an eventually positive solution of
(3.530)-(3.531). From (3.530), we have

n∑

i=1

Δ2ui, j = aj

n∑

i=1

Δ2
1ui−1, j − pj

n∑

i=1

ui, j−σ +
n∑

i=1

fi, j . (3.533)

Since

n∑

i=1

Δ2
1ui−1, j = Δ1un, j − Δ1u0, j =

(
hj − un, j

)− (u1, j − gj
) ≤ hj + gj , (3.534)

then when aj ≥ 0 for all large j, we have

Δvj + pjvj−σ ≤ aj
(
hj + gj

)
+

n∑

i=1

fi, j = ψj (3.535)

for all large j, where vj =
∑n

i=1 ui, j .
Similarly, if (3.530)-(3.531) have an eventually negative solution, then

Δvj + pjvj−σ ≥ ψj (3.536)

has an eventually negative solution, which contradicts condition (iii). The proof is
complete. �

Now we will show some sufficient conditions for condition (iii).

Theorem 3.102. Assume that one of the following conditions holds.
(1) There exists a sequence {ϕj} such that Δϕj = ψj for j ≥ T ,

lim inf
j→∞

ϕj = −∞, lim sup
j→∞

ϕj = +∞. (3.537)

(2) Assume that

lim inf
j→∞

ϕj = m > −∞, lim sup
j→∞

ϕj =M <∞,

∞∑

j=T
pj
(
ϕj−σ −m

)
+ = ∞,

∞∑

j=T
pj
(
M − ϕj−σ

)
+ = ∞.

(3.538)

Then (iii) holds.
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Proof . Suppose to the contrary, let {vj} be an eventually positive solution of
(3.535). Then Δ(vj − ϕj) < 0 eventually.

For Case (1), ϕj always changes sign for sufficiently large j. Therefore there
exists a sequence jK →∞ as K →∞ such that v( jK ) > ϕ( jK ), and hence vj−ϕj > 0
eventually, which implies that lim j→∞(vj − ϕj) = l ≥ 0 exists. This contradicts the
fact lim inf ϕj = −∞.

Similarly, we can derive a contradiction when (3.536) has an eventually nega-
tive solution.

For Case (2), let {vj} be an eventually positive solution of (3.535). As the
above Δ(vj − ϕj) < 0, vj − ϕj > 0 eventually. Summing the inequality

Δ
(
vj − ϕj

)
+ pjvj−σ ≤ 0, (3.539)

we obtain

∞∑

j=T
pjvj−σ <∞. (3.540)

By the condition in Case (2), we have
∑∞

j=T pj = ∞. Hence lim inf j→∞ vj−σ = 0.
Set

lim
j→∞

(
vj − ϕj

) = l ≥ 0. (3.541)

We will show that l = −m. In fact, for any ε > 0 there exists T such that l < vj−ϕj <
l + ε and hence −ϕj < l + ε, j ≥ T . Then

−m = − lim inf
j→∞

ϕj ≤ l + ε. (3.542)

On the other hand, there exists a sequence { jK} such that limK→∞ jK = ∞ and
limK→∞ vjK = 0. From (3.541), we have −ϕ( jK ) > l−v( jK ) and hence− lim infK→∞
ϕ( jK ) ≥ l and so −m ≥ l. We have proved that l = −m. From (3.541), vj−ϕj > −m
and so vj > (ϕj −m)+, j ≥ T . Then

vj−σ >
(
ϕj−σ −m

)
+, j ≥ T + σ. (3.543)

Substituting this into (3.540), we obtain

∞∑

j=T+σ

p j
(
ϕj−σ −m

)
+ <∞, (3.544)

which contradicts the assumption. Similarly, we can prove that (3.536) has no
eventually negative solution. The proof is complete. �
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Corollary 3.103. Assume that (i) and (ii) of Theorem 3.101 hold. Further assume
that Condition (1) or Condition (2) of Theorem 3.102 holds. Then every solution of
(3.530)-(3.531) is oscillatory.

3.8. Multidimensional initial boundary value problems

3.8.1. Discrete Gaussian formula

Consider a sequence {um,n} = {um1,m2,...,m� ,n} which is defined on Ω × Nn0 , where

Ω = {p(1)
1 , p(1)

2 , . . . , p(1)
M1
} × · · · × {p(�)

1 , p(�)
2 , . . . , p(�)

M�
} and every p

( j)
i ∈ Z.

Now we give some definitions for deriving the discrete Gaussian formula.

Definition 3.104. m is said to be an interior point ofΩ, ifm+1�{m1+1,m2, . . . ,m�}
∪ · · · ∪ {m1,m2, . . . ,m�−1,m� + 1} and m − 1 � {m1 − 1,m2, . . . ,m�} ∪ · · · ∪
{m1,m2, . . . ,m�−1,m�−1} are all inΩ;Ω0, which is composed of all interior points,
is said to be an interior of Ω.

Definition 3.105. m is said to be a convex boundary point of Ω, if m ∈ Ω and
at least � points of m ± 1 are in Ω; m is said to be a concave boundary point, if
m,m± 1 ∈ Ω but just one of the points {m1 ± 1,m2 ± 1, . . . ,m� ± 1} is not in Ω,
where {m1 ± 1,m2 ± 1, . . . ,m� ± 1} � {m1 + 1,m2 + 1, . . . ,m� + 1}∪{m1 − 1,m2 +
1, . . . ,m� + 1} ∪ · · · ∪ {m1 − 1,m2 − 1, . . . ,m� − 1} ∈ ∂Ω, which is composed of
all (convex and concave) boundary points, is said to be a boundary of Ω.

Remark 3.106. If Ω is a rectangular solid net (its definition can be seen from any
book on the computation of partial differential equations), then ∂Ω is only com-
posed of all convex boundary points.

Definition 3.107. Ω is said to be convex, if ∂Ω is only composed of all convex
points.

It is easy to see that if Ω is a rectangular solid net, then Ω is convex.

Definition 3.108. m is said to be an exterior point, if it is neither an interior point
nor a boundary point.

Definition 3.109. m is said to be an allowable point, if at least two points of m± 1
are in Ω.

Definition 3.110. Ω is said to be a connected net, if Ω is only composed of all
allowable points.

Remark 3.111. If Ω is a rectangular solid net, then it is a convex connected solid
net.

We only consider in this section that Ω is a convex connected solid net.
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Definition 3.112. If m ∈ ∂Ω is a convex boundary point of Ω, we define that the
normal difference at (m,n) ∈ ∂Ω×Nn0 is

ΔNum−1,n �
∑

all m±1 /∈Ω

(
Δ1um,n − Δ1um−1,n

) =
∑

all m±1 /∈Ω
Δ2

1um−1,n, (3.545)

where Δ1 and Δ2
1 are, respectively, partial difference operators of order one and of

order two.

We write ∇2 a discrete Laplacian operator, which is defined by

∇2um−1,n+1 �
�∑

i=1

Δ2
i um1,...,mi−1,mi−1,mi+1,...,m� ,n+1, (3.546)

where Δ2
i is a partial difference operator of order two.

Now we give the discrete Gaussian formula as follows.

Theorem 3.113 (discrete Gaussian formula). Let Ω be a convex connected solid net.
Then

∑

m∈Ω
∇2um−1,n+1 =

∑

m∈∂Ω
ΔNum−1,n+1. (3.547)

Proof . Because a convex connected solid net can be divided into several rectan-
gular solid nets, therefore we can only consider the latter case. Without loss of
generality, we let Ω � {1, 2, . . . ,M1} × · · · × {1, 2, . . . ,M�}. In the following we
give only, for the sake of simplicity, the proof in the case of � = 2,

∑

m∈Ω
∇2um−1,n+1 =

∑

m∈Ω

(
Δ2

1um1−1,m2,n+1 + Δ2
2um1,m2−1,n+1

)

=
∑

m∈Ω

(
uM1+1,m2,n+1 − uM1,m2,n+1 − u1,m2,n+1 + u0,m2,n+1

+ um1,M2+1,n+1 − um1,M2,n+1 − um1,1,n+1 + um1,0,n+1
)

=
∑

m∈Ω

(
Δ1um1,m2,n+1

∣∣
m1=M1

− Δ1um1,m2,n+1
∣∣
m1=0

+ Δ2um1,m2,n+1
∣
∣
m2=M2

− Δ2um1,m2,n+1
∣
∣
m2=0

)

=
M2∑

m2=1

(
Δ1um1,m2,n+1

∣
∣
m1=M1

− Δ1um1,m2,n+1
∣
∣
m1=0

)

+
M1∑

m1=1

(
Δ2um1,m2,n+1

∣
∣
m2=M2

− Δ2um1,m2,n+1
∣
∣
m2=0

)
.

(3.548)
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Noting that the first term in the above is the sum of the normal differences on both
left and right boundaries and the second one on both upper and lower boundaries
of Ω, we have that the equality (3.547) holds and complete the proof. �

3.8.2. Parabolic equations

Consider the nonlinear parabolic difference equations of neutral type of the form

Δ2

(

um,n −
∑

k∈K
rk,num,n−αk

)

+ pm,num,n +
∑

i∈I
p(i)
m,n fi

(
um,n−βi

)

= qn∇2um−1,n+1 +
∑

j∈J
q j,n∇2um−1,n+1−γj for m ∈ Ω, n ∈ Nn0 ,

(3.549)

where I � {1, . . . , I0}, J � {1, . . . , J0}, K � {1, . . . ,K0}, Ω is a convex connected
net.

We assume throughout this section that
(H1) qn ∈ Nn0 → R+ and qj,n ∈ J ×Nn0 → R+;

(H2) pm,n ∈ Ω×Nn0 → R+, p(i)
m,n ∈ I ×Ω×Nn0 → R+, pn � minm∈Ω{pm,n},

pi,n � minm∈Ω{p(i)
m,n} for i ∈ I and n ∈ Nn0 ;

(H3) αk ∈ K → N1, βi ∈ I → N1 and γj ∈ J → N1;
(H4) fi ∈ C(R,R) are convex and increasing on R+ \ {0}, u fi(u) > 0 for u �= 0

and i ∈ I and f (0) = 0;
(H5) rk,n ∈ K ×Nn0 → R+ and

∑
k∈K rk,n ≤ 1.

Consider the initial boundary value problem (IBVP) (3.549) with the homo-
geneous Robin boundary condition (RBC)

ΔNum−1,n + gm,num,n = 0 on ∂Ω×Nn0 (3.550)

and the initial condition (IC)

um,s = μm,s for n0 − τ ≤ s ≤ n0, (3.551)

where τ = max{αk,βi, γj : k ∈ K , i ∈ I and j ∈ J} and gm,n ∈ ∂Ω×Nn0 → R+.
By a solution of IBVP (3.549)–(3.551) we mean a sequence {um,n} which sat-

isfies (3.549) for (m,n) ∈ Ω × Nn0 , RBC (3.550) for (m,n) ∈ ∂Ω × Nn0 , and IC
(3.551) for (m,n) ∈ Ω× {n0 − τ,n0 − τ + 1, . . . ,n0}. Similar to Chapter 2, by the
successive calculation, it is easy to show that IBVP (3.549)–(3.551) has a unique
solution.

Our objection in this section is to present sufficient conditions which imply
that every solution {um,n} of IBVP (3.549)–(3.551) is oscillatory in Ω×Nn0 in the
sense that there are no solutions to be eventually positive or eventually negative in
n.
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Theorem 3.114. Let hypotheses (H1)–(H5) hold. Suppose that there exist two positive
constants B,C > 0 and an i0 ∈ I such that fi0 (u)/u ≥ C for u �= 0 and pn, pi0,n ≥ B
for n ∈ Nn0 . If

lim sup
n→∞

n∑

s=n−βi0
pi0,s >

1
C

, (3.552)

then every solution {um,n} of IBVP (3.549)–(3.551) is oscillatory in Ω×Nn0 .

Proof . Suppose that it is not true and {um,n} is a nonoscillatory solution. Without
loss of generality, we may assume that there exists an n1 ∈ Nn0 such that um,n > 0
for n ∈ Nn1 . Hence um,n−αk , um,n−βi and um,n−γj > 0 for n ∈ Nn1+τ � Nn2 .

Summing (3.549) over Ω, we have

Δ2

(
∑

m∈Ω
um,n −

∑

k∈K
rk,n

∑

m∈Ω
um,n−αk

)

+
∑

m∈Ω
pm,num,n +

∑

i∈I

∑

m∈Ω
p(i)
m,n fi

(
um,n−βi

)

= qn
∑

m∈Ω
∇2um−1,n+1 +

∑

j∈J
q j,n

∑

m∈Ω
∇2um−1,n+1−γj for (m,n) ∈ Ω×Nn2 .

(3.553)

From (H4), Theorem 3.113, and the Jensen’s inequality, it follows that

∑

m∈Ω
∇2um−1,n+1 =

∑

m∈∂Ω
ΔNum−1,n+1

= −
∑

m∈∂Ω
gm,n+1um,n+1 ≤ 0 for n ∈ Nn2 ,

∑

m∈Ω
∇2um−1,n+1−γj =

∑

m∈∂Ω
ΔNum−1,n+1−γj

= −
∑

m∈∂Ω
gm,n+1−γj um,n+1−γj ≤ 0

(3.554)

for j ∈ J and n ∈ Nn2 ,

∑

m∈Ω
pm,num,n ≥ pn

∑

m∈Ω
um,n = |Ω|pnvn for n ∈ Nn2 , (3.555)

where vn = (1/|Ω|)∑m∈Ω um,n and |Ω| is the number of points in Ω, and

∑

m∈Ω
p(i)
m,n fi

(
um,n−βi

) ≥ pi,n
∑

m∈Ω
fi
(
um,n−βi

) ≥ pi,n fi

(
1
|Ω|

∑

m∈Ω
um,n−βi

)

|Ω|
(3.556)
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for i ∈ I and n ∈ Nn2 . Thus, we obtain by (3.553)–(3.556) that

Δ

(

vn −
∑

k∈K
rk,nvn−αk

)

+
∑

i∈I
pi,n fi

(
vn−βi

) ≤ 0 for n ∈ Nn2 , (3.557)

where Δ is the ordinary difference operator.
Let

wn = vn −
∑

k∈K
rk,nvn−αk . (3.558)

We have by (H5) and (3.557)

Δwn < 0, wn ≤ vn. (3.559)

This follows limn→∞wn = L. We can prove that L > −∞. In fact, if L = −∞, then
vn is unbounded. Hence, there exists an n3 ∈ Nn2 such that

wn3 < 0, vn3 = max
n2≤n≤n3

vn. (3.560)

It then follows from (H5) that

vn3 −
∑

k∈K
rk,nvn3−αk ≥ vn3

(

1 −
∑

k∈K
rk,n

)

≥ 0, (3.561)

which contradicts (3.560). Hence, L > −∞ and is finite.
Summing (3.557) from n3 to n, we obtain

0 < B
n∑

s=n3

fi0
(
vs−βi0

) ≤
∑

i∈I

n∑

s=n3

pi,s fi
(
vs−βi

)

≤ −
n∑

s=n3

Δws = wn3 −wn+1 ≤ wn3 − L <∞.
(3.562)

Therefore fi0 (vn−βi0 ) is summable and limn→∞ vn = 0 by (H4). It then follows that
limn→∞wn = 0.

From (3.557) and (3.559), there exists an n4 ∈ Nn3 such that

Δwn +
∑

i∈I
pi,n fi

(
wn−βi

) ≤ 0 for n ∈ Nn4 . (3.563)

Moreover,

Δwn + pi0,n fi0
(
wn−βi0

) ≤ 0 for some i0 ∈ I , n ∈ Nn4 . (3.564)
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Summing (3.564) from n− βi0 to n, we have

wn+1 −wn−βi0 +
n∑

s=n−βi0
pi0,s fi0

(
ws−βi0

) ≤ 0 for n ∈ Nn4 . (3.565)

Since Δwn < 0 and fi0 (u) is increasing on R+ \ {0}, we have

wn+1 −wn−βi0 + fi0
(
wn−βi0

) n∑

s=n−βi0
pi0,s ≤ 0 for n ∈ Nn4 ,

fi0
(
wn−βi0

)

wn−βi0

n∑

s=n−βi0
pi0,s ≤ 1 − wn+1

wn−βi0
< 1.

(3.566)

Hence C
∑n

s=n−βi0 pi0,s < 1 and

lim sup
n→∞

n∑

s=n−βi0
pi0,s ≤ 1

C
, (3.567)

which contradicts (3.552). This completes the proof. �

Theorem 3.115. Let (H1)–(H5) hold. Suppose that there exist Ci ≥ 0 and a B > 0
such that fi(u)/u ≥ Ci for u �= 0 and pi0,n ≥ B for some i0 ∈ I . If

lim sup
n→∞

n∑

s=n−τ

∑

i∈I
Ci pi,s > 1, (3.568)

then every solution of IBVP (3.549)–(3.551) is oscillatory in Ω×Nn0 .

Proof . Let {um,n} be a nonoscillatory solution of IBVP (3.549)–(3.551). With-
out loss of generality, we assume that um,n > 0 for some n5 ∈ Nn4 . Hence, we
have um,n−αk ,um,n−βi and um,n−γj > 0 for n ∈ Nn5+τ � Nn6 . As in the proof of
Theorem 3.114, we know that (3.557)–(3.563) hold. Summing (3.563) from n− β
to n, we have

wn+1 −wn−β +
∑

i∈I

n∑

s=n−β
pi,s fi

(
ws−βi

) ≤ 0 for n ∈ Nn6 , (3.569)
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where β � maxi∈I{βi} and n6 is sufficiently large. From (3.560), we have

wn+1 −wn−β +
∑

i∈I
fi
(
wn−β

) n∑

s=n−β
pi,s ≤ 0 for n ∈ Nn6 . (3.570)

It follows that

∑

i∈I

fi
(
wn−β

)

wn−β

n∑

s=n−β
pi,s ≤ 1 − wn+1

wn−β
< 1 for n ∈ Nn6 (3.571)

and
∑n

s=n−β
∑

i∈I Ci pi,s ≤ 1, which contradicts (3.568). The proof is thus complete.
�

Corollary 3.116. Assume that (H1)–(H5) hold. If the difference inequality (3.557)
(resp., (3.563)) has no eventually positive solutions, then every solution {um,n} of
IBVP (3.549)–(3.551) is oscillatory in Ω×Nn0 .

3.8.3. Hyperbolic equations

We consider the nonlinear hyperbolic partial difference equations of the form

Δ2

[

snΔ2

(

um,n +
∑

k∈K
rk,num,n−αk

)]

+ pm,num,n +
∑

i∈I
p(i)
m,n fi

(
um,n−βi

)

= qn∇2um−1,n+1 +
∑

j∈J
q j,n∇2um−1,n+1−γj , (m,n) ∈ Ω×Nn0

(3.572)

with RBC (3.550) and IC (3.551).
We assume in this section that (H1)–(H5) hold and
(H6) sn ∈ Nn0 → R+ \ {0} and

∑∞
n=n0

(1/sn) = ∞.

Theorem 3.117. Let (H1)–(H6) hold. Suppose that for any constant A > 0, there
exists an i0 such that

∞∑

n=n0

pi0,n fi0

[

A

(

1 −
∑

k∈K
rk,n−βi0

)]

= ∞. (3.573)

Then every solution of IBVP (3.572), (3.550), and (3.551) is oscillatory in Ω×Nn0 .

Proof . Let {um,n} be such a nonoscillatory solution of IBVP (3.572), (3.550), and
(3.551) that um,n > 0 for some n1 ∈ Nn0 and n ∈ Nn1 . Then we have um,n−αk ,
um,n−βi , and um,n−γj > 0 for n ∈ Nn1+τ � Nn2 , where i ∈ I , j ∈ J , and k ∈ K .
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Summing (3.572) in the both sides over Ω, we have, for (m,n) ∈ Ω×Nn2 ,

Δ2

[

snΔ2

(
∑

m∈Ω
um,n +

∑

k∈K
rk,n

∑

m∈Ω
um,n−αk

)]

+
∑

m∈Ω
pm,num,n +

∑

i∈I

∑

m∈Ω
p(i)
m,n fi

(
um,n−βi

)

= qn
∑

m∈Ω
∇2um−1,n+1 +

∑

j∈J
q j,n

∑

m∈Ω
∇2um−1,n+1−γj .

(3.574)

As in Theorem 3.114, (3.554)–(3.556) hold. Therefore, we obtain

Δ

[

snΔ

(

vn +
∑

k∈K
rk,nvn−αk

)]

+
∑

i∈I
pi,n fi

(
vn−βi

) ≤ 0 for n ∈ Nn2 . (3.575)

Let

wn = vn +
∑

k∈K
rk,nvn−αk . (3.576)

Then we have

wn > 0, wn ≥ vn for n ∈ Nn2 . (3.577)

From (H2), (H3), and (3.575), we obtain

Δ
(
snΔwn

) ≤ −
∑

i∈I
pi,n fi

(
vn−βi

) ≤ 0 for n ∈ Nn2 , (3.578)

which means that {snΔwn} is decreasing. We claim that

snΔwn ≥ 0 for n ∈ Nn2 . (3.579)

Consequently,

Δwn ≥ 0 for n ∈ Nn2 . (3.580)

If it is not true, then there exists an n3 ∈ Nn2 such that sn3Δwn3 < 0 and snΔwn ≥ 0
for n2 ≤ n < n3. Using (3.578), we have Δwn ≤ (1/sn)sn3Δwn3 for n ∈ Nn3 , which
follows that

wn+1 −wn3 ≤ sn3Δwn3

n∑

n=n3

1
sn

for n ∈ Nn3 . (3.581)

Then we have wn < 0 as n→∞, which contradicts (3.577).



Multidimensional initial boundary value problems 243

We know from (3.578) that for some i0 ∈ I we have

Δ
(
snΔwn

)
+ pi0,n fi0

(
vn−βi0

) ≤ 0 for n ∈ Nn3 , (3.582)

which follows

Δ
(
snΔwn

)
+ pi0,n fi0

(

wn−βi0 −
∑

k∈K
rk,n−βi0 vn−βi0−αk

)

≤ 0 for n ∈ Nn3 . (3.583)

From (3.577), (3.580), and (3.583), we have

Δ
(
snΔwn

)
+ pi0,n fi0

[

wn−βi0

(

1 −
∑

k∈K
rk,n−βi0

)]

≤ 0 for n ∈ Nn3 . (3.584)

Summing (3.584) from n3 to n and using (3.580), we have

sn+1Δwn+1 − sn3Δwn3 +
n∑

t=n3

pi0,t fi0

[

wn3−βi0

(

1 −
∑

k∈K
rk,t−βi0

)]

≤ 0. (3.585)

By (3.578) and (3.579), letting n→∞ in (3.585), we have

∞∑

t=n3

pi0,t fi0

[

wn3−βi0

(

1 −
∑

k∈K
rk,t−βi0

)]

<∞. (3.586)

Let A = wn3−βi0 . Then we have

∞∑

t=n3

pi0,t fi0

[

A

(

1 −
∑

k∈K
rk,t−βi0

)]

<∞, (3.587)

which contradicts (3.573). Thus, this completes the proof. �

Remark 3.118. From the proof of Theorem 3.115, if the second-order delay differ-
ence inequality

Δ
(
snΔwn

)
+ Cpi0

(

1 −
∑

k∈K
rk,n−βi0

)

wn−βi0 ≤ 0, n ≥ n3 (3.588)

has no positive solutions, then the conclusion of Theorem 3.115 holds. Hence the
well known Ricatti technique can be used to derive some oscillation criteria for the
oscillation of IBVP (3.572), (3.550), and (3.551).
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Example 3.119. Consider the parabolic equation

Δ2

(
um,n − 1

2
um,n−1

)
+ um,n + 2e−m

2
um,n−ieu

2
m,n−i

= qn∇2um−1,n+1 +
∑

j∈J
q j,n∇2um−1,n+1−γj for m = 1, 2, . . . ,M, n ∈ Nn0 ,

(3.589)

where i > [(1/2)eM
2 − 1], ([·] is the integer function) is an even integer, qn, qj,n,

and γj satisfy the hypotheses in Theorem 3.114.

We have rn = 1/2 < 1, pm,n = 1 > B, p∗m,n = 2e−m
2 ≥ B, where B �

min{1, 2e−M
2}, f (u) = ueu

2
, f (u)/u = eu

2 ≥ 1 � C, and

n∑

s=n−i
p∗,s = (i + 1)2e−M

2
>

1
C

= 1. (3.590)

By Theorem 3.114, every solution of (3.589) is oscillatory. In fact, um,n = (−1)nm
is an oscillatory solution of (3.589).

Example 3.120. Consider the hyperbolic equation

Δ2

[
nΔ2

(
um,n +

1
2
um,n−1

)]
+ 3um,n +

5n3 − 18n2 + 10n + 12
2(n− 1)n(n + 1)(n + 2)

um,n−2

= qn∇2um−1,n+1 +
∑

j∈J
q j,n∇2um−1,n+1−γj for m = 1, . . . ,M, n ∈ Nn0 .

(3.591)

It is easy to see that the conditions in Theorem 3.115 are all satisfied. Then
every solution of (3.591) is oscillatory. In fact,

um,n = (−1)nm
n

(3.592)

is an oscillatory solution of (3.591).

Example 3.121. Consider the hyperbolic equation

Δ2

[
nΔ2

(
um,n +

n− 1
n

um,n−1

)]
+

1
2
um,n

+m1/3(n− 1)4/3 n
5 − 11n4 − 23n3 − 9n2 + 8n + 4
2(n− 1)2n2(n + 1)2(n + 2)2

u2/3
m,n−1

= qn∇2um−1,n+1 +
∑

j∈J
q j,n∇2um−1,n+1−γj , m = 1, . . . ,M, n ∈ Nn0 .

(3.593)
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It is easy for one to see that (3.573) is false this time. In fact, (3.593) has a
nonoscillatory solution um,n = m/n2.

3.9. Notes

The material of Section 3.2.1 is taken from Zhang and Yu [186]. The linearized
oscillation theorem for the partial difference equation (3.31) can be seen from
Zhang and Xing [184]. The results in Section 3.2.2 are adopted from Zhang [162].
The material of Section 3.2.3 is taken from Liu and Zhang [97]. The results in
Section 3.3.1 are taken from Zhang and Liu [173, 175]. The material of Section
3.3.2 is taken from Zhang and Liu [168]. The material of Section 3.3.3 is adopted
from Zhang and Xing [183]. The material of Section 3.4 is taken from Zhang and
Xing [181]. The results in Section 3.5.1 are taken from Zhang et al. [190]. The
contents of Section 3.5.2 are taken from Zhou [192], Xing and Zhang [159], re-
spectively. The material of Section 3.6 is adopted from Zhang and Saker [177].
The material in Section 3.7.1 is taken from Cheng and Zhang [42]. The material of
Section 3.7.2 is taken from Cheng et al. [40]. The material of Section 3.8 is taken
from Shi et al. [126].





4
Stability of delay partial
difference equations

4.1. Introduction

In this chapter, we consider the stability of delay partial difference equations. It is
well known that the conditions of the global attractivity of the trivial solution of
the ordinary difference equation

xn+1 − xn + pnxn−k = 0, n = 0, 1, 2, . . . , (4.1)

were obtained in [58, 179].
Consider the delay partial difference equation

Am+1,n +Am,n+1 − Am,n + Pm,nAm−k,n−l = 0, (4.2)

where {Pm,n}∞m,n=0 is a real double sequence, k, l are nonnegative integers.
Let Ω = N−k ×N−l \N1 ×N0 be an initial value set

Ai, j = ϕi, j , (i, j) ∈ Ω, (4.3)

where ϕi, j is a given initial function.
The sequence {Ai, j} is called the solution of the initial value problem (4.2)

and (4.3) if it satisfies (4.2) and (4.3). The (trivial) solution of (4.2) is said to be
global attractive if, for any given initial function {ϕi, j}, the corresponding solution
{Ai, j} satisfies limi, j→∞Ai, j = 0.

The first question is that if (4.2) has the global attractivity, which is similar to
the ordinary difference equations mentioned.

In the following, we use the triangle graphical method and the induction
method to prove that, for any double sequence {Pm,n}∞m,n=0, the trivial solution
of (4.2) is not globally attractive, that is, we can always construct a solution of
(4.2) which does not converge to zero.

We first consider a special case of (4.2):

Am+1,n + Am,n+1 − Am,n = 0, m,n = 0, 1, 2, . . . . (4.4)
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A0,0

A1,0 A0,1
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· · ·

A0,n+1

Figure 4.1

1
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−1 0 1 −1

· · ·
An,0 · · · A[n/2], n−[n/2]· · · A0,n

An+1,0
· · ·
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Line 0

Line 1

Line 2

Line 3

Line n

Line n + 1

Figure 4.2

Theorem 4.1. The trivial solution of (4.4) is not globally attractive.

Proof . Let A0,0=1, from (4.4), we have

Am,n = Am+1,n + Am,n+1, m,n = 0, 1, 2, . . . . (4.5)

From (4.5), we can make the triangle graphs (see Figures 4.1 and 4.2).
Where [·] denotes the largest integer function, the triangle

A

B C

satisfies A = B + C and the corresponding numbers in the two graphs are equal.
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We will prove the theorem by induction.
From Figure 4.2, we see that if A0,0 = 1, then each number in line 1 exists, for

example, we can select 0 and 1. Suppose each number in line n exists and satisfies
A[n/2],n−[n/2] = 1, that is, there is a number equaling 1 in the middle of the line
(e.g., line 2) and if there are two numbers in the middle of the line (e.g., line 3), we
can choose the number on the right side of the middle of the line to be 1.

Next we will prove that each number in line n+ 1 exists and there is a number,
which equals 1 in the middle of the line.

When n is even, let

A[(n+1)/2],n+1−[(n+1)/2] = A[n/2],n−[n/2]+1 = 1. (4.6)

Since there is only a number which is independent in line n + 1, the equality
(4.6) can be regarded as the initial value. From (4.4), we get

A[(n+1)/2]+1,n−[(n+1)/2] = A[n/2]+1,n−[n/2] = A[n/2],n−[n/2] − A[n/2],n−[n/2]+1

= A[n/2],n−[n/2] − 1,

A[(n+1)/2]+2,n−[(n+1)/2]−1 = A[n/2]+2,n−[n/2]−1 = A[n/2]+1,n−[n/2]−1 − A[n/2]+1,n−[n/2],

...

An+1,0 = An,0 − An,1,

A[(n+1)/2]−1,n−[(n+1)/2]+2 = A[n/2]−1,n−[n/2]+2 = A[n/2]−1,n−[n/2]+1 − A[n/2],n−[n/2]+1

= A[n/2]−1,n−[n/2]+1 − 1,

...

A1,n = A1,n−1 − A2,n−1,

A0,n+1 = A0,n − A1,n.
(4.7)

In the above equalities, we see that the first term of the right side is just the
corresponding value of line n and the second term is known by recurrence, so each
number of the left side exists and they are just the corresponding values of line n+1
and there is a number, which equals 1 in the middle.

When n is odd, similar to the above proof, we can obtain the same result.
Summarizing the above discussion, for any natural number n, each number

of line n can be confirmed by the triangle graphical method and there is a number,
which equals 1 in the middle, let

ϕ0,0 = 1,ϕ0,1 = 1,ϕ0,2 = 0,ϕ0,3 = −1, . . . , (4.8)
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then by the triangle graphical method we can confirm a double sequence {Am,n}
which is a solution of (4.4) and satisfies the initial condition

A0, j = ϕ0, j , j = 0, 1, 2, . . . . (4.9)

Obviously, {Am,n} does not converge to zero when m, n converges to ∞, respec-
tively. The proof is completed. �

Theorem 4.2. If l and k are nonnegative integers and are not equal zero at the same
time, then the trivial solution of (4.2) is not globally attractive.

Proof . Let A0,0 = 1, assume {ϕi, j} is an any given real sequence defined on the free
initial value set Ω2, let

Am,n = ϕm,n, (m,n) ∈ Ω2. (4.10)

From (4.2), we have

Am,n = Am+1,n + Am,n+1 + Pm,nAm−k,n−l . (4.11)

From (4.11), we can make a triangle graph (see Figure 4.3), where

D

Am,n

B C

satisfies Am,n = B + C + Pm,nD.
From Figure 4.3, we see that each number in line (1, 1) exists or is known, so

we choose an initial function such that A0,1 = 1, that is, there is a number, which
is 1 in the middle of line (1, 1).

Suppose each number exists or is known upon line (1,n) and there is a num-
ber which is 1 in the middle of line (1,n), that is, A[n/2],n−[n/2] = 1, next we will
prove that each number exists in line (1,n + 1) and line (0,n + 1) and there is a
number, which is 1 in the middle of line (1,n + 1).

When n is odd, let

A[(n+1)/2],n+1−[(n+1)/2] = A[n/2]+1,n−[n/2] = 1. (4.12)
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A−k,−1

A0,0

A−k+1,−l

A1,0 A0,1

A−k,−l+1

A−k+2,−l A−k+1,−l+1 A−k,−l+2

A2,0 A1,1 A0,2

· · ·
A−k+n,−l · · · A−k+[n/2],−l+n−[n/2] · · · A−k,−l+n

An,0 · · · A[n/2], n−[n/2] · · · A0,n

Line (0, 0)

Line (1, 0)

Line (0, 1)

Line (1, 1)

Line (0, 2)

Line (1, 2)

Line (0, n)

Line (1, n)

Figure 4.3

From (4.11), we have

A[(n+1)/2]+1,n−[(n+1)/2] = A[n/2]+2,n−[n/2]−1

= A[n/2]+1,n−[n/2]−1 − A[n/2]+1,n−[n/2]

− P[n/2]+1,n−[n/2]−1A−k+[n/2]+1,−l+n−[n/2]−1

= A[n/2]+1,n−[n/2]−1 − 1 − P[n/2]+1,n−[n/2]−1A−k+[n/2]+1,−l+n−[n/2]−1,

...

An,1 = An−1,1 − An−1,2 − Pn−1,1A−k+n−1,−l+1,

An+1,0 = An,0 − An,1 − Pn,0A−k+n,−l,

A[(n+1)/2]−1,n−[(n+1)/2]+2

= A[n/2],n−[n/2]+1 = A[n/2],n−[n/2] − A[n/2]+1,n−[n/2]

− P[n/2],n−[n/2]A−k+[n/2],−l+n−[n/2]

= A[n/2],n−[n/2] − 1 − P[n/2],n−[n/2]A−k+[n/2],−l+n−[n/2],

...

A1,n = A1,n−1 − A2,n−1 − P1,n−1A−k+1,−l+n−1,

A0,n+1 = A0,n − A1,n − P0,nA−k,−l+n.

(4.13)
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In the above equalities, the first term on the right side is just the corresponding
number in line (1,n) and is known, the second term is also known by recurrence,
the first factor of the third term is a coefficient and is also known, the second factor
of the third term is some number of every line upon line (1,n), so each number in
line (1,n + 1) exists and the middle number is 1 (see (4.12)).

When n is even, similar to the above proof, we can obtain the same result.
Summarizing the above discussion, we can construct a solution {Am,n} of

(4.2) by the triangle graphical method such that there exists a subsequence {mr ,nr}
such that mr → ∞, nr → ∞ when r → ∞ and limr→∞Amr ,nr = 1. Hence the trivial
solution of (4.2) is not globally attractive. The proof is completed. �

The above result shows that there exists great difference between the par-
tial difference equation (4.2) and the corresponding ordinary difference equation
mentioned in the global attractivity. Therefore, in this chapter, we mainly consider
the local stability of the delay partial difference equations. In Section 4.2, we con-
sider the stability and instability of scalar PDEs. In Section 4.3, the stability of the
linear PDE systems is studied. In Section 4.4, the stability of some discrete delay
logistic equations will be considered. In Section 4.5, we present a result for the L2

stability of a class of the initial boundary value problem. In Section 4.6, we con-
sider the stability of the reaction diffusion systems.

4.2. Stability criteria of delay partial difference equations

4.2.1. Stability of linear delay PDEs

Consider the delay partial difference equation

ui, j+1 = ai, jui+1, j + bi, jui, j + pi, jui−σ , j−τ , (4.14)

where σ and τ are nonnegative integers, and {ai, j}, {bi, j}, and {pi, j} are real se-
quences defined on i ≥ 0, j ≥ 0.

By a solution of (4.14) we mean a real double sequence {ui, j} which is defined
for i ≥ −σ , and j ≥ −τ, and satisfies (4.14) for i ≥ 0, j ≥ 0.

Set Ω = N−σ ×N−τ\N0 ×N1. Let the initial function ϕ be given on Ω. Obvi-
ously, the solution of the initial value problem of (4.14) is unique.

Let

‖ϕ‖ = sup
(i, j)∈Ω

∣
∣ϕi, j

∣
∣. (4.15)

For any positive real number H > 0, let SH = {ϕ | ‖ϕ‖ < H}.

Definition 4.3. Equation (4.14) is said to be stable if for every ε > 0, there exists a
δ > 0 such that for every ϕ ∈ Sδ , the corresponding solution u = {ui, j} of (4.14)
satisfies

∣∣ui, j
∣∣ < ε, i, j ∈ N0. (4.16)
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Definition 4.4. Equation (4.14) is said to be linearly stable if there exists an M ≥ 0
such that every solution u = {ui, j} of (4.14) satisfies

∣
∣ui, j

∣
∣ ≤M‖ϕ‖, i, j ∈ N0. (4.17)

Obviously, (4.14) is linearly stable which implies that it is stable.

Definition 4.5. Equation (4.14) is said to be exponentially asymptotically stable if,
for any δ > 0, there exist a constant Mδ and a real number ξ ∈ (0, 1) such that
ϕ ∈ Sδ implies that

∣∣ui, j
∣∣ ≤Mδξ

j or
∣∣ui, j

∣∣ ≤Mδξ
i, i, j ∈ N0. (4.18)

More general, we will adopt the following definition of the exponential as-
ymptotic stability.

Definition 4.6. Equation (4.14) is said to be strongly exponentially asymptotically
stable if, for any δ > 0, there exist a constantMδ and two real numbers ξ,η ∈ (0, 1)
such that ϕ ∈ Sδ implies that

∣∣ui, j
∣∣ ≤Mδξ

iη j , i, j ∈ N0. (4.19)

Let V(u, i, j) : R×N2
0 → R+ = [0,∞). If for any solution {ui, j} of (4.14), there

exists a constant c > 0 such that

V(u, i, j) ≥ c
∣
∣ui, j

∣
∣, (i, j) ∈ N2

0 , (4.20)

then V(u, i, j) is said to be a positive Liapunov function.
The following lemma is obvious.

Lemma 4.7. If there exist a positive Liapunov function V(u, i, j) and a constant
M > 0 such that

V(u, i, j) ≤M‖ϕ‖, i, j ∈ N0, (4.21)

where {ui, j} is a solution of (4.14) with the initial function {ϕi, j}, then (4.14) is
linearly stable (and hence stable).

Let Ai, j = |ai, j| + |bi, j| + |pi, j| for any i, j ∈ N0, and

ai, j+1 = ai, j+1Ai+1, j , bi, j+1 = bi, j+1Ai, j . (4.22)

Theorem 4.8. Assume that there exists a constant C > 1 such that
∣
∣ai,0

∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣ ≤ C, i ∈ N0,

∣∣ai, j
∣∣ +

∣∣bi, j
∣∣ +

∣∣pi, j
∣∣ ≤ 1, i ∈ N0, j ≥ 1.

(4.23)

Then (4.14) is linearly stable.
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Proof . For a given solution {ui, j} of (4.14), let

V(u, i, j) = max
i≥0

∣∣ui, j
∣∣, j ≥ 0, wu( j) = V(u, i, j). (4.24)

From (4.14), we have

∣
∣ui,1

∣
∣ ≤ ∣∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣

≤ (∣∣ai,0
∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣)‖ϕ‖ ≤ C‖ϕ‖.

(4.25)

Hence wu(1) ≤ C‖ϕ‖. Therefore,

∣
∣ui,2

∣
∣ ≤ ∣∣ai,1

∣
∣
∣
∣ui+1,1

∣
∣ +

∣
∣bi,1

∣
∣
∣
∣ui,1

∣
∣ +

∣
∣pi,1

∣
∣
∣
∣ui−σ ,1−τ

∣
∣

≤ ∣∣ai,1
∣∣(∣∣ai+1,0

∣∣∣∣ui+2,0
∣∣ +

∣∣bi+1,0
∣∣∣∣ui+1,0

∣∣ +
∣∣pi+1,0

∣∣∣∣ui+1−σ ,−τ
∣∣)

+
∣∣bi,1

∣∣(∣∣ai,0
∣∣∣∣ui+1,0

∣∣ +
∣∣bi,0

∣∣∣∣ui,0
∣∣ +

∣∣pi,0
∣∣∣∣ui−σ ,−τ

∣∣)

+
∣∣pi,1

∣∣∣∣ui−σ ,1−τ
∣∣

≤ (∣∣ai,1
∣
∣ +

∣
∣bi,1

∣
∣ +

∣
∣pi,1

∣
∣) · C‖ϕ‖.

(4.26)

Thus wu(2) ≤ C‖ϕ‖.
Assume that for some fixed integer n > 1,

wu( j) ≤ C‖ϕ‖, j ≤ n. (4.27)

Then we can obtain
∣
∣ui,n+1

∣
∣ ≤ ∣∣ai,n

∣
∣
∣
∣ui+1,n

∣
∣ +

∣
∣bi,n

∣
∣
∣
∣ui,n

∣
∣ +

∣
∣pi,n

∣
∣
∣
∣ui−σ ,n−τ

∣
∣

≤ (∣∣ai,n
∣
∣ +

∣
∣bi,n

∣
∣ +

∣
∣pi,n

∣
∣) · C‖ϕ‖ ≤ C‖ϕ‖.

(4.28)

By induction, wu(n + 1) ≤ C‖ϕ‖ for n ≥ 0. Hence

∣
∣ui, j

∣
∣ ≤ wu( j) ≤ C‖ϕ‖, (i, j) ∈ N2

0 . (4.29)

The proof is completed. �

Example 4.9. Consider the partial difference equation

ui, j+1 = ai, jui+1, j + bi, jui, j + pi, jui−1, j−1, (4.30)

where

ai, j = 1
2

+ (−1)i
1
2

, bi, j = 1
8

, pi, j = 1
8

, (i, j) ∈ N2
0 . (4.31)
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It is easy to see that |a2i, j| + |b2i, j| + |p2i, j| = 1.25 > 1 for any i ∈ N0. It is easy to
obtain

Ai, j = 3
4

+
(−1)i

2
, i, j ∈ N0,

∣
∣ai,0

∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣ = 3

4
+

(−1)i

2
≤ 2 = C, i ∈ N0,

ai, j+1 = ai, j+1Ai+1, j = 1
8

+
(−1)i

8
,

bi, j+1 = bi, j+1Ai, j = 3
32

+ (−1)i
1

16
.

(4.32)

Then

∣∣ai, j+1
∣∣ +

∣∣bi, j+1
∣∣ +

∣∣pi, j+1
∣∣ = 11

32
+ (−1)i

3
16

, i ∈ N0, j ≥ 0. (4.33)

By Theorem 4.8, we can conclude that (4.30) is linearly stable.
If (4.23) does not hold, then we can obtain the following result.

Theorem 4.10. Let

d0 = max
i≥0

{∣∣ai,0
∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣},

d j = max
i≥0

{∣∣ai, j
∣
∣ +

∣
∣bi, j

∣
∣ +

∣
∣pi, j

∣
∣}, j ≥ 1,

(4.34)

and dj = max(1,d j) = 1 + r j for j ≥ 0. If

∞∑

j=0

r j <∞, r j ≥ 0, (4.35)

then (4.14) is linearly stable.

Proof . For a given solution {ui, j} of (4.14), let wu( j) be defined in (4.24) and

wu( j) = max
i≥−σ

∣
∣ui, j

∣
∣, j ≥ −τ. (4.36)

It is easy to obtain wu( j) ≤ wu( j) for any j ≥ 0 and

wu( j) ≤ ‖ϕ‖, −τ ≤ j ≤ 0. (4.37)

From (4.14), we have
∣∣ui,1

∣∣ ≤ ∣∣ai,0
∣∣∣∣ui+1,0

∣∣ +
∣∣bi,0

∣∣∣∣ui,0
∣∣ +

∣∣pi,0
∣∣∣∣ui−σ ,−τ

∣∣

≤ (∣∣ai,0
∣∣ +

∣∣bi,0
∣∣ +

∣∣pi,0
∣∣) · max

{
wu(0),wu(−τ)

}
.

(4.38)
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Hence in view of dj ≥ 1 for any j ≥ 0, wu(1) ≤ d0‖ϕ‖. Similar to the proof of
Theorem 4.8, we have

∣
∣ui,2

∣
∣ ≤ (∣∣ai,1

∣
∣ +

∣
∣bi,1

∣
∣ +

∣
∣pi,1

∣
∣) · max

{
wu(0),wu(1 − τ),wu(−τ)

}
. (4.39)

Hence wu(2) ≤ d1d0‖ϕ‖.
Assume that for some fixed integer n > 1,

wu( j) ≤
j−1∏

i=0

di‖ϕ‖ for j ≤ n. (4.40)

Then we can obtain

∣
∣ui,n+1

∣
∣ ≤ ∣∣ai,n

∣
∣
∣
∣ui+1,n

∣
∣ +

∣
∣bi,n

∣
∣
∣
∣ui,n

∣
∣ +

∣
∣pi,n

∣
∣
∣
∣ui−σ ,n−τ

∣
∣

≤ ∣∣ai,n
∣
∣(
∣
∣ai+1,n−1

∣
∣
∣
∣u(i + 2,n− 1)

∣
∣ +

∣
∣bi+1,n−1

∣
∣
∣
∣ui+1,n−1

∣
∣

+
∣
∣pi+1,n−1

∣
∣
∣
∣ui+1−σ ,n−1−τ

∣
∣)

+
∣
∣bi,n

∣
∣(
∣
∣ai,n−1

∣
∣
∣
∣ui+1,n−1

∣
∣ +

∣
∣bi,n−1

∣
∣
∣
∣ui,n−1

∣
∣ +

∣
∣pi,n−1

∣
∣
∣
∣ui−σ ,n−1−τ

∣
∣)

+
∣
∣pi,n

∣
∣
∣
∣ui−σ ,n−τ

∣
∣

≤ (∣∣ai,n
∣
∣ +

∣
∣bi,n

∣
∣ +

∣
∣pi,n

∣
∣) · max

{
wu(n− 1),wu(n− τ),wu(n− 1 − τ)

}
.

(4.41)

Hence by induction, wu(n) ≤∏n−1
i=0 di‖ϕ‖ for n ≥ 0. Thus

lnwu(n) ≤ ln‖ϕ‖ +
n−1∑

j=0

lndj = ln‖ϕ‖ +
n−1∑

j=0

ln
(
1 + r j

)

≤ ln‖ϕ‖ +
n−1∑

j=0

r j ≤ ln‖ϕ‖ +
∞∑

j=0

r j ,

(4.42)

and hence,

wu(n) ≤ ‖ϕ‖ exp

( ∞∑

j=0

r j

)

=M‖ϕ‖, (4.43)

where M = exp(
∑∞

j=0 r j). The proof is completed. �

Let Âi, j = |ai, j| + |bi, j| + ξ−τ|pi, j| for any i, j ∈ N0 and

âi, j+1 = ai, j+1Âi+1, j , b̂i, j+1 = bi, j+1Âi, j . (4.44)
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Theorem 4.11. Assume that σ = 0, τ > 0, and there exist a constant C > 1 and a
constant ξ ∈ (0, 1) such that

∣∣ai,0
∣∣ +

∣∣bi,0
∣∣ +

∣∣pi,0
∣∣ ≤ C, i ∈ N0,

∣∣âi, j
∣∣ +

∣∣b̂i, j
∣∣ + ξ−τ+1

∣∣pi, j
∣∣ ≤ ξ2, i ∈ N0, j ≥ 1,

(4.45)

then (4.14) is exponentially asymptotically stable.

Proof . Let V(u, i, j) and wu( j) be defined in (4.24), then for any δ > 0 and ϕ ∈ Sδ ,
there exists a constant Mδ ≥ Cξ−1‖ϕ‖ > 0 such that

∣
∣ui,1

∣
∣ ≤ ∣∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣

≤ (∣∣ai,0
∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣)‖ϕ‖ ≤Mδξ.

(4.46)

Hence wu(1) ≤Mδξ. Therefore,

∣
∣ui,2

∣
∣ ≤ ∣∣ai,1

∣
∣
∣
∣ui+1,1

∣
∣ +

∣
∣bi,1

∣
∣
∣
∣ui,1

∣
∣ + |pi,1

∣
∣
∣
∣ui−σ ,1−τ

∣
∣

≤ ∣∣ai,1
∣
∣(
∣
∣ai+1,0

∣
∣
∣
∣ui+2,0

∣
∣ +

∣
∣bi+1,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣pi+1,0

∣
∣
∣
∣ui+1−σ ,−τ

∣
∣)

+
∣
∣bi,1

∣
∣(
∣
∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣) +

∣
∣pi,1

∣
∣
∣
∣ui,1−τ

∣
∣

≤ (∣∣âi,1
∣
∣ +

∣
∣b̂i,1

∣
∣ +

∣
∣pi,1

∣
∣)‖ϕ‖ ≤Mδξ

2.
(4.47)

Hence wu(2) ≤Mδξ2. In general, we have

wu( j) ≤Mδξ
j , i ∈ N0, 0 ≤ j ≤ τ. (4.48)

Assume that for some fixed integer n ≥ τ,

wu( j) ≤Mδξ
j , i ∈ N0, 0 ≤ j ≤ n. (4.49)

Then we can obtain

∣
∣ui,n+1

∣
∣ ≤ ∣∣ai,n

∣
∣
∣
∣ui+1,n

∣
∣ +

∣
∣bi,n

∣
∣
∣
∣ui,n

∣
∣ +

∣
∣pi,n

∣
∣
∣
∣ui−σ ,n−τ

∣
∣

≤ (∣∣âi,n
∣∣ +

∣∣b̂i,n
∣∣ + ξ−τ+1

∣∣pi,n
∣∣)Mδξ

n−1 ≤Mδξ
n+1.

(4.50)

By induction, we have wu(n) ≤Mδξn for n ≥ 0. The proof is completed. �

Now we consider the case σ , τ > 0.
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Let

D1 =
{

(i, j) | 0 ≤ i < σ , 0 ≤ j ≤ τ
}

,

D2 =
{

(i, j) | 0 ≤ i < σ , j > τ
}

,

D3 =
{

(i, j) | i ≥ σ , 0 ≤ j ≤ τ
}

,

D4 =
{

(i, j) | i ≥ σ , j > τ
}
.

(4.51)

Obviously, D1 is a finite set, D2, D3, and D4 are infinite sets, D1, D2, D3, and D4 are
disjoint, and

N2
0 = N0 ×N0 = D1 +D2 +D3 +D4, (4.52)

where A + B denotes the union of any two subsets A and B of Z2.

Theorem 4.12. Assume that there exists a constant ξ ∈ (0, 1) such that

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ− j

∣
∣pi, j

∣
∣ ≤ ξ, (i, j) ∈ D2,

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−τ

∣
∣pi, j

∣
∣ ≤ ξ, (i, j) ∈ D3 +D4,

(4.53)

then (4.14) is exponentially asymptotically stable.

Proof . For a given solution {ui, j} of (4.14), it is obvious that there exists a constant
θ > 1 such that

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−τ

∣
∣pi, j

∣
∣ ≤ θ, (i, j) ∈ D1. (4.54)

Let

B1 = max
(i, j)∈D1

{
ui, j
}

, (4.55)

then B1 is a finite constant. For the given ξ ∈ (0, 1), any δ > 0 and ϕ ∈ Sδ , it is easy
to see that there exists a positive constant M1 > B1ξ−τ−1 > 0 such that

∣
∣ui, j

∣
∣ ≤ B1 ≤M1ξ

j+1, (i, j) ∈ D1. (4.56)

For j = 0 and any i ≥ σ , then (i, j) ∈ D3, and there exists a positive constant

M2 ≥ max
{
ξ−1‖ϕ‖, θ‖ϕ‖,M1

}
(4.57)

such that
∣
∣ui,1

∣
∣ ≤ ∣∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣

≤ (∣∣ai,0
∣∣ +

∣∣bi,0
∣∣ +

∣∣pi,0
∣∣)‖ϕ‖ ≤M2ξ

2.
(4.58)
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Assume that for some fixed positive integer 0 ≤ n ≤ τ and any i ≥ σ ,

∣
∣ui, j

∣
∣ ≤M2ξ

j+1, 0 ≤ j ≤ n, i ≥ σ. (4.59)

Then (i,n) ∈ D3,

∣∣ui,n+1
∣∣ ≤ ∣∣ai,n

∣∣∣∣ui+1,n
∣∣ +

∣∣bi,n
∣∣∣∣ui,n

∣∣ +
∣∣pi,n

∣∣∣∣ui−σ ,n−τ
∣∣

≤ (∣∣ai,n
∣
∣ +

∣
∣bi,n

∣
∣)M2ξ

n+1 +
∣
∣pi,n

∣
∣‖ϕ‖ ≤M2ξ

n+2.
(4.60)

Hence by induction, we have

∣
∣ui, j

∣
∣ ≤M2ξ

j+1 for 0 ≤ j ≤ τ + 1, i ≥ σ. (4.61)

Let Mδ = max{θM1, θM2}, then from (4.56) and (4.61), we have

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈ D1 +D3. (4.62)

In view of (4.56) and (4.61), we have, for 0 ≤ i < σ ,

∣
∣ui,τ+1

∣
∣ ≤ ∣∣ai,τ

∣
∣
∣
∣ui+1,τ

∣
∣ +

∣
∣bi,τ

∣
∣
∣
∣ui,τ

∣
∣ +

∣
∣pi,τ

∣
∣
∣
∣ui−σ ,0

∣
∣

≤ (∣∣ai,τ
∣
∣ +

∣
∣bi,τ

∣
∣)M2ξ

τ+1 +
∣
∣pi,τ

∣
∣‖ϕ‖ ≤Mδξ

τ+1.
(4.63)

Hence

∣
∣ui, j

∣
∣ ≤Mδξ

j , 0 ≤ j ≤ τ + 1, i ≥ 0. (4.64)

Let

D1 =
{

(i, j) | i ≥ 0, 0 ≤ j ≤ τ
} = D1 +D3,

Dk =
{

(i, j) | i ≥ 0, (k − 1)τ < j ≤ kτ
}

, k = 2, 3, . . . ,
(4.65)

then from (4.62), we have

∣∣ui, j
∣∣ ≤Mδξ

j , (i, j) ∈ D1. (4.66)

Assume that for some fixed positive integer k > 0,

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈
k⋃

s=1

Ds. (4.67)

In the following, we will assert that

∣∣ui, j
∣∣ ≤Mδξ

j , (i, j) ∈ Dk+1, (4.68)
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holds. For any i ≥ σ , we have

∣∣ui,kτ+1
∣∣ ≤ ∣∣ai,kτ

∣∣∣∣ui+1,kτ
∣∣ +

∣∣bi,kτ
∣∣∣∣ui,kτ

∣∣ +
∣∣pi,kτ

∣∣∣∣ui−σ ,(k−1)τ
∣∣

≤ (∣∣ai,kτ
∣∣ +

∣∣bi,kτ
∣∣ + ξ−τ

∣∣pi,kτ
∣∣)Mδξ

kτ ≤Mδξ
kτ+1;

(4.69)

and for any 0 ≤ i < σ , if k = 1, then

∣∣ui,kτ+1
∣∣ ≤ ∣∣ai,kτ

∣∣∣∣ui+1,kτ
∣∣ +

∣∣bi,kτ
∣∣∣∣ui,kτ

∣∣ +
∣∣pi,kτ

∣∣∣∣ui−σ ,(k−1)τ
∣∣

≤ (∣∣ai,kτ
∣
∣ +

∣
∣bi,kτ

∣
∣ + ξ−kτ

∣
∣pi,kτ

∣
∣)M2ξ

kτ+1 ≤Mδξ
kτ+1;

(4.70)

if k > 1, then

∣
∣ui,kτ+1

∣
∣ ≤ ∣∣ai,kτ

∣
∣
∣
∣ui+1,kτ

∣
∣ +

∣
∣bi,kτ

∣
∣
∣
∣ui,kτ

∣
∣ +

∣
∣pi,kτ

∣
∣
∣
∣ui−σ ,(k−1)τ

∣
∣

≤ (∣∣ai,kτ
∣
∣ +

∣
∣bi,kτ

∣
∣ + ξ−kτ

∣
∣pi,kτ

∣
∣)Mδξ

kτ ≤Mδξ
kτ+1.

(4.71)

Hence

∣
∣ui, j

∣
∣ ≤Mδξ

j , 0 ≤ j ≤ kτ + 1, i ≥ 0. (4.72)

Especially, |ui,kτ+1| ≤Mδξkτ+1 for any i ≥ 0.
Assume that for some fixed positive integer kτ < n ≤ (k + 1)τ and any i ≥ 0,

∣
∣ui, j

∣
∣ ≤Mδξ

j , kτ < j ≤ n, i ≥ 0. (4.73)

Then for any i ≥ σ , (i,n) ∈ D4. In view of (4.67), we have

∣
∣ui,n+1

∣
∣ ≤ ∣∣ai,n

∣
∣
∣
∣ui+1,n

∣
∣ +

∣
∣bi,n

∣
∣
∣
∣ui,n

∣
∣ +

∣
∣pi,n

∣
∣
∣
∣ui−σ ,n−τ

∣
∣

≤ (∣∣ai,n
∣
∣ +

∣
∣bi,n

∣
∣ + ξ−τ

∣
∣pi,n

∣
∣)Mδξ

n ≤Mδξ
n+1.

(4.74)

Hence by induction, we have

∣∣ui, j
∣∣ ≤Mδξ

j , i ≥ 0, kτ < j ≤ (k + 1)τ. (4.75)

Thus we have

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈
k+1⋃

s=1

Ds. (4.76)

By induction, we can see that (4.67) holds for any positive integer k > 0. Since

N2
0 = D1 +D2 + · · · =

∞⋃

s=1

Ds, (4.77)
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then we can obtain

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈ N2
0 . (4.78)

The proof is completed. �
If the assumption of Theorem 4.12 does not hold, then we have the following

result.

Theorem 4.13. Let τ > 0 and let ξ ∈ (0, 1) be a constant,

Âi, j =
∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−τ

∣
∣pi, j

∣
∣ (4.79)

for any i, j ∈ N0, and

ai, j = ai, j Âi+1, j−1, bi, j = bi, j Âi, j−1 (4.80)

for any i ∈ N0 and j > 0. Assume that there exists a constant C > 1 such that

∣∣ai,0
∣∣ +

∣∣bi,0
∣∣ +

∣∣pi,0
∣∣ ≤ Cξ, i ∈ N0,

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ− j+1

∣
∣pi, j

∣
∣ ≤ ξ2, (i, j) ∈ D2,

∣∣ai, j
∣∣ +

∣∣bi, j
∣∣ + ξ−τ+1

∣∣pi, j
∣∣ ≤ ξ2, (i, j) ∈ D3 +D4.

(4.81)

Then (4.14) is exponentially asymptotically stable.

Proof . Similar to the proof of Theorem 4.12, for a given solution {ui, j} of (4.14),
the given ξ ∈ (0, 1), any δ > 0 and ϕ ∈ Sδ , there exists a positive constant M1 >
ξ−2‖ϕ‖ such that

∣∣ui, j
∣∣ ≤M1ξ

j+2, (i, j) ∈ D1. (4.82)

It is obvious that there exists a constant θ > Cξ−2 such that

∣∣ai, j
∣∣ +

∣∣bi, j
∣∣ + ξ−τ+1

∣∣pi, j
∣∣ ≤ Aξ2, 0 ≤ i < σ , 0 < j ≤ τ, (4.83)

where A is a constant. For j = 0 and any i ≥ σ , then (i, j) ∈ D3 and there exists a
positive constant

M2 ≥ max
{
Cξ−2‖ϕ‖,M1, ξ−τ−1‖ϕ‖, θC‖ϕ‖} (4.84)

such that
∣
∣ui,1

∣
∣ ≤ ∣∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣

≤ (∣∣ai,0
∣∣ +

∣∣bi,0
∣∣ +

∣∣pi,0
∣∣)‖ϕ‖ ≤M2ξ

3.
(4.85)
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Therefore,
∣
∣ui,2

∣
∣ ≤ ∣∣ai,1

∣
∣
∣
∣ui+1,1

∣
∣ +

∣
∣bi,1

∣
∣
∣
∣ui,1

∣
∣ +

∣
∣pi,1

∣
∣
∣
∣ui−σ ,1−τ

∣
∣

≤ ∣∣ai,1
∣
∣(
∣
∣ai+1,0

∣
∣
∣
∣ui+2,0

∣
∣ +

∣
∣bi+1,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣pi+1,0

∣
∣
∣
∣ui+1−σ ,−τ

∣
∣)

+
∣
∣bi,1

∣
∣(
∣
∣ai,0

∣
∣
∣
∣ui+1,0

∣
∣ +

∣
∣bi,0

∣
∣
∣
∣ui,0

∣
∣ +

∣
∣pi,0

∣
∣
∣
∣ui−σ ,−τ

∣
∣)

+
∣
∣pi,1

∣
∣
∣
∣ui−σ ,1−τ

∣
∣

≤ (∣∣ai,1
∣∣ +

∣∣bi,1
∣∣ +

∣∣pi,1
∣∣)‖ϕ‖ ≤M2ξ

4.
(4.86)

Assume that for some fixed positive integer 1 < n ≤ τ and any i ≥ σ ,

∣
∣ui, j

∣
∣ ≤M2ξ

j+2, 1 < j ≤ n, i ≥ σ. (4.87)

Then (i,n) ∈ D3 and

∣∣ui,n+1
∣∣ ≤ ∣∣ai,n

∣∣∣∣ui+1,n
∣∣ +

∣∣bi,n
∣∣∣∣ui,n

∣∣ +
∣∣pi,n

∣∣∣∣ui−σ ,n−τ
∣∣

≤ ∣∣ai,n
∣∣(∣∣ai+1,n−1

∣∣∣∣ui+2,n−1
∣∣ +

∣∣bi+1,n−1
∣∣∣∣ui+1,n−1

∣∣

+
∣∣pi+1,n−1

∣∣∣∣ui+1−σ ,n−1−τ
∣∣)

+
∣∣bi,n

∣∣(∣∣ai,n−1
∣∣∣∣ui+1,n−1

∣∣ +
∣∣bi,n−1

∣∣∣∣ui,n−1
∣∣ +

∣∣pi,n−1
∣∣∣∣ui−σ ,n−1−τ

∣∣)

+
∣∣pi,n

∣∣∣∣ui−σ ,n−τ
∣∣.

(4.88)

Thus from (4.82) and (4.88), we have

∣∣ui,n+1
∣∣ ≤ ∣∣ai,n

∣∣(∣∣ai+1,n−1
∣∣ +

∣∣bi+1,n−1
∣∣ + ξ−τ

∣∣pi+1,n−1
∣∣)M2ξ

n+1

+
∣
∣bi,n

∣
∣(
∣
∣ai,n−1

∣
∣ +

∣
∣bi,n−1

∣
∣ + ξ−τ

∣
∣pi,n−1

∣
∣)M2ξ

n+1 +
∣
∣pi,n

∣
∣‖ϕ‖

≤ (∣∣ai,n
∣∣ +

∣∣bi,n
∣∣ + ξ−n+1

∣∣pi,n
∣∣)M2ξ

n+1 ≤M2ξ
n+3.

(4.89)

Hence, by induction, we have

∣
∣ui, j

∣
∣ ≤M2ξ

j+2, 0 ≤ j ≤ τ + 1, i ≥ σ. (4.90)

Let Mδ = max{θM1, θM2}, then from (4.82) and (4.90), we have

∣∣ui, j
∣∣ ≤Mδξ

j , (i, j) ∈ D1 +D3. (4.91)

In view of (4.82)–(4.91), we have for 0 ≤ i < σ ,

∣∣ui,τ+1
∣∣ ≤ (∣∣ai,τ

∣∣ +
∣∣bi,τ

∣∣)M2ξ
τ+1 +

∣∣pi,τ
∣∣‖ϕ‖ ≤Mδξ

τ+3 ≤Mδξ
τ+1. (4.92)
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Hence in view of (4.90),

∣∣ui, j
∣∣ ≤Mδξ

j , 0 ≤ j ≤ τ + 1, i ≥ 0. (4.93)

Let the subsets {Dk} of Z2 be defined by (4.65), then from (4.93), we have

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈ D1. (4.94)

Assume that for some fixed positive integer k > 0,

∣∣ui, j
∣∣ ≤Mδξ

j , (i, j) ∈
k⋃

s=1

Ds. (4.95)

Then from (4.88) and (4.95), for any i ≥ σ , we have

∣
∣ui,kτ+1

∣
∣ ≤ (∣∣ai,kτ

∣
∣ +

∣
∣bi,kτ

∣
∣ + ξ−τ+1

∣
∣pi,kτ

∣
∣)Mδξ

kτ−1 ≤Mδξ
kτ+1; (4.96)

and for 0 ≤ i < σ , if k = 1, then

∣
∣ui,kτ+1

∣
∣ ≤ (∣∣ai,kτ

∣
∣ +

∣
∣bi,kτ

∣
∣ + ξ−kτ+1

∣
∣pi,kτ

∣
∣)M2ξ

kτ−1 ≤Mδξ
kτ+1, (4.97)

if k > 1, then

∣
∣ui,kτ+1

∣
∣ ≤ (∣∣ai,kτ

∣
∣ +

∣
∣bi,kτ

∣
∣ + ξ−kτ+1

∣
∣pi,kτ

∣
∣)Mδξ

kτ−1 ≤Mδξ
kτ+1. (4.98)

Hence

∣
∣ui, j

∣
∣ ≤Mδξ

j for 0 ≤ j ≤ kτ + 1 and any i ≥ 0. (4.99)

Assume that for some fixed positive integer kτ < n ≤ (k + 1)τ and any i ≥ 0,

∣
∣ui, j

∣
∣ ≤Mδξ

j for kτ < j ≤ n and any i ≥ 0. (4.100)

Then for any i ≥ σ , from (4.88) and (4.95), we have

∣
∣ui,n+1

∣
∣ ≤ (∣∣ai,n

∣
∣ +

∣
∣bi,n

∣
∣ + ξ−τ+1

∣
∣pi,n

∣
∣)Mδξ

n−1 ≤Mδξ
n+1; (4.101)

and for any 0 ≤ i < σ , we have

∣
∣ui,n+1

∣
∣ ≤ (∣∣ai,n

∣
∣ +

∣
∣bi,n

∣
∣ + ξ−n+1

∣
∣pi,n

∣
∣)Mδξ

n−1 ≤Mδξ
n+1. (4.102)
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Hence by induction, we have

∣
∣ui, j

∣
∣ ≤Mδξ

j , i ≥ 0, kτ < j ≤ (k + 1)τ. (4.103)

Thus we have

∣
∣ui, j

∣
∣ ≤Mδξ

j , (i, j) ∈
k+1⋃

s=1

Ds. (4.104)

Hence by induction, we can obtain

∣∣ui, j
∣∣ ≤Mδξ

j , (i, j) ∈ N2
0 . (4.105)

The proof is completed. �

Example 4.14. Consider the partial difference equation

ui, j+1 = ai, jui+1, j + bi, jui, j + pi, jui−1, j−1, (4.106)

where

ai, j = 1
2

, bi, j = 1
4

, pi, j = 1
8 j+1 . (4.107)

Since σ = 1 and τ = 1, Theorem 4.11 cannot assert that (4.106) is exponentially
asymptotically stable.

But if we let ξ = 7/8, then for any (i, j) ∈ D2, we have

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ− j

∣
∣pi, j

∣
∣ = 1

2
+

1
4

+
7− j

8− j
· 1

8 j+1 ≤ 43
56

<
7
8
= ξ; (4.108)

and for (i, j) ∈ D3 +D4, we have

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−1

∣
∣pi, j

∣
∣ = 1

2
+

1
4

+
8
7
· 1

8 j+1 ≤ 43
56

<
7
8
= ξ. (4.109)

Hence (4.53) holds, by Theorem 4.12, (4.106) is exponentially asymptotically sta-
ble.

Example 4.15. Consider the partial difference equation

ui, j+1 = ai, jui+1, j + bi, jui, j + pi, jui−1, j−1, (4.110)

where

ai, j = 1
2

+
(−1)i

2
, bi, j = 1

8
, pi, j = 1

8 j+1 . (4.111)
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It is obvious that

5
4
≥ ∣∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ +

∣
∣pi, j

∣
∣ ≥ 5

8
+

(−1)i

2
, (i, j) ∈ N2

0 . (4.112)

Hence (4.53) does not hold. Thus Theorem 4.12 is not applicable to (4.110). But
it is easy to see that for ξ = 7/8,

Âi, j =
∣∣ai, j

∣∣ +
∣∣bi, j

∣∣ + ξ−1
∣∣pi, j

∣∣ = 5
8

+
(−1)i

2
+

1
7 · 8 j

,

∣∣ai, j
∣∣ = ∣∣ai, j Âi+1, j

∣∣ = 1
16

+
(−1)i

16
+

1
14 · 8 j

+
(−1)i

14 · 8 j
≤ 1

4
,

∣∣bi, j
∣∣ = ∣∣bi, j Âi, j−1

∣∣ = 5
64

+
(−1)i

16
+

1
7 · 8 j

≤ 3
16
.

(4.113)

Hence for any (i, j) ∈ D2,

∣∣ai, j
∣∣ +

∣∣bi, j
∣∣ + ξ− j

∣∣pi, j
∣∣ ≤ 9

16
≤ 7

8
(4.114)

for (i, j) ∈ D3 +D4,

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−1

∣
∣pi, j

∣
∣ ≤ 9

16
≤ 7

8
. (4.115)

It is obvious that for any i ≥ 0,

∣
∣ai,0

∣
∣ +

∣
∣bi,0

∣
∣ + ξ−1

∣
∣pi,0

∣
∣ ≤ 9

16
≤ 7

8
. (4.116)

Therefore, by Theorem 4.13, (4.110) is exponentially asymptotically stable.

Theorem 4.16. Assume that there exist ξ,η ∈ (0, 1) such that

ξ
∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + ξ−ση−τ

∣
∣pi, j

∣
∣ ≤ η, (i, j) ∈ N2

0 . (4.117)

Then (4.14) is strongly exponentially asymptotically stable in the meaning

∣∣ui, j
∣∣ ≤M‖ϕ‖ξiη j , (i, j) ∈ N2

0 . (4.118)

Proof . Let hi, j = ξiη j . We consider the equation

hi, j+1ui, j+1 = ai, jhi+1, jui+1, j + bi, jhi, jui, j + pi, jhi−σ , j−τui−σ , j−τ , (4.119)

which equals to

ui, j+1 =
[
ξai, jui+1, j + bi, jui, j + ξ−ση−τ pi, jui−σ , j−τ

]
η−1. (4.120)
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In view of (4.53) and Theorem 4.8, (4.119) is linearly stable. Hence

∣∣ui, j
∣∣ ≤M‖ϕ‖ξiη j , (i, j) ∈ N2

0 . (4.121)

The proof is complete. �

Example 4.17. Consider the partial difference equation

1
16
ui+1, j + ui, j +

1
4

(
13
8

− 1
i + j + 1

)
ui, j+1 − 1

64(i + j + 1)
ui−2, j−2 = 0, (4.122)

where

∣∣ai, j
∣∣ = 1

16
,

∣∣bi, j
∣∣ = 1

4

(
13
8

− 1
i + j + 1

)
,

∣∣pi, j
∣∣ = 1

64(i + j + 1)
.

(4.123)

Let ξ = η = 1/2. Then

ξ
∣∣ai, j

∣∣ +
∣∣bi, j

∣∣ + ξ−2η−2
∣∣pi, j

∣∣ = 1
32

+
13
32

<
1
2
= η. (4.124)

By Theorem 4.16, the solutions of the above equation satisfy

∣
∣ui, j

∣
∣ ≤M‖ϕ‖2−(i+ j), (i, j) ∈ N2

0 . (4.125)

Now, we consider the instability of (4.14).
Let Bi, j = |ai, j| + |bi, j| for any i, j ∈ N0, and

ãi, j+1 = ai, j+1Bi+1, j , b̃i, j+1 = bi, j+1Bi, j . (4.126)

Theorem 4.18. Assume that for some constant r > 1, one of the following conditions
holds.

(i) ai, j ≥ 0, bi, j ≥ 0, pi, j ≥ 0 for i, j ∈ N0, and

ai,0 + bi,0 ≥ r, ãi, j + b̃i, j ≥ r2, i ∈ N0, j > 0. (4.127)

(ii) ai, j ≤ 0, bi, j ≥ 0, pi, j ≥ 0, i, j ∈ N0, σ is even and

−ai,0 + bi,0 ≥ r, −ãi, j + b̃i, j ≥ r2, i ∈ N0, j > 0. (4.128)

(iii) ai, j ≤ 0, bi, j ≥ 0, pi, j ≤ 0, σ is odd and (4.128) holds.
(iv) ai, j ≥ 0, bi, j ≤ 0, pi, j ≥ 0, σ + τ is odd and

ai,0 − bi,0 ≥ r, ãi, j − b̃i, j ≥ r2, i ∈ N0, j > 0. (4.129)
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(v) ai, j ≥ 0, bi, j ≤ 0, pi, j ≤ 0, σ + τ is even and (4.129) holds.
(vi) ai, j ≤ 0, bi, j ≤ 0, pi, j ≥ 0, τ is odd and

−ai,0 − bi,0 ≥ r, −ãi, j − b̃i, j ≥ r2, i ∈ N0, j > 0. (4.130)

(vii) ai, j ≤ 0, bi, j ≤ 0, pi, j ≤ 0, τ is even and (4.130) holds.
Then (4.14) is unstable.

Proof . In the following, we only give the proof for cases (i), (ii), (iv), and (vi). The
other cases can be proved by the same method.

If (i) holds, we take ϕi, j = δ > 0 for (i, j) ∈ Ω; from (4.14), we have

ui,1 = ai,0ui+1,0 + bi,0ui,0 + pi,0ui−σ ,−τ = δ
(
ai,0 + bi,0 + pi,0

) ≥ δr > 0. (4.131)

Hence from (4.14), we can obtain

ui,2 = ai,1ui+1,1 + bi,1ui,1 + pi,1ui−σ ,1−τ

= ai,1
(
ai+1,0ui+2,0 + bi+1,0ui+1,0 + pi+1,0ui+1−σ ,−τ

)

+ bi,1
(
ai,0ui+1,0 + bi,0ui,0 + pi,0ui−σ ,−τ

)
+ pi,1ui−σ ,1−τ

≥ δ
(
ãi,1 + b̃i,1

) ≥ δr2 > 0.

(4.132)

Assume that for some fixed integer n > 0,

ui, j ≥ δr j > 0, i ∈ N0, 0 < j ≤ n. (4.133)

Then from (4.14), for any i ∈ N0, we have

ui,n+1 = ai,nui+1,n + bi,nui,n + pi,nui−σ ,n−τ ≥ δrn−1(ãi,n + b̃i,n
) ≥ δrn+1. (4.134)

By induction, we have

ui, j ≥ δr j , i, j ∈ N0. (4.135)

Obviously, ui, j →∞ as j →∞ for any δ > 0, then (4.14) is unstable.
If (ii) holds, we take ϕi, j = (−1)iδ for (i, j) ∈ Ω. From (4.14), we have

ui,1 = ai,0ui+1,0 + bi,0ui,0 + pi,0ui−σ ,−τ = (−1)iδ
(− ai,0 + bi,0 + pi,0

)
, i ∈ N0.

(4.136)

Hence (−1)iui,1 > 0 for i ∈ N0, and

∣∣ui,1
∣∣ = δ

(− ai,0 + bi,0 + pi,0
) ≥ δr, i ∈ N0. (4.137)
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Assume that for some fixed integer n > 0,

(−1)iui, j > 0, i ≥ −σ , −τ ≤ j ≤ n,
∣
∣ui, j

∣
∣ ≥ δr j , i ≥ 0, 0 ≤ j ≤ n.

(4.138)

Then from (4.14), we obtain

ui,n+1 = ai,nui+1,n + bi,nui,n + pi,nui−σ ,n−τ

= ai,n
(
ai+1,n−1ui+2,n−1 + bi+1,n−1ui+1,n−1 + pi+1,n−1ui+1−σ ,n−1−τ

)

+ bi,n
(
ai,n−1ui+1,n−1 + bi,n−1ui,n−1 + pi,n−1ui−σ ,n−1−τ

)
+ pi,nui−σ ,n−τ .

(4.139)

Hence (−1)iui,n+1 > 0 for i ≥ 0, and

∣
∣ui,n+1

∣
∣ ≥ δrn−1(− ãi,n + b̃i,n

) ≥ δrn+1, i ≥ 0. (4.140)

By induction, we have

∣
∣ui, j

∣
∣ ≥ δr j , i, j ∈ N0. (4.141)

Then (4.14) is unstable.
If (iv) holds, we take ϕi, j = (−1)i+ jδ for (i, j) ∈ Ω. From (4.14), we have

ui,1 = ai,0ui+1,0 + bi,0ui,0 + pi,0ui−σ ,−τ = (−1)i+1δ
(
ai,0 − bi,0 + pi,0

)
, i ∈ N0.

(4.142)

Hence (−1)i+1ui,1 > 0 for i ∈ N0, and

∣
∣ui,1

∣
∣ = δ

(
ai,0 − bi,0 + pi,0

) ≥ δr, i ∈ N0. (4.143)

Assume that for some fixed integer n > 0,

(−1)i+ jui, j > 0, i ≥ −σ , −τ ≤ j ≤ n,
∣
∣ui, j

∣
∣ ≥ δr j , i ≥ 0, 0 ≤ j ≤ n.

(4.144)

Then from (4.14), we obtain (4.139). Hence (−1)i+n+1ui,n+1 > 0 for i ∈ N0 and

∣
∣ui,n+1

∣
∣ ≥ δrn−1(ãi,n − b̃i,n

) ≥ δrn+1, i ≥ 0. (4.145)

By induction, we have

∣∣ui, j
∣∣ ≥ δr j , i, j ∈ N0. (4.146)

Then (4.14) is unstable.
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If (vi) holds, we take ϕi, j = (−1) jδ for (i, j) ∈ Ω. From (4.14), we have

ui,1 = ai,0ui+1,0 + bi,0ui,0 + pi,0ui−σ ,−τ = −δ(− ai,0 − bi,0 + pi,0
)
, i ∈ N0.

(4.147)

Hence −ui,1 > 0 for i ∈ N0, and

∣
∣ui,1

∣
∣ = δ

(− ai,0 − bi,0 + pi,0
) ≥ δr, i ∈ N0. (4.148)

Assume that for some fixed integer n > 0,

(−1) jui, j > 0, i ≥ −σ , −τ ≤ j ≤ n,
∣
∣ui, j

∣
∣ ≥ δr j , i ≥ 0, 0 ≤ j ≤ n.

(4.149)

Then from (4.14), we obtain (4.139). Hence (−1)n+1ui,n+1 > 0 for i ∈ N0 and

∣∣ui,n+1
∣∣ ≥ δrn−1(− ãi,n − b̃i,n

) ≥ δrn+1, i ≥ 0. (4.150)

By induction, we have

∣
∣ui, j

∣
∣ ≥ δr j , i, j ∈ N0. (4.151)

Then (4.14) is unstable. The proof is completed. �

Remark 4.19. We compare conditions of Theorem 4.8 for the stability and condi-
tions in Theorem 4.13 for the instability to find that there is a gap between them.
How do we fill this gap? That is an open problem.

Similarly, we can prove the following result. Let

B̂i, j =
∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + r−τ

∣
∣pi, j

∣
∣, i, j ∈ N0,

ai, j+1 = ai, j+1B̂i+1, j , bi, j+1 = bi, j+1B̂i, j .
(4.152)

Theorem 4.20. Assume that σ = 0 and τ > 0. Let for some constant r > 1, one of the
following conditions holds.

(i) ai, j ≥ 0, bi, j ≥ 0, pi, j ≥ 0 for i, j ∈ N0, and

∣
∣ai,0

∣
∣ +

∣
∣bi,0

∣
∣ +

∣
∣pi,0

∣
∣ ≥ r,

∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ + r−τ+1

∣
∣pi, j

∣
∣ ≥ r2, i ∈ N0, j > 0.

(4.153)

(ii) ai, j ≤ 0, bi, j ≥ 0, pi, j ≥ 0 for i, j ∈ N0, σ is even and (4.153) holds.
(iii) ai, j ≤ 0, bi, j ≥ 0, pi, j ≤ 0, σ is odd and (4.153) holds.
(iv) ai, j ≥ 0, bi, j ≤ 0, pi, j ≥ 0, σ + τ is odd and (4.153) holds.
(v) ai, j ≥ 0, bi, j ≤ 0, pi, j ≤ 0, σ + τ is even and (4.153) holds.
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(vi) ai, j ≤ 0, bi, j ≤ 0, pi, j ≥ 0, τ is odd and (4.153) holds.
(vii) ai, j ≤ 0, bi, j ≤ 0, pi, j ≤ 0, τ is even and (4.153) holds.

Then (4.14) is unstable.

Example 4.21. Consider the partial difference equation

ui, j+1 = ai, jui+1, j + bi, jui, j + pi, jui−2, j−1, (4.154)

where

ai, j = −3
4

+
(−1)i

2
, bi, j = 3

4
, pi, j = 1

8
. (4.155)

It is easy to see that

Bi, j =
∣
∣ai, j

∣
∣ +

∣
∣bi, j

∣
∣ = 3

2
− (−1)i

2
. (4.156)

From (4.155) and (4.156),

ãi, j = ai, j+1Bi+1, j = −7
8

+ (−1)i
3
8

,

b̃i, j = bi, j+1Bi, j = 9
8
− (−1)i

3
8

,

(4.157)

and hence

−ãi, j + b̃i, j = 2 + (−1)i
3
4
≥ 5

4
> 1. (4.158)

Thus condition (ii) of Theorem 4.18 holds. By Theorem 4.18, (4.154) is unstable.

4.2.2. Stability of linear PDEs with continuous arguments

Consider the partial difference equation with continuous arguments of the form

u(x, y + t) = a(x, y)u(x + s, y) + b(x, y)u(x, y) + p(x, y)u(x − σ , y − τ),
(4.159)

where s > 0, t > 0, σ and τ are nonnegative constants, a(x, y), b(x, y), and p(x, y)
are real functions defined on x ≥ 0 and y ≥ 0.

By a solution of (4.159) we mean a real function u(x, y) which is defined for
x ≥ −σ and y ≥ −τ, and satisfies (4.159) for x ≥ 0 and y ≥ 0.

Let h be a real number, R = (−∞,∞), Rh = [h, +∞), and Ω = R−σ × R−τ \
R0 ×R0. It is easy to construct by iterative method a function u(x, y) which equals
ϕ(x, y) on Ω and satisfies (4.159) on R0 ×R0. Obviously, the solution of the initial
value problem of (4.159) is unique.
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For any initial function ϕ(x, y) on Ω, let

‖ϕ‖ = sup
(x,y)∈Ω

∣∣ϕ(x, y)
∣∣. (4.160)

For any positive real number H > 0, let SH = {ϕ | ‖ϕ‖ < H}.
Stability and exponential asymptotic stability are defined as follows.

Definition 4.22. Equation (4.159) is said to be linearly stable if there exists a con-
stant M > 0 such that every solution of (4.159) satisfies

∣
∣u(x, y)

∣
∣ ≤M‖ϕ‖, x, y ∈ R0. (4.161)

Equation (4.159) is said to be stable, if for any given ε > 0 there exists a δ > 0 such
that ϕ ∈ Sδ implies that the corresponding solution u(x, y) satisfies

∣
∣u(x, y)

∣
∣ < ε, x, y ∈ R0. (4.162)

From the above definition, it is obvious that (4.159) is linearly stable which
implies that it is stable.

Definition 4.23. Equation (4.159) is said to be exponentially asymptotically stable
if, for any δ > 0, there exist a positive constant Mδ and a real number ξ ∈ (0, 1)
such that ϕ ∈ Sδ implies that

∣
∣u(x, y)

∣
∣ ≤Mδξ

y , x, y ∈ R0, (4.163)

where u(x, y) is a solution of (4.159) with the initial function ϕ(x, y).
Let V(u, x, y) : R × R2

0 → R+ = [0,∞). If for any solution u(x, y) of (4.159),
there exists a constant c > 0 such that

V(u, x, y) ≥ c
∣
∣u(x, y)

∣
∣, (x, y) ∈ R2

0, (4.164)

then V(u, x, y) is said to be a positive Liapunov function.

The following result holds obviously.

Lemma 4.24. If for any solution u(x, y) of (4.159) there exist a positive Liapunov
function V(u, x, y) and a constant M > 0 such that

V(u, x, y) ≤M‖ϕ‖, (x, y) ∈ R2
0, (4.165)

where u(x, y) is a solution of (4.159) with the initial function ϕ(x, y), then (4.159)
is linearly stable.
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Theorem 4.25. Assume that

∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣ ≤ 1 ∀x, y ∈ R0. (4.166)

Then (4.159) is linearly stable.

Proof . For a given solution u(x, y) of (4.159), let

V(u, x, y) = max
x≥0

∣∣u(x, y)
∣∣ for y ≥ 0, wu(y) = V(u, x, y). (4.167)

Obviously, for any x ≥ 0 and t ≤ y < 2t, we have (x+ s, y− t), (x, y− t), (x−σ , y−
t − τ) ∈ Ω. Thus from (4.159), for any x ∈ R0 and y ∈ [t, 2t), we obtain

∣∣u(x, y)
∣∣ ≤ ∣∣a(x, y − t)

∣∣∣∣u(x + s, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣∣∣u(x, y − t)

∣∣

+
∣∣p(x, y − t)

∣∣∣∣u(x − σ , y − t − τ)
∣∣

≤ (∣∣a(x, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣ +

∣∣p(x, y − t)
∣∣) · ‖ϕ‖ ≤ ‖ϕ‖.

(4.168)

Hence |u(x, y)| ≤ wu(y) ≤ ‖ϕ‖ for any x ∈ R0 and y ∈ [0, 2t). Assume that for
some fixed integer n > 1,

wu(y) ≤ ‖ϕ‖ for any y ∈ [0,nt). (4.169)

Then for any y ∈ [nt, (n+1)t), we can obtain y−t ∈ [0,nt) and y−t−τ ∈ [−τ,nt),
and then

∣∣u(x, y)
∣∣ ≤ ∣∣a(x, y − t)

∣∣∣∣u(x + s, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣∣∣u(x, y − t)

∣∣

+
∣∣p(x, y − t)

∣∣∣∣u(x − σ , y − t − τ)
∣∣

≤ (∣∣a(x, y − t)
∣
∣ +

∣
∣b(x, y − t)

∣
∣ +

∣
∣p(x, y − t)

∣
∣)

× max
{∣∣u(x + s, y − t)

∣
∣,
∣
∣u(x, y − t)

∣
∣,
∣
∣u(x − σ , y − t − τ)

∣
∣}

≤ ‖ϕ‖.
(4.170)

By induction,wu(y) ≤ ‖ϕ‖ for any y > 0. Hence by Lemma 4.24, (4.159) is linearly
stable. The proof is complete. �

Example 4.26. Consider the partial difference equation

u(x, y + 3) = a(x, y)u(x + 2, y) + b(x, y)u(x, y) + p(x, y)u(x − 1, y − 1),
(4.171)
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where

a(x, y)=− x + y

3(x + y + 1)
, b(x, y)= x2 + y2

3(x2 + y2 + 1)
, p(x, y)= 1

3
for (x, y)∈R2

0.

(4.172)

It is easy to see that |a(x, y)| + |b(x, y)| + |p(x, y)| ≤ 1 for any (x, y) ∈ R2
0. Hence

by Theorem 4.25, (4.171) is linearly stable.
If (4.166) does not hold, then we can obtain the following three results.

Theorem 4.27. For any y ≥ 0, let

d(y) = max
x≥0

{∣∣a(x, y)
∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣}, d(y) = max

(
1,d(y)

)
,

(4.173)

and d(y) = 1 + r(y) for any y ∈ R0. If there exists a positive number M > 0 such
that for any y ∈ [0, t),

∞∑

i=0

r(y + it) < M, (4.174)

then (4.159) is linearly stable.

Proof . Similar to the proof of Theorem 4.25, by induction we can obtain

wu(y) ≤
( [y/t]∏

k=0

d(y − kt)

)

‖ϕ‖ for any y ≥ 0. (4.175)

Hence,

lnwu(y) ≤ ln‖ϕ‖ +
[y/t]∑

k=0

lnd(y − kt)

= ln‖ϕ‖ +
[y/t]∑

k=0

ln
(
1 + r(y − kt)

)

≤ ln‖ϕ‖ +
∞∑

k=0

r(y + kt)

≤ ln‖ϕ‖ +M,

(4.176)



274 Stability of PDEs

where y is a certain constant in the interval [0, t). Hence,

wu(y) ≤ ‖ϕ‖ exp(M) =M‖ϕ‖ for any y ≥ 0, (4.177)

where M = exp(M). The proof is complete. �

Let A(x, y) = |a(x, y)| + |b(x, y)| + |p(x, y)| for any (x, y) ∈ R2
0, and

a(x, y + t) = a(x, y + t)A(x + s, y), b(x, y + t) = b(x, y + t)A(x, y).
(4.178)

Theorem 4.28. Assume that there exists a constant C > 1 such that

∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣ ≤ C for any x ∈ R0, y ∈ [0, t),

∣∣a(x, y)
∣∣ +

∣∣b(x, y)
∣∣ +

∣∣p(x, y)
∣∣ ≤ 1 for x ∈ R0, y ∈ [t,∞).

(4.179)

Then (4.159) is linearly stable.

Proof . For a given solution u(x, y) of (4.159), let V(u, x, y) and wu(y) be defined
in (4.167). From (4.159), for any x ∈ R0 and y ∈ [t, 2t), we have y− t ∈ [0, t) and

u(x, y) ≤ (∣∣a(x, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣ +

∣∣p(x, y − t)
∣∣)

× max
{∣∣u(x + s, y − t)

∣∣,
∣∣u(x, y − t)

∣∣,
∣∣u(x − σ , y − t − τ)

∣∣} ≤ C‖ϕ‖.
(4.180)

Hence wu(y) ≤ C‖ϕ‖ for y ∈ [0, 2t). From (4.159), for any y ≥ 2t, we have

∣∣u(x, y)
∣∣ ≤ ∣∣a(x, y − t)

∣∣∣∣u(x + s, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣∣∣u(x, y − t)

∣∣

+
∣∣p(x, y − t)

∣∣∣∣u(x − σ , y − t − τ)
∣∣

≤ ∣∣a(x, y − t)
∣∣(∣∣a(x + s, y − 2t)

∣∣∣∣u(x + 2s, y − 2t)
∣∣

+
∣∣b(x + s, y − 2t)

∣∣∣∣u(x + s, y − 2t)
∣∣

+
∣
∣p(x + s, y − 2t)

∣
∣
∣
∣u(x + s− σ , y − 2t − τ)

∣
∣)

+
∣
∣b(x, y − t)

∣
∣(
∣
∣a(x, y − 2t)

∣
∣
∣
∣u(x + s, y − 2t)

∣
∣

+
∣
∣b(x, y − 2t)

∣
∣
∣
∣u(x, y − 2t)

∣
∣

+
∣
∣p(x, y − 2t)

∣
∣
∣
∣u(x − σ , y − 2t − τ)

∣
∣)

+
∣
∣p(x, y − t)

∣
∣
∣
∣u(x − σ , y − t − τ)

∣
∣.

(4.181)
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Hence from (4.181), for any x ∈ R0 and y ∈ [2t, 3t),

∣
∣u(x, y)

∣
∣ ≤ (∣∣a(x, y − t)

∣
∣ +

∣
∣b(x, y − t)

∣
∣ +

∣
∣p(x, y − t)

∣
∣) · C‖ϕ‖ ≤ C‖ϕ‖.

(4.182)

Thus wu(y) ≤ C‖ϕ‖ for y ∈ [0, 3t). Assume that for some fixed integer n > 2,

wu(y) ≤ C‖ϕ‖, y ∈ [0,nt). (4.183)

Then in view of (4.181), for any x ∈ R0 and y ∈ [nt, (n + 1)t), we can obtain

∣
∣u(x, y)

∣
∣ ≤ (∣∣a(x, y − t)

∣
∣ +

∣
∣b(x, y − t)

∣
∣ +

∣
∣p(x, y − t)

∣
∣) · C‖ϕ‖ ≤ C‖ϕ‖.

(4.184)

By induction, wu(y) ≤ C‖ϕ‖ for any y ≥ 0. Hence |u(x, y)| ≤ wu(y) ≤ C‖ϕ‖ for
all (x, y) ∈ R2

0, that is, (4.159) is linearly stable. The proof is complete. �

Similar to the proof of Theorems 4.27-4.28, we can obtain the following result.

Theorem 4.29. Let

d(y) = max
x≥0

{∣∣a(x, y)
∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣} for y ∈ [0, t),

d(y) = max
x≥0

{|a(x, y)| +
∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣} for y ∈ [t,∞),

(4.185)

and d(y) = max(1,d(y)) = 1 + r(y) for y ≥ 0. If there exists a positive constant
M > 0 such that for any y ∈ [0, t),

∞∑

i=0

r(y + it) < M, (4.186)

then (4.159) is linearly stable.

Example 4.30. Consider the partial difference equation

u(x, y + 2) = a(x, y)u(x + 3, y) + b(x, y)u(x, y) + p(x, y)u(x − 1, y − 1),
(4.187)

where

a(x, y) = 1
3

+
1

y2 + 1
, b(x, y) = −1

3
, p(x, y) = 1

3
for any (x, y) ∈ R2

0.

(4.188)
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It is easy to see that |a(x, y)| + |b(x, y)| + |p(x, y)| > 1 for any (x, y) ∈ R2
0.

Hence by Theorem 4.25 it is impossible to assert that (4.187) is stable. But it is
obvious that

d(y) = max
x≥0

{∣∣a(x, y)
∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣} = 1 +

(
y2 + 1

)−1
,

r(y) = (y2 + 1
)−1

,
(4.189)

and for any y ∈ [0, 2),

r(y) + r(y + 2) + · · · + r(y + 2n) + · · · <
∞∑

n=1

1
n2

≤ 3. (4.190)

Hence by Theorem 4.27, (4.187) is linearly stable.

Example 4.31. Consider the partial difference equation

u(x, y + 2) = a(x, y)u
(
x +

π

2
, y
)

+ b(x, y)u(x, y) + p(x, y)u(x − 2, y − 1),

(4.191)

where

a(x, y) = sin x, b(x, y) = 1
10

, p(x, y) = 1
10

for (x, y) ∈ R2
0. (4.192)

It is easy to see that |a(x, y)| + |b(x, y)| + |p(x, y)| = | sin x| + 0.2 for any
x, y ∈ R0, then by Theorems 4.25 and 4.27, it is difficult to assert that (4.191) is
stable. But it is easy to obtain

A(x, y) = | sin x| + 0.2 for any x, y ∈ R0,

∣∣a(x, y)
∣∣+
∣∣b(x, y)

∣∣+
∣∣p(x, y)

∣∣= 0.2 + | sin x|≤2=C for any x∈R0, y∈[0, t),

∣
∣a(x, y + 2)

∣
∣=∣∣a(x, y + 2)

∣
∣A
(
x +

π

2
, y
)
= | sin x|

5
+
| sin 2x|

2
for x∈R0, y≥ t,

∣∣b(x, y + 2)
∣∣=∣∣b(x, y + 2)

∣∣A(x, y)= 1
50

+
| sin x|

10
for x ∈ R0, y ∈ (t, +∞).

(4.193)

Then for x ∈ R0 and y ≥ 0,

∣
∣a(x, y + 2)

∣
∣+
∣
∣b(x, y + 2)

∣
∣+
∣
∣p(x, y + 2)

∣
∣= 3

25
+

3| sin x|
10

+
| sin 2x|

2
≤ 23

25
< 1.

(4.194)

By Theorem 4.28, we can conclude that (4.191) is linearly stable.
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Let Â(x, y) = |a(x, y)| + |b(x, y)| + ξ−τ|p(x, y)| for any x, y ∈ R0 and

â(x, y + t) = a(x, y + t)Â(x + s, y), b̂(x, y + t) = b(x, y + t)Â(x, y).
(4.195)

Theorem 4.32. Assume that σ = 0, τ ≥ 0, and there exist two constants C > 1 and
ξ ∈ (0, 1) such that either

∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ + ξ−τ

∣
∣p(x, y)

∣
∣ ≤ ξt ∀x, y ∈ R0 (4.196)

or
∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣ ≤ C for any x ∈ R0, y ∈ [0, t),

∣
∣â(x, y)

∣
∣ +

∣
∣b̂(x, y)

∣
∣ + ξ−(τ+t)

∣
∣p(x, y)

∣
∣ ≤ ξ2t ∀x ∈ R0, y ≥ t,

(4.197)

then (4.159) is exponentially asymptotically stable.

Proof . For a given solution u(x, y) of (4.159), let V(u, x, y) and wu(y) be defined
in (4.167).

If (4.196) holds, then for any δ > 0 and ϕ ∈ Sδ there exists a constant Mδ ≥
Cξ−(2t+τ+3)‖ϕ‖ > 0 such that for any x ∈ R0 and y ∈ [t, 2t),

∣
∣u(x, y)

∣
∣ ≤ ∣∣a(x, y − t)

∣
∣
∣
∣u(x + s, y − t)

∣
∣ +

∣
∣b(x, y − t)

∣
∣
∣
∣u(x, y − t)

∣
∣

+
∣
∣p(x, y − t)

∣
∣
∣
∣u(x − σ , y − t − τ)

∣
∣

≤ (∣∣a(x, y − t)
∣
∣ +

∣
∣b(x, y − t)

∣
∣ +

∣
∣p(x, y − t)

∣
∣)‖ϕ‖

≤Mδξ
y.

(4.198)

Hence wu(y) ≤Mδξy for any y ∈ [0, 2t). In general, we can obtain

wu(y) ≤Mδξ
y for any y ∈ [0, t + τ). (4.199)

Assume that for any positive integer n ≥ 0,

wu(y) ≤Mδξ
y for any y ∈ [0, t + τ + nt). (4.200)

Then from (4.159), for any y ∈ [t + τ + nt, t + τ + (n + 1)t), we have

∣
∣u(x, y)

∣
∣ ≤ (∣∣a(x, y − t)

∣
∣ +

∣
∣b(x, y − t)

∣
∣ + ξ−τ

∣
∣p(x, y − t)

∣
∣)Mδξ

y−t ≤Mδξ
y.

(4.201)

By induction, wu(y) ≤ Mδξy for any y ≥ 0. Hence by Lemma 4.24, (4.159) is
stable.
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If (4.197) holds, then for any δ > 0 and ϕ ∈ Sδ we can obtain (4.198) for any
x ∈ R0 and y ∈ [0, 2t), and then wu(y) ≤ Mδξy for y ∈ [0, 2t). From (4.159), for
any y ≥ 2t, we have

∣∣u(x, y)
∣∣ ≤ ∣∣a(x, y − t)

∣∣∣∣u(x + s, y − t)
∣∣ +

∣∣b(x, y − t)
∣∣∣∣u(x, y − t)

∣∣

+
∣∣p(x, y − t)

∣∣∣∣u(x − σ , y − t − τ)
∣∣

≤ ∣∣a(x, y − t)
∣∣(∣∣a(x + s, y − 2t)

∣∣∣∣u(x + 2s, y − 2t)
∣∣

+
∣∣b(x + s, y − 2t)

∣∣∣∣u(x + s, y − 2t)
∣∣

+
∣∣p(x + s, y − 2t)

∣∣∣∣u(x + s− σ , y − 2t − τ)
∣∣)

+
∣
∣b(x, y − t)

∣
∣(
∣
∣a(x, y − 2t)

∣
∣
∣
∣u(x + s, y − 2t)

∣
∣

+
∣
∣b(x, y − 2t)

∣
∣
∣
∣u(x, y − 2t)

∣
∣

+
∣
∣p(x, y − 2t)

∣
∣
∣
∣u(x − σ , y − 2t − τ)

∣
∣)

+
∣
∣p(x, y − t)

∣
∣
∣
∣u(x − σ , y − t − τ)

∣
∣.

(4.202)

Hence for any x ∈ R0 and y ∈ [2t, 3t),

∣∣u(x, y)
∣∣ ≤ (∣∣a(x, y − t)

∣∣ +
∣∣b(x, y − t)

∣∣ +
∣∣p(x, y − t)

∣∣) · ‖ϕ‖ ≤Mδξ
y.

(4.203)

Thus wu(y) ≤ Mδξy for y ∈ [0, 3t). In general, from (4.202), we have for any
y ∈ [0, 3t + τ),

wu(y) ≤Mδξ
y for x ∈ R0, y ∈ [0, 3t + τ). (4.204)

Assume that for any fixed integer n ≥ 0,

wu(y) ≤Mδξ
y for x ∈ R0, y ∈ [0, 3t + τ + nt). (4.205)

Then from (4.202), for any x ∈ R0 and y ∈ [3t + τ + nt, 3t + τ + (n + 1)t), we can
obtain

∣∣u(x, y)
∣∣≤(∣∣â(x, y − t)

∣∣+
∣∣b̂(x, y − t)

∣∣ + ξ−(τ+t)
∣∣p(x, y − t)

∣∣)Mδξ
y−2t ≤Mδξ

y.
(4.206)

By induction, we have |u(x, y)| ≤Mδξy for y ≥ 0. The proof is complete. �
Let B(x, y) = |a(x, y)| + |b(x, y)| for any x, y ∈ R0, and

ã(x, y + t) = a(x, y + t)B(x + s, y), b̃(x, y + t) = b(x, y + t)B(x, y).
(4.207)
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Theorem 4.33. Assume that a(x, y) ≥ 0, b(x, y) ≥ 0, p(x, y) ≥ 0 for x, y ∈ R0, and
there exists a positive constant r > 1 such that either

a(x, y) + b(x, y) ≥ r2t ∀x, y ∈ R0 (4.208)

or

a(x, y) + b(x, y) ≥ r2t for x ∈ R0, y ∈ [0, t),

ã(x, y) + b̃(x, y) ≥ r2t for x ∈ R0, y ≥ t.
(4.209)

Then (4.159) is unstable.

Proof . If (4.208) holds, we take ϕ(x, y) = δ > 0 for all (x, y) ∈ Ω, where δ is a
positive constant. In view of (4.159), for any x ∈ R0 and y ∈ [t, 2t), we have

u(x, y) = a(x, y − t)u(x + s, y − t) + b(x, y − t)u(x, y − t)

+ p(x, y − t)u(x − σ , y − t − τ)

= δ
(
a(x, y − t) + b(x, y − t) + p(x, y − t)

)

≥ δ · r2t ≥ δ · r y > 0.

(4.210)

Assume that for some fixed integer n > 1,

u(x, y) ≥ δ · r y > 0 for x ∈ R0, y ∈ [0,nt). (4.211)

Then from (4.159), for any x ∈ R0 and y ∈ [nt, (n + 1)t), we have

u(x, y) = a(x, y − t)u(x + s, y − t) + b(x, y − t)u(x, y − t)

+ p(x, y − t)u(x − σ , y − t − τ)

≥ δr y−t
(
a(x, y − t) + b(x, y − t)

)

≥ δ · r y+t ≥ δ · r y > 0.

(4.212)

By induction, we have

u(x, y) ≥ δ · r y for any x, y ∈ R0. (4.213)

Obviously, u(x, y) → +∞ as y → +∞ for any constant δ > 0, then (4.159) is
unstable.
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If (4.209) holds, then we also take ϕ(x, y) = δ > 0 for all (x, y) ∈ Ω. In view of
(4.159), for any x ∈ R0 and y ∈ [t, 2t), we can also obtain (4.210). From (4.159),
for any x ∈ R0 and y ≥ 2t, we obtain

u(x, y) = a(x, y − t)u(x + s, y − t) + b(x, y − t)u(x, y − t)

+ p(x, y − t)u(x − σ , y − t − τ)

= a(x, y − t)
(
a(x + s, y − 2t)u(x + 2s, y − 2t)

+ b(x + s, y − 2t)u(x + s, y − 2t)

+ p(x + s, y − 2t)u(x + s− σ , y − 2t − τ)
)

+ b(x, y − t)
(
a(x, y − 2t)u(x + s, y − 2t)

+ b(x, y − 2t)u(x, y − 2t)

+ p(x, y − 2t)u(x − σ , y − 2t − τ)
)

+ p(x, y − t)u(x − σ , y − t − τ).

(4.214)

Hence from (4.209), for any x ∈ R0 and y ∈ [2t, 3t), we get

u(x, y) ≥ δ
(
ã(x, y − t) + b̃(x, y − t)

) ≥ δ · r2t ≥ δ · r y > 0. (4.215)

Assume that for some fixed integer n > 1,

u(x, y) ≥ δ · r y > 0 for x ∈ R0, y ∈ [0,nt). (4.216)

Then from (4.159) and (4.209), for any x ∈ R0 and y ∈ [nt, (n + 1)t), we have

u(x, y) ≥ δ · r y−2t(ã(x, y − t) + b̃(x, y − t)
) ≥ δ · r y > 0. (4.217)

By induction, we have

u(x, y) ≥ δ · r y for any x, y ∈ R0. (4.218)

Obviously, u(x, y) →∞ as y →∞ for any constant δ > 0, then (4.159) is unstable.
The proof is complete. �

Similarly, we can prove the following result. Let

B̂(x, y) = ∣∣a(x, y)
∣∣ +

∣∣b(x, y)
∣∣ + r−τ

∣∣p(x, y)
∣∣ for any x, y ∈ R0,

a(x, y + t) = a(x, y + t)B̂(x + s, y), b(x, y + t) = b(x, y + t)B̂(x, y).
(4.219)
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Theorem 4.34. Assume that σ = 0 and τ > 0. If, for some constant r > 1, a(x, y) ≥ 0,
b(x, y) ≥ 0, p(x, y) ≥ 0 for x, y ∈ R0, and

∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣ ≥ r2t for x ∈ R0, y ∈ [0, t),

∣
∣a(x, y)

∣
∣ +

∣
∣b(x, y)

∣
∣ +

∣
∣p(x, y)

∣
∣ ≥ r2t for x ∈ R0, y ≥ t,

(4.220)

then (4.159) is unstable.

Example 4.35. Consider the partial difference equation

u(x, y + 1) = a(x, y)u(x + 2, y) + b(x, y)u(x, y) + p(x, y)u(x − 1, y − 2),
(4.221)

where

a(x, y) = y2 + 1
y2 + 2

, b(x, y) = 1
y2 + 2

+
1
5

, p(x, y) = 1
y2 + 1

for (x, y) ∈ R2
0.

(4.222)

It is easy to see that |a(x, y)|+ |b(x, y)| = 1.2 = (
√

1.2)2 for any (x, y) ∈ R2
0. Hence

by Theorem 4.33, (4.221) is unstable.

4.3. Stability of linear delay partial difference systems

Consider the system of partial difference equations

Z(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

k=1

Ak(x, y)Z
(
x − pk(x), y − qk(y)

)
, (x, y) ∈ Ω0,

ϕ(x, y), (x, y) ∈ Ω2,

(4.223)

where pk : [0,∞) → R+, qk : [0,∞) → R+, and pk(·), qk(·) are both continu-
ous functions. Z,ϕ ∈ Rn, Ak : Ω0 → Rn×n, k = 1, 2, . . . ,N , are real continuous
functions, and

Ω0 = {(x, y) | x ≥ 0, y ≥ 0
}

,

Ω1 =
{

(x, y) | x ≥ −p, y ≥ −q},

Ω2 = Ω1\Ω0,

(4.224)

where p > 0, q > 0.
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Let

p(x) = max
1≤k≤N

pk(x), x ≥ 0,

q(y) = max
1≤k≤N

qk(y), y ≥ 0.
(4.225)

We assume that p(x), q(y) satisfy p(x) ≤ x + p, q(y) ≤ y + q, where x, y ≥ 0.
For a given function ϕ(x, y) ∈ Rn on Ω2, it is easy to see that the initial value

problem (4.223) has a unique solution Z(x, y) on Ω0.
For any H > 0, let

SH = {ϕ | ‖ϕ‖Ω2 < H
}
. (4.226)

Similar to Section 4.2, we give the following definitions.

Definition 4.36. Equation (4.223) is said to be stable if, for every ε > 0, there exists
a δ > 0 such that for every ϕ ∈ Sδ , the corresponding solution Z(x, y) of (4.223)
satisfies

∥
∥Z(x, y)

∥
∥ < ε, (x, y) ∈ Ω0. (4.227)

Definition 4.37. Equation (4.223) is said to be asymptotically stable in the large if
it is stable, and at the same time every solution Z(x, y) with the initial function
ϕ(x, y), which satisfies sup(x,y)∈Ω2

‖ϕ(x, y)‖ = c, c is a positive constant which
satisfies that ‖Z(x, y)‖ → 0, as min(x, y) → +∞.

Definition 4.38. Equation (4.223) is said to be exponentially asymptotically stable,
if for any δ > 0, there exists a real number r ∈ (0, 1) such that ϕ ∈ Sδ implies that

∥
∥Z(x, y)

∥
∥ ≤ δrcmin(x,y), c > 0, (x, y) ∈ Ω0. (4.228)

To prove our results, we need a modified version of the Darbo fixed point
theorem.

Lemma 4.39. Let Ω be a nonempty, bounded, convex, and closed subset of a Banach
space X . If F : Ω→ Ω is a μ-contraction, then F has at least one fixed point in Ω and
the set Fix F = {x ∈ Ω | Fx = x} belongs to the kerμ.

Remark 4.40. Noted set Fix F with K , it is easy to see that μ(K) = μ(FK) = 0.
Denote C0 = C(Ω1,Rn), the space of bounded continuous functions on Ω1

with the norm ‖Z‖Ω1 = {sup‖Z(x, y)‖ : (x, y) ∈ Ω1} < ∞. So C0 is a Banach
space.
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Denote CH as an arbitrary nonempty and bounded subsets of C0 such that
‖Z‖Ω1 ≤ H . For any T > 0, ε > 0, P = (x1, y1), Q = (x2, y2) ∈ [−p,∞)×[−q,∞),
we denote

wT
ε (Z)

= { sup
∥
∥Z
(
x1, y1

)− Z
(
x2, y2

)∥∥ : P,Q ∈ [−p,T] × [−q,T], ‖P −Q‖ ≤ ε},

wT
ε
(
CH
) = { supwT

ε (Z) : Z ∈ CH
}

,

wT
o

(
CH
) = lim

ε→0
wT
ε
(
CH
)
,

wo
(
CH
) = lim

T→∞
wT
o

(
CH
)
,

ao
(
CH
) = lim

T→∞
sup
Z∈CH

{
sup

∥∥Z
(
x1, y1

)∥∥, P ∈ [T ,∞) × [T ,∞)
}

,

μ
(
CH
) = wo

(
CH
)

+ ao
(
CH
)
.

(4.229)

Similar to the related result in [15], it is not difficult to prove the following
conclusion.

Lemma 4.41. The function μ(CH) is the sublinear measure of noncompactness in the
space C0.

Theorem 4.42. Suppose the following conditions hold:
(i) r = supx≥0, y≥0

∑N
k=1 ‖Ak(x, y)‖ < 1; AK (x, y) is continuous, (x, y) ∈ Ω0,

(ii) limx→∞ x − p(x) = ∞,
(iii) limy→∞ y − q(y) = ∞.

Then for every given ϕ(x, y), such that sup‖ϕ(x, y)‖ = c < +∞, (x, y) ∈ Ω2, the
corresponding solution Z(x, y) of (4.223) satisfies ‖Z(x, y)‖ → 0, as min(x, y) →
+∞.

Proof . For any M > 0, let hM = {Z ∈ C0 : Z(x, y) = ϕ(x, y), (x, y) ∈ Ω2, and
‖Z‖Ω1 ≤M}, and F : hM → C0 is the map given by

(FZ)(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∑

k=1

Ak(x, y)Z
(
x − pk(x), y − qk(y)

)
, (x, y) ∈ Ω0,

ϕ(x, y), (x, y) ∈ Ω2.

(4.230)
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First, we should verify F(hM) ⊆ hM . For all Z ∈ hM , we have

∥∥(FZ)(x, y)
∥∥ =

∥∥
∥
∥∥

N∑

k=1

Ak(x, y)Z
(
x − pk(x), y − qk(y)

)
∥∥
∥
∥∥

≤
N∑

k=1

∥
∥Ak(x, y)

∥
∥
∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r‖Z‖Ω1 .

(4.231)

Therefore, ‖FZ‖Ω1 ≤ ‖Z‖Ω1 ≤M, that is, F(hM) ⊆ hM .
By the similar way, we obtain

∥
∥FZ1 − FZ2

∥
∥ ≤ ∥∥Z1 − Z2

∥
∥. (4.232)

Hence F is continuous.
Next, we should verify μ(FhM) < μ(hM).
For any Z ∈ hM , T ≥ 0, x, y ∈ [T ,∞) × [T ,∞), we can get that a0(FhM) ≤

ra0(hM). Now, let us take P = (x1, y1), Q = (x2, y2), T > 0, P,Q ∈ (0,T)× (0,T).
Since Ak(x, y) is a continuous function, so for any ε > 0, there is δ > 0 such that if
‖P −Q‖ ≤ δ, we have ‖Ak(x1, y1) − Ak(x2, y2)‖ ≤ rε/MN . Hence

∥
∥(FZ)

(
x1, y1

)− (FZ)
(
x2, y2

)∥∥

=
∥
∥∥
∥
∥

N∑

k=1

Ak
(
x1, y1

)
Z
(
x1 − pk

(
x1
)
, y1 − qk

(
y1
))

−
N∑

k=1

Ak
(
x2, y2

)
Z
(
x2 − pk

(
x2
)
, y2 − qk

(
y2
))
∥∥
∥
∥∥

≤
N∑

k=1

∥
∥Ak

(
x1, y1

)∥∥
∥
∥Z
(
x1 − pk

(
x1
)
, y1 − qk

(
y1
))

− Z
(
x2 − pk

(
x2
)
, y2 − qk

(
y2
))∥∥

+
N∑

k=1

∥
∥Ak

(
x2, y2

)− Ak
(
x1, y1

)∥∥
∥
∥Z
(
x2 − pk

(
x2
)
, y2 − qk

(
y2
))∥∥

≤ sup
N∑

k=1

∥∥Ak
(
x1, y1

)∥∥ sup
∥∥Z
(
x1 − pk

(
x1
)
, y1 − qk

(
y1
))

− Z
(
x2 − pk

(
x2
)
, y2 − qk

(
y2
))∥∥ + rε

≤ r
(
ε + sup‖Z(x1 − pk

(
x1
)
, y1 − qk

(
y1
))− Z

(
x2 − pk

(
x2
)
, y2 − qk

(
y2
))∥∥).

(4.233)
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So, we have

wT
ε
(
FhM

) ≤ r
(
ε +wT

ε
(
hM
))

,

wT
o

(
FhM

) = lim
ε→0

wT
ε
(
FhM

) ≤ rwT
o

(
hM
)
.

(4.234)

Since μ(hM) = wo(hM) + a0(hM), μ(FhM) = wo(FhM) + a0(FhM), we can obtain

μ
(
FhM

) ≤ rμ
(
hM
)
, (4.235)

which means that F is μ-contraction, and by Lemma 4.39, F has a fixed point Z ∈
hM . It is easy to see that Z(x, y) is a solution of (4.223).

Since Z ∈ K , μ(K) = 0, we get that a0(K) = 0, that is, ‖Z(x, y)‖ → 0, as
min(x, y) → +∞.

The proof is complete. �

In Theorem 4.42, we obtain sufficient conditions of the attractivity of the so-
lution of (4.223). In order to reach the conclusion that (4.223) is asymptotically
stable in the large, we need to prove that (4.223) is stable.

Theorem 4.43. Assume the conditions of Theorem 4.42 hold. Then for every given
ϕ(x, y), such that sup‖ϕ(x, y)‖ = c < +∞, (x, y) ∈ Ω2, the solution Z(x, y) of
(4.223) satisfies ‖Z(x, y)‖ ≤ c, (x, y) ∈ Ω0. Therefore, (4.223) is stable.

Proof . First we define a sequence of sets Si in Ω0 as follows.
For a point (x, y) ∈ Ω0, if (x − pk(x), y − qk(y)) ∈ Ω2, k = 1, . . . ,n, then

(x, y) ∈ S1.
And for another point (x, y) ∈ Ω0\S1, if (x− pk(x), y−qk(y)) ∈ Ω2∪S1, k =

1, . . . ,n, then (x, y) ∈ S2.
Step by step, we get a series of set S1, S2, S3, . . . . We will show thatΩ0 =

⋃∞
i=1 Si.

In fact, because pk(x), qk(y) are both continuous, for any arbitrary point
(x1, y1) ∈ Ω0, there exist two constants a > 0, b > 0 such that pk(x) ≥ a, qk(y) ≥
b, 0 ≤ x ≤ x1 and 0 ≤ y ≤ y1. It is sure that

(
x1, y1

) ∈
max([x1/a],[y1/b])+1⋃

i=1

Si. (4.236)

It is easy to see that

∥∥Z(x, y)
∥∥ ≤

n∑

k=1

∥∥Ak(x, y)
∥∥∥∥Z

(
x − pk(x), y − qk(y)

)∥∥. (4.237)

Therefore, sup(x,y)∈S1
‖Z(x, y)‖ ≤ c.
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By a similar way, we have

sup
(x,y)∈S2

∥∥Z(x, y)
∥∥ ≤ max

(

sup
(x,y)∈S1

∥∥Z(x, y)
∥∥, c

)

≤ c. (4.238)

By induction, we have

sup
(x,y)∈Si

∥∥Z(x, y)
∥∥ ≤ c, i = 1, 2, 3, . . . . (4.239)

The proof is complete. �
Combining Theorems 4.42 and 4.43, we have the following corollary.

Corollary 4.44. Assume that the assumptions of Theorem 4.42 hold. Then (4.223) is
asymptotically stable in the large.

About the exponential asymptotical stability of (4.223), we have the following
result.

Theorem 4.45. Suppose r = supx≥0, y≥0

∑N
k=1 ‖Ak(x, y)‖ < 1. If there exist positive

numbers a and A such that 0 < a ≤ pk(x), 0 < a ≤ qk(y); 1 ≤ k ≤ N and
p(x) ≤ A, q(y) ≤ A, (x, y) ∈ Ω0, then for every given ϕ(x, y) ∈ Rn, with ‖ϕ‖Ω2 =
sup(x,y)∈Ω2

‖ϕ(x, y)‖ = c < +∞, (4.223) has a unique solution Z(x, y) such that

∥
∥Z(x, y)

∥
∥ ≤ cr[min(x,y)/A], (x, y) ∈ Ω0, (4.240)

where [·] denotes the greatest integer function less than or equal min(x, y)/A.

Proof . For any given ϕ(x, y), it is easy to see that (4.223) has a unique solution
Z(x, y).

First, we assume that x ≤ a or y ≤ a.
Because pk(x)≥a, qk(y)≥a, 1≤k≤N , we have (x − pk(x), y − qk(y))∈Ω2,

therefore,

∥
∥Z(x, y)

∥
∥ =

∥
∥
∥∥
∥

N∑

k=1

Ak(x, y)Z
(
x − pk(x), y − qk(y)

)
∥
∥
∥∥
∥

≤
N∑

k=1

∥
∥Ak(x, y)

∥
∥ max

1≤k≤N

∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r max
1≤k≤N

∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r‖ϕ‖Ω2 ≤ cr.

(4.241)

Because min(x − pk(x), y − qk(y)) ≤ 0, (4.240) holds.
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Next, we assume for a positive integer m, (4.240) holds for x ≤ (m − 1)a or
y ≤ (m− 1)a, that is,

∥∥Z(x, y)
∥∥ ≤ cr[min(x,y)/A], x ≤ (m− 1)a, or y ≤ (m− 1)a. (4.242)

For (x, y) ∈ {(x, y) | x > (m− 1)a, y > (m− 1)a}\{(x, y) | x > ma, y > ma}, it
is easy to see that (x − pk(x)) ≤ (m− 1)a or (y − qk(y)) ≤ (m− 1)a.

From (4.241), we have

∥
∥Z(x, y)

∥
∥ ≤ r max

1≤k≤N

∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r max
1≤k≤N

cr[min(x−pk(x),y−qk(y))/A]

≤ c max
1≤k≤N

r[min(x−pk(x),y−qk(y))/A+1].

(4.243)

Since pk(x) ≤ p(x) ≤ A, qk(y) ≤ q(y) ≤ A, and min(x − pk(x), y − qk(y)) + A ≥
min(x, y), from (4.243), we get

∥
∥Z(x, y)

∥
∥ ≤ cr[min(x,y)/A]. (4.244)

By the induction, we obtain that (4.240) holds on Ω0. The proof is complete. �

By Definition 4.38, we obtain the following corollary.

Corollary 4.46. Under conditions of Theorem 4.45, (4.223) is exponentially asymp-
totically stable.

Consider the scalar partial difference equation

z(x + 1, y + 1) = a(x, y)z(x + 1, y) + b(x, y)z(x, y + 1) + p(x, y)z(x − s, y − t)
(4.245)

for x ≥ 0, y ≥ 0, where s, t > 0 are constants.
Similar to the proof of Theorem 4.45, we can obtain the following result about

the attractivity of solutions of (4.245).

Corollary 4.47. Assume that |a(x, y)| + |b(x, y)| + |p(x, y)| ≤ r < 1, then for any
ϕ(x, y), (x, y) ∈ Ω, Ω = {(x, y) | x ≥ −s, y ≥ −t} \ {(x, y) | x ≥ 0, y ≥ 0}
satisfies sup(x,y)∈Ω |ϕ(x, y)| = c < +∞, (4.245) has a unique solution z(x, y) with
|z(x, y)| → 0, as min(x, y) → +∞. Hence, (4.245) is attractive.

If we put more conditions on the initial function, then we can obtain stronger
results.
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Theorem 4.48. Suppose r = supx≥0, y≥0

∑N
k=1 ‖Ak(x, y)‖ < 1. If there exist positive

numbers a and A such that 0 < a ≤ pk(x) + qk(y), 1 ≤ k ≤ N and p(x) + q(y) ≤
A, (x, y) ∈ Ω0, then for every given ϕ(x, y) ∈ Rn, with ‖ϕ(x, y)‖ ≤ cr(x+y)/A on Ω2,
(4.223) has a unique solution Z(x, y) such that

∥∥Z(x, y)
∥∥ ≤ cr[(x+y)/A], (x, y) ∈ Ω0, (4.246)

where [·] denotes the greatest integer function less than or equal (x + y)/A.

Proof . For any given ϕ(x, y), it is easy to see that (4.223) has a unique solution
Z(x, y).

First, we assume that x + y ≤ a.
Because pk(x) + qk(y) > a, 1 ≤ k ≤ N , we have (x − pk(x), y − qk(y)) ∈ Ω2,

therefore,

∥
∥Z(x, y)

∥
∥ =

∥
∥
∥∥
∥

N∑

k=1

Ak(x, y)Z
(
x − pk(x), y − qk(y)

)
∥
∥
∥∥
∥

≤
N∑

k=1

∥
∥Ak(x, y)

∥
∥ max

1≤k≤N

∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r max
1≤k≤N

∥∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r‖ϕ‖Ω2 ≤ cr.

(4.247)

Because [(x + y)/A] = 0, (4.246) holds.
Next, we assume for a positive integer m, (4.246) holds for x + y ≤ (m− 1)a,

that is,

∥
∥Z(x, y)

∥
∥ ≤ cr[(x+y)/A], x + y ≤ (m− 1)a. (4.248)

For (m− 1)a < x + y ≤ ma, (x − pk(x)) + (y − qk(y)) ≤ (m− 1)a, from (4.247),
we have,

∥
∥Z(x, y)

∥
∥ ≤ r max

1≤k≤N

∥
∥Z
(
x − pk(x), y − qk(y)

)∥∥

≤ r max
1≤k≤N

cr[(x+y−pk(x)−qk(y))/A]

≤ c max
1≤k≤N

r[(x+y−pk(x)−qk(y))/A+1].

(4.249)

By the induction, we obtain that (4.246) holds on Ω0. The proof is complete. �

Example 4.49. Consider the system of delay partial difference equations

Z(x, y) = A1(x, y)Z
(
x − p1(x), y − q1(y)

)
+ A2(x, y)Z

(
x − p2(x), y − q2(y)

)
,

(4.250)
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where Z ∈ R2,

A1(x, y)=

⎛

⎜
⎜
⎜
⎝

sin(xy)
3

0

0
− sin(xy)

3

⎞

⎟
⎟
⎟
⎠

, A2(x, y)=

⎛

⎜
⎜
⎜
⎝

0
sin(x + y)

3
− sin(x + y)

3
0

⎞

⎟
⎟
⎟
⎠
.

(4.251)

It is easy to check that

∥
∥A1

∥
∥ = ∥∥A2

∥
∥ = 1

3
,

r = ∥∥A1
∥
∥ +

∥
∥A2

∥
∥ = 2

3
< 1.

(4.252)

First, we suppose p1(x) = 2, q1(y) = 3, p2(x) = 1, q2(y) = 4.
Let a = 0.5, A = 4, and

Ω0 =
{

(x, y) | x > 0, y > 0
}

,

Ω1 =
{

(x, y) | x ≥ −2, y ≥ −4
}

,

Ω2 = Ω1\Ω0.

(4.253)

From Theorem 4.45, we obtain the following conclusion.
Given any initial function ϕ(x, y) ∈ R2, and

∥
∥ϕ
∥
∥
Ω2

= c < +∞, there exists a
solution Z(x, y) of (4.250) with

∥
∥Z(x, y)

∥
∥ ≤ cr[min(x,y)/4], (x, y) ∈ Ω0. (4.254)

Next, we suppose p1(x) = 0.5x + 2, q1(y) = ln y − 3, p2(x) = (13/x) + 1,
q2(y) = 4, where p1(x), p2(x), q1(y) are unbounded on Ω0.

From Theorem 4.42, for any given function ϕ(x, y) ∈ R2, and ‖ϕ‖Ω2 = c <
+∞, there exists a solution Z(x, y) of (4.250) with

∥
∥Z(x, y)

∥
∥ �→ 0, when min(x, y) �→ +∞. (4.255)

4.4. Stability of discrete delay logistic equations

4.4.1. Stability of 2D discrete logistic system

In engineering applications, particularly in the fields of digital filtering, imaging,
and spatial dynamical systems, 2D discrete systems have been a focal subject for
investigation.

Consider the delayed 2D discrete logistic system

xm+1,n + am,nxm,n+1 = μm,nxm,n
(
1 − xm−σ ,n−τ

)
, (4.256)
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where {am,n} and {μm,n} are two double sequences of real numbers, σ and τ are
nonnegative integers, and m,n ∈ N0. The stability and exponential stability of
system (4.256) are important properties; in this section, some sufficient conditions
for the stability and exponential stability of system (4.256) are derived.

First, observe that in the special case where am,n = a, μm,n = μ and σ = τ = 0,
system (4.256) becomes

xm+1,n + axm,n+1 = μxm,n
(
1 − xm,n

)
(4.257)

and, when a ≡ 0 and n = n0, system (4.257) further reduces to

xm+1,n0 = μxm,n0

(
1 − xm,n0

)
, (4.258)

which is just the familiar simple case of the 1D logistic system. Therefore, system
(4.256) is quite general.

Let Ω = N−σ × N−τ \ N1 × N0. Obviously, for any given initial function ϕ =
{ϕm,n} defined on Ω, by iteration, it is easy to construct via induction a double
sequence {xm,n} that equals initial conditions ϕm,n on Ω and satisfies (4.256) for
m,n = 0, 1, 2, . . . . Indeed, one can rewrite system (4.256) as

xm+1,n = μm,nxm,n
(
1 − xm−σ ,n−τ

)− am,nxm,n+1 (4.259)

and then use it to calculate, successively, x1,0, x1,1, x2,0, x1,2, x2,1, x3,0, . . . .
Let ‖ϕ‖ = sup{|ϕm,n | (m,n) ∈ Ω}, δ a positive constant, and

Sδ =
{
ϕ | ‖ϕ‖ < δ}. (4.260)

The definitions of the stability, linear stability, and exponential asymptotical sta-
bility of system (4.256) are similar to those in Section 4.2. Now we give a more
general stability definition as follows.

Definition 4.50. If there exists a positive number M > 0 such that for any constant
δ ∈ (0,M), there exists a constant ξ ∈ (0, 1) such that for any given bounded
function ϕ = {ϕm,n} defined on Ω,ϕ ∈ Sδ implies that the solution {xm,n} of
system (4.256) with the initial condition ϕ satisfies

∣
∣xm,n

∣
∣ < Mξm+n, (m,n) ∈ N1 ×N0, (4.261)

then system (4.256) is said to be double-variable-bounded-initial exponentially
stable, or D-B-exponentially stable.

Obviously, if system (4.256) is exponentially asymptotically stable, then it
is stable. If system (4.256) is D-B-exponentially stable, then it is exponentially
asymptotically stable and thus it is also stable.
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Theorem 4.51. Assume that there exist two constants, α > 0, C > 0, and a positive
integer k such that

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣ ≤ C ∀m ∈ {0, 1, 2, . . . , k} and any n ∈ N0, (4.262)

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣(1 + α) ≤ 1 ∀(m,n) ∈ Nk+1 ×N0. (4.263)

Then system (4.256) is stable.

Proof . In view of (4.262), it is obvious that there exist two constants D > C and
M > Dk+1 > 1 such that

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣(1 + α) ≤ D ∀m ∈ {0, 1, 2, . . . , k} and any n ∈ N0. (4.264)

For any small constant ε > 0, without loss of generality, assume that ε ≤ α/M, and
let δ = ε and let ϕ ∈ Sδ be a bounded function defined on Ω. We claim that the
solution {xm,n} of system (4.256) with the initial condition ϕ satisfies |xm,n| < ε
for (m,n) ∈ N2

0 . In fact, from (4.256), (4.259), and (4.264), we have

∣∣x1,0
∣∣ = ∣∣μ0,0x0,0

(
1 − x−σ ,−τ

)− a0,0x0,1
∣∣ ≤ (∣∣a0,0

∣∣ +
∣∣μ0,0

∣∣(1 + α)
)
δ ≤ Dε ≤ α,

∣∣x1,1
∣∣ = ∣∣μ0,1x0,1

(
1 − x−σ ,1−τ

)− a0,1x0,2
∣∣ ≤ (∣∣a0,1

∣∣ +
∣∣μ0,1

∣∣(1 + α)
)
δ ≤ Dε ≤ α.

(4.265)

Assume that for a certain integer m ∈ {1, 2, . . . , k},

∣
∣xi,n

∣
∣ ≤ Diε ≤ α ∀1 ≤ i ≤ m, n ≥ 0. (4.266)

Then, from (4.259) and (4.264),

∣
∣xm+1,n

∣
∣ = ∣∣μm,nxm,n

(
1 − xm−σ ,n−τ

)− am,nxm,n+1
∣
∣

≤ (∣∣am,n
∣∣ +

∣∣μm,n
∣∣(1 + α)

)
Dmε ≤ Dm+1ε.

(4.267)

Hence, |xm,n| ≤Mε for all m ∈ {0, 1, 2, . . . , k + 1} and all n ∈ N0.
Assume that for a certain m ≥ k + 1,

∣
∣xi,n

∣
∣ ≤Mε ≤ α ∀1 ≤ i ≤ m, n ≥ 0. (4.268)

Then, from (4.256) and (4.263),

∣
∣xm+1,n

∣
∣ = ∣∣μm,nxm,n

(
1 − xm−σ ,n−τ

)− am,nxm,n+1
∣
∣

≤ (∣∣am,n
∣
∣ +

∣
∣μm,n

∣
∣(1 + α)

)
Mε ≤Mε ≤ α.

(4.269)

Hence, by induction, |xm,n| ≤Mε for all (m,n) ∈ N1 ×N0, that is, system (4.256)
is stable. The proof is complete. �
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Next, let Am,n = |am,n| + |μm,n| for all (m,n) ∈ N2
0 , and

am,n = am,nAm−1,n+1, μm,n = μm,nAm−1,n ∀(m,n) ∈ N1 ×N0. (4.270)

Theorem 4.52. Assume that there exist constants α > 0 and C > 0 such that

∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣ ≤ C,

∣
∣a1,n

∣
∣ +

∣
∣μ1,n

∣
∣ ≤ C ∀n ∈ N0, (4.271)

and for any (m,n) ∈ N2 ×N0,

∣∣am,n
∣∣{∣∣am−1,n+1

∣∣ +
∣∣μm−1,n+1

∣∣(1 + α)
}

+
∣
∣μm,n

∣
∣{
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 + α)

}
(1 + α) ≤ 1.

(4.272)

Then, system (4.256) is stable.

Proof . From (4.271) and (4.272), there exists a constant M ∈ [1 +C,∞) such that

∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 + α) ≤M,

∣
∣a1,n

∣
∣{
∣
∣a0,n+1

∣
∣ +

∣
∣μ0,n+1

∣
∣(1 + α)

}
+
∣
∣μ1,n

∣
∣{
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 + α)

}
(1 + α) ≤M

(4.273)

for all n ∈ N0.
For any small constant ε ∈ (0,α/M), let δ = ε and ϕ ∈ Sδ be a bounded

function defined on Ω. Let {xm,n} be a solution of system (4.256) with the ini-
tial condition ϕ. Then, |xm,n| < δ for all (m,n) ∈ Ω. In view of (4.256), for any
nonnegative integer n, we have

∣
∣x1,n

∣
∣ = ∣∣μ0,nx0,n

(
1 − x−σ ,n−τ

)− a0,nx0,n+1
∣
∣

≤ (∣∣a0,n
∣
∣ + (1 + α)

∣
∣μ0,n

∣
∣) · δ ≤Mε ≤ α.

(4.274)

From (4.256), for all m ≥ 1 and all n ∈ N0,

xm+1,n = μm,nxm,n
(
1 − xm−σ ,n−τ

)− am,nxm,n+1

= μm,n
(− am−1,nxm−1,n+1 + μm−1,nxm−1,n

(
1 − xm−1−σ ,n−τ

))

× (1 − xm−σ ,n−τ
)− am,n

(− am−1,n+1xm−1,n+2 + μm−1,n+1xm−1,n+1

× (1 − xm−1−σ ,n+1−τ
))
.

(4.275)
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Then, from (4.275),

∣
∣x2,n

∣
∣ ≤ ∣∣μ1,n

(− a0,nx0,n+1 + μ0,nx0,n
(
1 − x−σ ,n−τ

))(
1 − x1−σ ,n−τ

)∣∣

+
∣
∣a1,n

(− a0,n+1x0,n+2 + μ0,n+1x0,n+1
(
1 − x−σ ,n+1−τ

))∣∣

≤ {∣∣μ1,n
∣
∣(
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 + α)

)
(1 + α)

+
∣
∣a1,n

∣
∣(
∣
∣a0,n+1

∣
∣ +

∣
∣μ0,n+1

∣
∣(1 + α)

)} · δ
≤Mε ≤ α ∀n ∈ N0.

(4.276)

Assume that for some integer m ≥ 2,

∣
∣xi,n

∣
∣ ≤Mε ≤ α ∀1 ≤ i ≤ m and all n ∈ N0. (4.277)

Then, from (4.272) and (4.275),

∣
∣xm+1,n

∣
∣ ≤ ∣∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 + α)

)
(1 + α) ·Mε

+
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 + α)

) ·Mε

≤Mε ≤ α ∀n ∈ N0.

(4.278)

By induction, |xm,n| ≤Mε for all (m,n) ∈ N1×N0, that is, system (4.256) is stable.
The proof is complete. �

Now, let

D1 =
{

(m,n) | 1 ≤ m ≤ σ , 0 ≤ n < τ
}

,

D3 =
{

(m,n) | 1 ≤ m ≤ σ , n ≥ τ
}

,

D2 =
{

(m,n) | m > σ , 0 ≤ n < τ
}

,

D4 =
{

(m,n) | m > σ , n ≥ τ
}
.

(4.279)

Obviously, D1, D2, D3, D4 are disjoint of one another, and N1 × N0 = D1 ∪ D2 ∪
D3 ∪D4.

Theorem 4.53. Assume that there exist constants M > 0 and ξ ∈ (0, 1) such that

∣
∣a0,n

∣
∣ + (1 +M)

∣
∣μ0,n

∣
∣ ≤ ξn+1 ∀n ∈ N0,

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣(1 +M)ξ−1 ≤ 1 ∀(m,n) ∈ D1 ∪D2 ∪D3,

(4.280)

∣∣am,n
∣∣ +

∣∣μm,n
∣∣(1 +Mξm+n−σ−τ)ξ−1 ≤ 1 ∀(m,n) ∈ D4. (4.281)

Then, system (4.256) is D-B-exponentially stable.
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Proof . For any constant δ ∈ (0,M) and any bounded function ϕ ∈ Sδ , let {xm,n}
be a solution of system (4.256) with initial condition ϕ. From (4.256) and (4.280),
for the given constant ξ ∈ (0, 1), we have

∣
∣x1,n

∣
∣ = ∣∣μ0,nx0,n

(
1 − x−σ ,n−τ

)− a0,nx0,n+1
∣
∣

≤ ∣∣μ0,n
∣
∣δ(1 + δ) +

∣
∣a0,n

∣
∣δ ≤Mξn+1, n ∈ N0.

(4.282)

Assume that for a certain m ∈ {1, 2, . . . , σ},

∣
∣xi, j

∣
∣ ≤Mξi+ j ∀1 ≤ i ≤ m and all j ∈ N0. (4.283)

Then, for all n ≥ 0, one has (m−σ ,n− τ) ∈ Ω and (m,n) ∈ D1 ∪D2 ∪D3. Hence,
from (4.256) and (4.281), we have

∣∣xm+1,n
∣∣ ≤ ∣∣μm,n

∣∣ · ∣∣xm,n
∣∣(1 +

∣∣xm−σ ,n−τ
∣∣) +

∣∣am,n
∣∣ · ∣∣xm,n+1

∣∣

≤Mξm+n+1{∣∣μm,n
∣
∣(1 + δ)ξ−1 +

∣
∣am,n

∣
∣} ≤Mξm+n+1.

(4.284)

By induction, |xm,n| ≤Mξm+n for all m ∈ {1, 2, . . . , σ + 1} and all n ≥ 0.
Assume that for a certain m ∈ Nσ+1,

∣
∣xi,n

∣
∣ ≤Mξi+n ≤M ∀1 ≤ i ≤ m and all n ∈ N0. (4.285)

Then, if n ∈ {0, 1, . . . , τ−1}, one has (m,n) ∈ D1∪D2∪D3 and (m−σ ,n−τ) ∈ Ω.
From (4.256) and (4.281),

∣
∣xm+1,n

∣
∣ ≤ ∣∣μm,n

∣
∣ · ∣∣xm,n

∣
∣(1 +

∣
∣xm−σ ,n−τ

∣
∣) +

∣
∣am,n

∣
∣ · ∣∣xm,n+1

∣
∣

≤Mξm+n+1{∣∣μm,n
∣∣(1 + δ)ξ−1 +

∣∣am,n
∣∣} ≤Mξm+n+1,

(4.286)

if n ≥ τ, then (m,n) ∈ D4 and (m−σ ,n−τ) ∈ N1×N0. From (4.256) and (4.281),
by the assumption of induction, we obtain

∣∣xm+1,n
∣∣ ≤ ∣∣μm,n

∣∣ · ∣∣xm,n
∣∣(1 +

∣∣xm−σ ,n−τ
∣∣) +

∣∣am,n
∣∣ · ∣∣xm,n+1

∣∣

≤Mξm+n+1{∣∣μm,n
∣
∣(1 +Mξm+n−σ−τ)ξ−1 +

∣
∣am,n

∣
∣} ≤Mξm+n+1.

(4.287)

By induction, |xm,n| ≤ Mξm+n for all (m,n) ∈ N1 × N0, that is, system (4.256) is
D-B-exponentially stable. The proof is complete. �

In the following, let D0 = {(m,n) | m = 1, n ≥ 0},

D0 =
{

(m,n) | m = σ + 1, 0 ≤ n < τ
}

,

D1 =
{

(m,n) | 2 ≤ m ≤ σ , 0 ≤ n < τ
}

,

D3 =
{

(m,n) | 2 ≤ m ≤ σ , n ≥ τ
}

,

D̃0=
{

(m,n) | m = σ + 1, n ≥ τ
}

,

D2=
{

(m,n) | m > σ + 1, 0 ≤ n < τ
}

,

D4=
{

(m,n) | m > σ + 1, n ≥ τ
}
.

(4.288)
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Obviously, D0, D1, D2, D3, D0, D̃0, D4 are disjoint of one another, and

N1 ×N0 = D0 ∪D1 ∪D2 ∪D3 ∪D0 ∪ D̃0 ∪D4. (4.289)

Theorem 4.54. Assume that σ > 0, and there exist constants M > 0 and ξ ∈ (0, 1)
such that

(i) for all n ∈ N0,

∣
∣a0,n

∣
∣ + (1 +M)

∣
∣μ0,n

∣
∣ ≤ ξn+1, (4.290)

(ii) for all (m,n) ∈ D0,

∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +M)

)

+
∣
∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 +M))(1 +M) ≤ ξn+2,

(4.291)

(iii) for all (m,n) ∈ D1 ∪D2 ∪D3 ∪D0,

∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +M)ξ−1)

+
∣∣μm,n

∣∣(∣∣am−1,n
∣∣ +

∣∣μm−1,n
∣∣(1 +M)ξ−1)(1 +M)ξ−1 ≤ 1,

(4.292)

(iv) for all (m,n) ∈ D̃0,

∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +M)ξ−1)

+
∣∣μm,n

∣∣(∣∣am−1,n
∣∣ +

∣∣μm−1,n
∣∣(1 +M)ξ−1)(1 +Mξm+n−σ−τ)ξ−1 ≤ 1,

(4.293)

(v) for all (m,n) ∈ D4,

∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +Mξm+n−σ−τ)ξ−1)

+
∣
∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 +Mξm+n−1−σ−τ)ξ−1)

× (1 +Mξm+n−σ−τ)ξ−1 ≤ 1.

(4.294)

Then system (4.256) is D-B-exponentially stable.

Proof . For any constant δ ∈ (0,M) and any given function ϕ ∈ Sδ , let {xm,n} be a
solution of system (4.256) with initial condition ϕ. From (4.256) and (4.290), for
the given ξ ∈ (0, 1) and any n ∈ N0, we have

∣
∣x1,n

∣
∣ = ∣∣μ0,nx0,n

(
1 − x−σ ,n−τ

)− a0,nx0,n+1
∣
∣

≤ ∣∣μ0,n
∣∣δ(1 + δ) +

∣∣a0,n
∣∣δ ≤Mξn+1 < M,

(4.295)
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that is, |xm,n| ≤ Mξm+n for all (m,n) ∈ D0. Hence, from (4.256), (4.275), and
(4.291),

∣
∣x2,n

∣
∣ ≤ ∣∣μ1,n

(− a0,nx0,n+1 + μ0,nx0,n
(
1 − x−σ ,n−τ

))(
1 − x1−σ ,n−τ

)∣∣

+
∣
∣a1,n

(− a0,n+1x0,n+2 + μ0,n+1x0,n+1
(
1 − x−σ ,n+1−τ

))∣∣

≤ {∣∣μ1,n
∣
∣ ·M(∣∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 + δ)

)
(1 + δ)

+
∣
∣a1,n

∣
∣ ·M(∣∣a0,n+1

∣
∣ +

∣
∣μ0,n+1

∣
∣(1 + δ)

)}

≤Mξn+2 ∀n ∈ N0.

(4.296)

Assume that for a certain m ∈ {2, 3, . . . , σ},

∣
∣xi, j

∣
∣ ≤Mξi+ j ∀1 ≤ i ≤ m, and all j ∈ N0. (4.297)

Then, for all n ≥ 0,

(m− 1,n), (m− 1,n + 1), (m− 1,n + 2) ∈ D0 ∪D1 ∪D3, (m,n) ∈ D1 ∪D3,

(m− 1 − σ ,n− τ), (m− 1 − σ ,n + 1 − τ) ∈ Ω, (m− σ ,n− τ) ∈ Ω.
(4.298)

Hence, from (4.256), (4.275), and (4.292), we obtain

∣
∣xm+1,n

∣
∣ ≤ ∣∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣·∣∣xm−1,n+1

∣
∣ +

∣
∣μm−1,n

∣
∣·∣∣xm−1,n

∣
∣(1 +

∣
∣xm−1−σ ,n−τ

∣
∣))

× (1 +
∣
∣xm−σ ,n−τ

∣
∣) +

∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ · ∣∣xm−1,n+2

∣
∣

+
∣
∣μm−1,n+1

∣
∣ · ∣∣xm−1,n+1

∣
∣(1 +

∣
∣xm−1−σ ,n+1−τ

∣
∣))

≤Mξm+n
∣∣μm,n

∣∣(∣∣am−1,n
∣∣ +

∣∣μm−1,n
∣∣(1 + δ)ξ−1)(1 + δ)

+Mξm+n+1
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 + δ)ξ−1)

≤Mξm+n+1 ∀n ≥ 0.
(4.299)

By induction, |xm,n| ≤Mξm+n for all m ∈ {1, 2, . . . , σ + 1} and all n ≥ 0.
From (4.256), (4.275), and (4.292), for all n ∈ {0, 1, . . . , τ − 1}, one has (σ +

1,n) ∈ D0 and

∣∣xσ+2,n
∣∣ ≤Mξσ+n+1

∣∣μσ+1,n
∣∣(∣∣aσ ,n

∣∣ +
∣∣μσ ,n

∣∣(1 + δ)ξ−1)(1 + δ)

+Mξσ+n+2
∣
∣aσ+1,n

∣
∣(
∣
∣aσ ,n+1

∣
∣ +

∣
∣μσ ,n+1

∣
∣(1 + δ)ξ−1)

≤Mξσ+n+2.

(4.300)
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From (4.256), (4.275), (4.293), and (4.295), for any n ≥ τ, one has (σ + 1,n) ∈ D̃0

and

∣
∣xσ+2,n

∣
∣ ≤Mξσ+n+1

∣
∣μσ+1,n

∣
∣(
∣
∣aσ ,n

∣
∣ +

∣
∣μσ ,n

∣
∣(1 + δ)ξ−1)(1 +Mξn+1−τ)

+Mξσ+n+2
∣∣aσ+1,n

∣∣(∣∣aσ ,n+1
∣∣ +

∣∣μσ ,n+1
∣∣(1 + δ)ξ−1)

≤Mξσ+n+2.
(4.301)

Hence, for all n ∈ N0, |xσ+2,n| ≤Mξσ+n+2.
Assume that for a certain m > σ + 1,

∣∣xi, j
∣∣ ≤Mξi+ j ≤M ∀1 ≤ i ≤ m and all j ∈ N0. (4.302)

Then, if n ∈ {0, 1, . . . , τ − 1}, one has (m,n) ∈ D2 and

(m− 1 − σ ,n− τ), (m− σ ,n− τ) ∈ Ω,

(m− 1 − σ ,n + 1 − τ) ∈ Ω∪ {{1, 2, . . . ,m} ×N0
}
.

(4.303)

Hence, from (4.256), (4.275), and (4.292), we have

∣
∣xm+1,n

∣
∣ ≤Mξm+n

∣
∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 + δ)ξ−1)(1 + δ)

+Mξm+n+1
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +M)ξ−1)

≤Mξm+n+1.

(4.304)

if n ≥ τ, then

(m− 1 − σ ,n− τ), (m− σ ,n− τ), (m− 1 − σ ,n + 1 − τ)∈Ω. (4.305)

From (4.275) and (4.294), one has (m,n) ∈ D4 and

∣
∣xm+1,n

∣
∣ ≤Mξm+n

∣
∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 +Mξm+n−1−σ−τ)ξ−1)

× (1 +Mξm+n−σ−τ) +Mξm+n+1
∣∣am,n

∣∣

× (∣∣am−1,n+1
∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +Mξm+n−σ−τ)ξ−1)

≤Mξm+n+1.
(4.306)

Hence, by induction, |xm,n| ≤ Mξm+n for all (m,n) ∈ N1 ×N0. The proof is com-
plete. �
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Corollary 4.55. Assume that σ > 0, and there exist constants M > 0 and ξ ∈ (0, 1)
such that

∣
∣a0,n

∣
∣ + (1 +M)

∣
∣μ0,n

∣
∣ ≤ ξn+1 ∀n ∈ N0,

∣
∣a1,n

∣
∣(
∣
∣a0,n+1

∣
∣ +

∣
∣μ0,n+1

∣
∣(1 +M)

)

+
∣
∣μ0,n

∣
∣(
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 +M))(1 +M) ≤ ξn+2

(4.307)

for all n ∈ N0, and

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣ ≤ ξ ∀(m,n) ∈ N2 ×N0, (4.308)

where am,n and μm,n are defined in Theorem 4.52. Then, system (4.256) is D-B-
exponentially stable.

Similar to the proof of Theorem 4.54, we can prove the following results.

Theorem 4.56. Assume that σ = 0, and there exist constants M > 0 and ξ ∈ (0, 1)
such that

(i) for all n ∈ N0,

∣
∣a0,n

∣
∣ + (1 +M)

∣
∣μ0,n

∣
∣ ≤ ξn+1, (4.309)

(ii) for all n ∈ {0, 1, . . . , τ − 1},
∣∣a1,n

∣∣(∣∣a0,n+1
∣∣ +

∣∣μ0,n+1
∣∣(1 +M)

)

+
∣
∣μ1,n

∣
∣(
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 +M)

)
(1 +M) ≤ ξn+2,

(4.310)

(iii) for all n ≥ τ,
∣∣a1,n

∣∣(∣∣a0,n+1
∣∣ +

∣∣μ0,n+1
∣∣(1 +M)

)

+
∣
∣μ1,n

∣
∣(
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 +M)

)(
1 +Mξn+1−τ) ≤ ξn+2,

(4.311)

(iv) for all m ≥ 2 and all n ∈ {0, 1, . . . , τ − 1},
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +M)ξ−1)

+
∣
∣μm,n

∣
∣(
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 +M)ξ−1)(1 +M)ξ−1 ≤ 1,

(4.312)

(v) for all m ≥ 2 and all n ≥ τ,
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 +Mξm+n−σ−τ)ξ−1)

+
∣∣μm,n

∣∣(∣∣am−1,n
∣∣ +

∣∣μm−1,n
∣∣(1 +Mξm+n−1−σ−τ)ξ−1)

×(1 +Mξm+n−σ−τ)ξ−1 ≤ 1.

(4.313)

Then system (4.256) is D-B-exponentially stable.
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Theorem 4.57. Assume that there exists a constant r ∈ (0, 1) such that
∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣ ≤ r ∀n ≥ N0,

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣ ≤ r ∀(m,n) ∈ N1 ×N0,

(4.314)

where am,n and μm,n are defined in Theorem 4.52. Then, system (4.256) is exponen-
tially asymptotically stable.

Proof . It is obvious that there exist constants α > 0 and R ∈ (0, 1) such that
(1 + α)2r ≤ R2. In view of (4.314), one has

∣
∣a0,n

∣
∣ +

∣
∣μ0,n

∣
∣(1 + α) ≤ R ∀n ≥ N0, (4.315)

and for all (m,n) ∈ N1 ×N0,
∣
∣am,n

∣
∣{
∣
∣am−1,n

∣
∣ +

∣
∣μm−1,n

∣
∣(1 + α)

}

+
∣∣μm,n

∣∣{∣∣am−1,n
∣∣ +

∣∣μm−1,n
∣∣(1 + α)

}
(1 + α) ≤ R2.

(4.316)

Let ϕ ∈ Sα be a bounded function defined on Ω and let {xm,n} be a solution of
system (4.256) with initial condition ϕ. Then, from (4.256) and (4.315), for all
nonnegative integer n, one has

∣∣x1,n
∣∣ = ∣∣μ0,nx0,n

(
1 − x−σ ,n−τ

)− a0,nx0,n+1
∣∣

≤ (∣∣a0,n
∣∣ + (1 + α)

∣∣μ0,n
∣∣) · α ≤ αR ≤ α.

(4.317)

Also, from (4.275) and (4.316),
∣∣x2,n

∣∣ ≤ μ1,n
(− a0,nx0,n+1 + μ0,nx0,n

(
1 − x−σ ,n−τ

))(
1 − x1−σ ,n−τ

)

+
∣∣a1,n

(− a0,n+1x0,n+2 + μ0,n+1x0,n+1
(
1 − x−σ ,n+1−τ

))∣∣

≤ {∣∣μ1,n
∣∣(∣∣a0,n

∣∣ +
∣∣μ0,n

∣∣(1 + α)
)
(1 + α)

+
∣∣a1,n

∣∣(∣∣a0,n+1
∣∣ +

∣∣μ0,n+1
∣∣(1 + α)

)} · α

≤ αR2 ≤ α ∀n ∈ N0.

(4.318)

Assume that for some integer m ≥ 2,

∣
∣xi, j

∣
∣ ≤ αRi ≤ α ∀1 ≤ i ≤ m and all j ∈ N0. (4.319)

Then, for all n ≥ 0, from (4.275) and (4.316),
∣∣xm+1,n

∣∣ ≤ ∣∣μm,n
∣∣(∣∣am−1,n

∣∣ +
∣∣μm−1,n

∣∣(1 + α)
)
(1 + α) · αRm−1

+
∣
∣am,n

∣
∣(
∣
∣am−1,n+1

∣
∣ +

∣
∣μm−1,n+1

∣
∣(1 + α)

) · αRm−1

≤ αRm+1 ≤ α ∀n ∈ N0.

(4.320)
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By induction, |xm,n| ≤ αRm for all (m,n) ∈ N1 × N0, that is, system (4.256) is
exponentially asymptotically stable. The proof is complete. �

Corollary 4.58. Assume that there exists a constant r ∈ (0, 1) such that

∣
∣am,n

∣
∣ +

∣
∣μm,n

∣
∣ ≤ r for any (m,n) ∈ N0 ×N0 = N2

0 . (4.321)

Then system (4.256) is exponentially asymptotically stable.

In fact, (4.321) implies (4.314). Hence, the proof is complete.

Example 4.59. Consider the delayed 2D discrete logistic system

xm+1,n + am,nxm,n+1 = μm,nxm,n
(
1 − xm−2,n−1

)
, (m,n) ∈ N2

0 , (4.322)

where

a0,n = 1
2

(
7
8

)n+1

,

am,n = (−1)m+n

2
,

am,n = 3
7

,

μ0,n = 1
4

(
7
8

)n+1

∀n ∈ N0,

μm,n = 7
32

∀(m,n) ∈ D1 ∪D2 ∪D3,

μm,n = (−1)m+n

2(1 + (7/8)m+n−3)
∀(m,n) ∈ D4,

(4.323)

in which D1, D2, D3, and D4 are defined in Theorem 4.53.
Obviously, σ = 2 and τ = 1. Let ξ = 7/8 and M = 1. Then, it is easy to

see that all the conditions of Theorem 4.53 hold. Hence, system (4.322) is D-B-
exponentially stable.

Example 4.60. Consider the delayed 2D discrete logistic system

xm+1,n + am,nxm,n+1 = μm,nxm,n
(
1 − xm−1,n−2

)
, (m,n) ∈ N2

0 , (4.324)

where

am,n = 1 − 2
m + 2

, μm,n = 1
m + 2

∀(m,n) ∈ N2
0 . (4.325)

Clearly, there exist two constants, α = 1 and C = 1, and an integer k = 1, such
that all the conditions of Theorem 4.51 hold. Hence, system (4.324) is stable.

4.4.2. Stability of generalized 2D discrete systems

Consider the delayed generalized 2D discrete systems of the form

xm+1,n = f
(
m,n, xm,n, xm,n+1, xm−σ ,n−τ

)
, (4.326)
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where σ and τ are positive integers,m and n are nonnegative integers, and f : Z2×
R3 → R is a real function containing the logistic map as a special case. Obviously,
if

f (m,n, x, y, z) = μm,nx(1 − x) − am,ny, (4.327)

or

f (m,n, x, y, z) = μm,nx(1 − z) − am,ny, (4.328)

or

f (m,n, x, y, z) = 1 − μx2 − ay, (4.329)

or

f (m,n, x, y, z) = bm,nx − am,ny − pm,nz, (4.330)

then system (4.326) becomes, respectively,

xm+1,n + am,nxm,n+1 = μm,nxm,n
(
1 − xm,n

)
, (4.331)

or

xm+1,n + am,nxm,n+1 = μm,nxm,n
(
1 − xm−σ ,n−τ

)
, (4.332)

or

xm+1,n + am,nxm,n+1 = 1 − μ
(
xm,n

)2
, (4.333)

or

xm+1,n + am,nxm,n+1 − bm,nxm,n + pm,nxm−σ ,n−τ = 0. (4.334)

Systems (4.331), (4.332), and (4.333) are regular 2D discrete logistic systems of
different forms, and particulary system (4.334) has been studied in the literature.

If am,n = 0, μm,n = μ, and n = n0 is fixed, then system (4.331) becomes the
1D logistic system

xm+1,n0 = μxm,n0

(
1 − xm,n0

)
, (4.335)

where μ is a parameter. System (4.335) has been intensively investigated in the
literature. Hence, system (4.326) is quite general.

This section is concerned with the stability of solutions of system (4.326),
in which some sufficient conditions for the stability and exponential stability of
system (4.326) will be derived.
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Let Ω = N−σ × N−τ \ N1 × N0. It is obvious that for any given function ϕ =
{ϕm,n} defined on Ω, it is easy to construct by induction a double sequence {xm,n}
that equals initial conditions ϕ on Ω and satisfies (4.326) on N1 ×N0.

Definition 4.61. Let x∗ ∈ R be a constant. If x∗ is a root of the equation

x − f (m,n, x, x, x) = 0 for any (m,n) ∈ N2
0 , (4.336)

then x∗ is said to be a fixed point or equilibrium point of system (4.326). The set
of all fixed points of system (4.326) is called a fixed plane or equilibrium plane of
the system.

It is easy to see that x∗ = 0 is a fixed point of systems (4.331), (4.332), and

(4.334), and x∗ = (−(a+1)±
√

(a + 1)2 + 4μ)(2μ)−1 are two fixed points of system
(4.333).

Let x∗ be a fixed point of system (4.326) and let ϕ = {ϕm,n} be a function
defined on Ω, and let

‖ϕ‖x∗ = sup
{∣∣ϕm,n − x∗

∣
∣ | (m,n) ∈ Ω

}
. (4.337)

For any positive number δ > 0, let Sδ(x∗) = {ϕ || ‖ϕ‖x∗ < δ}.

Definition 4.62. Let x∗ ∈ R be a fixed point of system (4.326). If for any ε > 0,
there exists a positive constant δ > 0 such that for any given bounded function
ϕ = {ϕm,n} defined on Ω,ϕ ∈ Sδ(x∗) implies that the solution x = {xm,n} of
system (4.326) with the initial condition ϕ satisfies

∣∣xm,n − x∗
∣∣ < ε ∀(m,n) ∈ N1 ×N0, (4.338)

then system (4.326) is said to be stable about the fixed point x∗.

Definition 4.63. Let x∗ ∈ R be a fixed point of system (4.326). If there exist positive
constants M > 0 and ξ ∈ (0, 1) such that for any given constant δ ∈ (0,M) and
any given bounded function ϕ = {ϕm,n} defined on Ω,ϕ ∈ Sδ(x∗) which implies
that the solution {xm,n} of system (4.326) with the initial condition ϕ satisfies

∣∣xm,n − x∗
∣∣ < Mξm+n, (m,n) ∈ N1 ×N0, (4.339)

then system (4.326) is said to be double-variable-bounded-initially exponentially
stable, or D-B-exponentially stable, about the fixed point x∗.

Definition 4.64. Let x∗ ∈ R be a fixed point of system (4.326). If there exist positive
constants M > 0 and ξ ∈ (0, 1) such that for any given bounded number δ ∈
(0,M) and any given bounded function ϕ = {ϕm,n} defined on Ω,ϕ ∈ Sδ(x∗)
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which implies that the solution {xm,n} of system (4.326) with the initial condition
ϕ satisfies

∣
∣xm,n − x∗

∣
∣ < Mξm, (m,n) ∈ N1 ×N0, (4.340)

then system (4.326) is said to be exponentially asymptotically stable about the fixed
point x∗.

Obviously, if system (4.326) is D-B-exponentially stable or exponentially
asymptotically stable, then it is stable.

Definition 4.65. Let f (m,n, x, y, z) be a function defined on Z2 × D and let
(x0, y0, z0) ∈ D be a fixed inner point, where D ⊂ R3. If, for any positive con-
stant ε > 0, there exists a constant δ > 0 such that for any |x−x0| < δ, |y− y0| < δ,
|z − z0| < δ,

∣∣ f (m,n, x, y, z) − f
(
m,n, x0, y0, z0

)∣∣ < ε for any (m,n) ∈ N2
0 , (4.341)

then f (m,n, x, y, z) is said to be uniformly continuous at the point (x0, y0, z0)
(over m and n). If the partial derivative functions f ′x (m,n, x, y, z), f ′y (m,n, x, y, z),
and f ′z (m,n, x, y, z) are all uniformly continuous at (x0, y0, z0), then f (m,n, x, y, z)
is said to be uniformly differentiable at (x0, y0, z0).

Let D be an open subset of R3. If f (m,n, x, y, z) is uniformly continuous at
any point (x, y, z) ∈ D, then it is said to be uniformly continuous on D.

Obviously, if f (m,n, x, y, z) and g(m,n, x, y, z) are uniformly continuous at
(x, y, z), then

a f (m,n, x, y, z),
∣
∣ f (m,n, x, y, z)

∣
∣, f (m,n, x, y, z) + g(m,n, x, y, z) (4.342)

are also uniformly continuous at (x, y, z) for any constant α ∈ R.

Lemma 4.66. Let D ⊂ R3 be an open convex domain and (x0, y0, z0) ∈ D. Assume
that the function f (m,n, x, y, z) is continuously differentiable on D for any fixed m
and n. Then for any (x̃, ỹ, z̃) ∈ D and any (m,n) ∈ N2

0 , there exists a constant
t0 = t(m,n, x̃, ỹ, z̃) ∈ (0, 1) such that

f (m,n, x̃, ỹ, z̃) − f
(
m,n, x0, y0, z0

)

= f ′x
(
m,n, x0 + t0

(
x̃ − x0

)
, y0 + t0

(
ỹ − y0

)
, z0 + t0

(
z̃ − z0

))(
x̃ − x0

)

+ f ′y
(
m,n, x0 + t0

(
x̃ − x0

)
, y0 + t0

(
ỹ − y0

)
, z0 + t0

(
z̃ − z0

))(
ỹ − y0

)

+ f ′z
(
m,n, x0 + t0

(
x̃ − x0

)
, y0 + t0

(
ỹ − y0

)
, z0 + t0

(
z̃ − z0

))(
z̃ − z0

)
.

(4.343)

Proof . Let g(t) = f (m,n, x0 +t(x̃−x0), y0 +t( ỹ− y0), z0 +t(z̃−z0)). Then, from the
given conditions, the function g(t) is continuous differentiable on [0,1]. Hence,



304 Stability of PDEs

from the mean value theorem, there exists a constant t0 ∈ (0, 1) such that g(1) −
g(0) = g′(t0), that is, Lemma 4.66 holds. The proof is completed. �

Theorem 4.67. Assume that x∗ is a fixed point of system (4.326), the function
f (m,n, x, y, z) is both continuously differentiable on R3 for any fixed (m,n) ∈ N2

0

and uniformly continuously differentiable at the point (x∗, x∗, x∗) ∈ R3, and there
exists a constant r ∈ (0, 1) such that for any (m,n) ∈ N2

0 ,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ r.
(4.344)

Then system (4.326) is stable.

Proof . Since the function f (m,n, x, y, z) is uniformly continuously differentiable
at the point (x∗, x∗, x∗), there exists a positive number M > 0 such that for any
(m,n) ∈ N2

0 and any (x, y, z) ∈ R3 satisfying |x − x∗| < M, |y − x∗| < M and
|z − x∗| < M,

∣∣ f ′x (m,n, x, y, z)
∣∣ +

∣∣ f ′y (m,n, x, y, z)
∣∣ +

∣∣ f ′z (m,n, x, y, z)
∣∣ ≤ 1. (4.345)

In view of the given conditions and Lemma 4.66, for anym ≥ 0 and n ≥ 0, and any
point (x, y, z) ∈ R3 which satisfies |x − x∗| < M, |y − x∗| < M and |z − x∗| < M,
there exists a constant t0 = t(m,n, x, y, z) ∈ (0, 1) such that

f (m,n, x, y, z) − f
(
m,n, x∗, x∗, x∗

)

= f ′x (m,n, λ,η, θ)
(
x − x∗

)
+ f ′y (m,n, λ,η, θ)

(
y − x∗

)

+ f ′z (m,n, λ,η, θ)
(
z − x∗

)
,

(4.346)

where λ = x∗ + t0(x−x∗), η = x∗ + t0(y−x∗), and θ = x∗ + t0(z−x∗). Obviously,

∣
∣λ− x∗

∣
∣ ≤ ∣∣x − x∗

∣
∣,

∣
∣η − x∗

∣
∣ ≤ ∣∣y − x∗

∣
∣,

∣
∣θ − x∗

∣
∣ ≤ ∣∣z − x∗

∣
∣.

(4.347)

For any sufficiently small number ε > 0, without loss of generality, let ε < M
and δ = ε, and let ϕ = {ϕm,n} be a given bounded function defined on Ω which
satisfies |ϕm,n − x∗| < δ for all (m,n) ∈ Ω. Let the sequence {xm,n} be a solution
of system (4.326) with the initial condition ϕ. In view of (4.326) and the following
inequalities:

∣
∣x0,0 − x∗

∣
∣ ≤ δ < M,

∣
∣x0,1 − x∗

∣
∣ ≤ δ < M,

∣
∣x−σ ,−τ − x∗

∣
∣ ≤ δ < M,

(4.348)

it follows from (4.345), (4.346), and Lemma 4.66 that there exists a constant

t0 = t
(
0, 0, x0,0, x0,1, x−σ ,−τ

) ∈ (0, 1), (4.349)
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such that

∣
∣x1,0 − x∗

∣
∣ = ∣∣ f (0, 0, x0,0, x0,1, x−σ ,−τ

)− f
(
0, 0, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x (0, 0, λ,η, θ)
∣
∣
∣
∣x0,0 − x∗

∣
∣ +

∣
∣ f ′y (0, 0, λ,η, θ)

∣
∣
∣
∣x0,1 − x∗

∣
∣

+
∣
∣ f ′z (0, 0, λ,η, θ)

∣
∣
∣
∣x−σ ,−τ − x∗

∣
∣ ≤ δ ≤ ε < M,

(4.350)

where λ = x∗ + t0(x0,0 − x∗), η = x∗ + t0(x0,1 − x∗), and θ = x∗ + t0(x−σ ,−τ − x∗).
Similarly, from (4.326), (4.345), and (4.346), one has

∣
∣x1,1 − x∗

∣
∣ = ∣∣ f (0, 1, x0,1, x0,2, x−σ ,1−τ

)− f
(
0, 1, x∗, x∗, x∗

∣
∣ ≤ ε < M.

(4.351)

In general, for any integer n ≥ 0, |x1,n − x∗| ≤ ε < M.
Assume that for a certain integer k ≥ 1,

∣
∣xi,n − x∗

∣
∣ ≤ ε < M for any i ∈ {1, 2, . . . , k}, n ≥ 0. (4.352)

Then, it follows from (4.326), (4.345), and (4.346) that there exists a constant

t0 = t
(
k,n, xk,n, xk,n+1, xk−σ ,n−τ

) ∈ (0, 1), (4.353)

such that

∣∣xk+1,n − x∗
∣∣ = ∣∣ f (k,n, xk,n, xk,n+1, xk−σ ,n−τ

)− f
(
k,n, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x (k,n, λ,η, θ)
∣∣∣∣xk,n − x∗

∣∣ +
∣∣ f ′y (k,n, λ,η, θ)

∣∣∣∣xk,n+1 − x∗
∣∣

+ | f ′z (k,n, λ,η, θ)
∣∣∣∣xk−σ ,n−τ − x∗

∣∣

≤ (∣∣ f ′x (k,n, λ,η, θ)
∣∣ +

∣∣ f ′y (k,n, λ,η, θ)
∣∣ +

∣∣ f ′z (k,n, λ,η, θ)
∣∣) · ε

≤ ε,
(4.354)

where λ = x∗+t0(xk,n−x∗), η = x∗+t0(xk,n+1−x∗), and θ = x∗+t0(xk−σ ,n−τ−x∗).
Hence, by induction, |xm,n − x∗| ≤ ε for any (m,n) ∈ N1 × N0, that is, system
(4.326) is stable. The proof is completed. �

Similar to the above proof of Theorem 4.67, it is easy to obtain the following
result.

Theorem 4.68. Assume that x∗ is a fixed point of system (4.326), and the function
f (m,n, x, y, z) is continuously differentiable on R3 for any fixed m and n. Further,
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assume that there exists an open subset D ⊂ R3 such that (x∗, x∗, x∗) ∈ D, and for
any (m,n) ∈ N2

0 and any (x, y, z) ∈ D,

∣
∣ f ′x (m,n, x, y, z)

∣
∣ +

∣
∣ f ′y (m,n, x, y, z)

∣
∣ +

∣
∣ f ′z (m,n, x, y, z)

∣
∣ ≤ 1. (4.355)

Then system (4.326) is stable.

From Theorems 4.67 and 4.68, one obtains the following results.

Corollary 4.69. Assume that there exists a constant r ∈ (0, 1) such that

∣
∣μm,n

∣
∣ +

∣
∣am,n

∣
∣ ≤ r ∀m ≥ 0, n ≥ 0. (4.356)

Then system (4.331) and (4.332) are both stable.

In fact, system (4.331) is a special case of system (4.326) when

f (m,n, x, y, z) ≡ μm,nx(1 − x) − am,ny. (4.357)

In view of (4.356), it is obvious that the function f (m,n, x, y, z) is both continu-
ously differentiable on R3 for any fixed (m,n) ∈ N2

0 and uniformly continuously
differentiable at the point (0, 0, 0). Since x∗ = 0 is a fixed point of system (4.331)
and (4.332), one has

f ′x
(
m,n, x∗, x∗, x∗

) = μm,n,

f ′y
(
m,n, x∗, x∗, x∗

) = −am,n,

f ′z
(
m,n, x∗, x∗, x∗

) = 0.

(4.358)

Hence, (4.356) implies (4.344). By Theorem 4.67, system (4.331) and (4.332) are
both stable.

Corollary 4.70. System (4.333) has fixed points

x∗ =
(
− (a + 1) ±

√
(a + 1)2 + 4μ

)
(2μ)−1. (4.359)

Assume that there exists a constant r ∈ (0, 1) such that

2
∣
∣μ · x∗∣∣ + |a| ≤ r. (4.360)

Then system (4.333) is stable about x∗.

Corollary 4.71. Assume that

∣∣am,n
∣∣ +

∣∣bm,n
∣∣ +

∣∣pm,n
∣∣ ≤ 1 ∀m ≥ 0, n ≥ 0. (4.361)

Then system (4.334) is stable.
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Define four subsets of N0 ×N0 as follows:

B1 =
{

(i, j) : 0 ≤ i ≤ σ , 0 ≤ j < τ
}

,

B3 =
{

(i, j) : i > σ , 0 ≤ j < τ
}

,

B2 =
{

(i, j) : 0 ≤ i ≤ σ , j ≥ τ
}

B4 =
{

(i, j) : i > σ , j ≥ τ
}
.

(4.362)

Obviously, B1 is a finite set, B2, B3, and B4 are infinite sets, B1, B2, B3, and B4 are
disjoint of one another, and N2

0 = B1 ∪ B2 ∪ B3 ∪ B4.

Theorem 4.72. Assume that x∗ is a fixed point of system (4.333), the function
f (m,n, x, y, z) is both continuously differentiable on R3 for any (m,n) ∈ N2

0 and
uniformly continuously differentiable at the point (x∗, x∗, x∗) ∈ R3, and there exists
a constant r ∈ (0, 1) such that for any (m,n) ∈ B1 ∪ B2,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + r−m
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ r,
(4.363)

and for any (m,n) ∈ B3 ∪ B4,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + r−σ
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ r.
(4.364)

Then system (4.326) is exponentially asymptotically stable.

Proof . From the given conditions, there exist two positive constants, M > 0 and
ξ ∈ (r, 1), such that (4.346) holds and for any (m,n) ∈ B1 ∪ B2,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + ξ−m
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ ξ,
(4.365)

and for any (m,n) ∈ B3 ∪ B4,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣ +
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + ξ−σ
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ ξ
(4.366)

for |x − x∗| < M, |y − x∗| < M, and |z − x∗| < M.
Let δ ∈ (0,M) be a given constant and let ϕ = {ϕm,n} be a given bounded

function defined on Ω which satisfies |ϕm,n − x∗| < δ for all (m,n) ∈ Ω. Let the
sequence {xm,n} be a solution of system (4.326) with the initial condition ϕ. In
view of (4.326) and the following inequalities:

∣
∣x0,0 − x∗

∣
∣ ≤ δ < M,

∣
∣x0,1 − x∗

∣
∣ ≤ δ < M,

∣
∣x−σ ,−τ

∣
∣ ≤ δ < M,

(4.367)
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it follows from (4.346), (4.366), and Lemma 4.66 that there exists a constant

t0 = t
(
0, 0, x0,0, x0,1, x−σ ,−τ

) ∈ (0, 1), (4.368)

such that

∣
∣x1,0 − x∗

∣
∣ = ∣∣ f (0, 0, x0,0, x0,1, x−σ ,−τ

)− f
(
0, 0, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x (0, 0, λ,η, θ)
∣
∣
∣
∣x0,0 − x∗

∣
∣ +

∣
∣ f ′y (0, 0, λ,η, θ)

∣
∣
∣
∣x0,1 − x∗

∣
∣

+
∣
∣ f ′z (0, 0, λ,η, θ)

∣
∣
∣
∣x−σ ,−τ − x∗

∣
∣ ≤Mξ,

(4.369)

where λ = x∗ + t0(x0,0 − x∗), η = x∗ + t0(x0,1 − x∗), and θ = x∗ + t0(x−σ ,−τ − x∗).
Similarly, from (4.326), (4.346), and (4.366), one has

∣
∣x1,1 − x∗

∣
∣ = ∣∣ f (0, 1, x0,1, x0,2, x−σ ,1−τ

)− f
(
0, 1, x∗, x∗, x∗

)∣∣ ≤Mξ. (4.370)

In general, for any integer n ≥ 0, |x1,n − x∗| ≤Mξ.
Assume that for a certain integer k ∈ {1, . . . , σ},

∣
∣xi,n − x∗

∣
∣ ≤Mξi for any i ∈ {1, 2, . . . , k}, n ≥ 0. (4.371)

Then, (k,n) ∈ B1 ∪B2 and (k− σ ,n− τ) ∈ Ω. From (4.346), (4.365), and Lemma
4.66, there exists a constant t0 = t(k,n, xk,n, xk,n+1, xk−σ ,n−τ) ∈ (0, 1) such that

∣
∣xk+1,n − x∗

∣
∣ = ∣∣ f (k,n, xk,n, xk,n+1, xk−σ ,n−τ

)− f
(
k,n, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x (k,n, λ,η, θ)
∣
∣
∣
∣xk,n − x∗

∣
∣ +

∣
∣ f ′y (k,n, λ,η, θ)

∣
∣
∣
∣xk,n+1 − x∗

∣
∣

+
∣
∣ f ′z (k,n, λ,η, θ)

∣
∣
∣
∣xk−σ ,n−τ − x∗

∣
∣

≤Mξk
∣
∣ f ′x (k,n, λ,η, θ)

∣
∣ +Mξk

∣
∣ f ′y (k,n, λ,η, θ)

∣
∣

+Mξk
∣∣ f ′z (k,n, λ,η, θ)

∣∣ ≤Mξk+1,
(4.372)

where λ = x∗+t0(xk,n−x∗), η = x∗+t0(xk,n+1−x∗), and θ = x∗+t0(xk−σ ,n−τ−x∗).
Hence, by induction, |xm,n − x∗| ≤ Mξm for any (m,n) ∈ {1, 2, . . . , σ + 1} and
n ≥ 0.

Assume that for a certain integer k ≥ σ + 1,

∣∣xi,n − x∗
∣∣ ≤Mξi for any i ∈ {1, 2, . . . , k}, n ≥ 0. (4.373)
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Then, (k,n) ∈ B3 ∪ B4, (k − σ ,n − τ) /∈Ω. Hence, from (4.326), (4.346), (4.366),
and Lemma 4.66, there exists a constant t0 = t(k,n, xk,n, xk,n+1, xk−σ ,n−τ) ∈ (0, 1)
such that

∣
∣xk+1,n − x∗

∣
∣ ≤ ∣∣ f ′x (k,n, λ,η, θ)

∣
∣ ·Mξk +

∣
∣ f ′y (k,n, λ,η, θ)

∣
∣ ·Mξk

+
∣∣ f ′z (k,n, λ,η, θ)

∣∣ ·Mξk−σ

=Mξk
(∣∣ f ′x (k,n, λ,η, θ)

∣
∣ +

∣
∣ f ′y (k,n, λ,η, θ)

∣
∣

+ ξ−σ
∣
∣ f ′z (k,n, λ,η, θ)

∣
∣) ≤Mξk+1,

(4.374)

where λ = x∗+t0(xk,n−x∗), η = x∗+t0(xk,n+1−x∗), and θ = x∗+t0(xk−σ ,n−τ−x∗).
By induction, |xm,n − x∗| ≤Mξm for any (m,n) ∈ N1 ×N0, that is, system (4.326)
is exponentially asymptotically stable. The proof is completed. �

From Theorem 4.72, it is easy to obtain the following corollaries.

Corollary 4.73. Assume that there exists a constant r ∈ (0, 1) such that

∣∣μm,n
∣∣ +

∣∣am,n
∣∣ ≤ r ∀m ≥ 0, n ≥ 0. (4.375)

Then systems (4.331) and (4.332) are both exponentially asymptotically stable.

Corollary 4.74. System (4.333) has fixed points

x∗ =
(
− (a + 1) ±

√
(a + 1)2 + 4μ

)
(2μ)−1. (4.376)

Assume that there exists a constant r ∈ (0, 1) such that

2
∣
∣μ · x∗∣∣ + |a| ≤ r. (4.377)

Then system (4.333) is exponentially asymptotically stable.

Corollary 4.75. Assume that there exists a constant r ∈ (0, 1) such that for (m,n) ∈
B1 ∪ B2,

∣
∣am,n

∣
∣ +

∣
∣bm,n

∣
∣ + r−m

∣
∣pm,n

∣
∣ ≤ r, (4.378)
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and for (m,n) ∈ B3 ∪ B4,

∣
∣am,n

∣
∣ +

∣
∣bm,n

∣
∣ + r−σ

∣
∣pm,n

∣
∣ ≤ r. (4.379)

Then system (4.334) is exponentially asymptotically stable.

Let

D1 =
{

(m,n) : 1 ≤ m ≤ σ , 0 ≤ n < τ
}

,

D3 =
{

(m,n) : 1 ≤ m ≤ σ , n ≥ τ
}

,

D2 =
{

(m,n) : m > σ , 0 ≤ n < τ
}

,

D4 =
{

(m,n) : m > σ , n ≥ τ
}
.
(4.380)

Obviously, D1, D2, D3, D4 are disjoint of one another, and N1 × N0 = D1 ∪ D2 ∪
D3 ∪D4.

Theorem 4.76. Assume that x∗ is a fixed point of system (4.326), f (m,n, x, y, z) is
both continuously differentiable on R3 for any (m,n) ∈ N2

0 and uniformly continu-
ously differentiable at the point (x∗, x∗, x∗) ∈ R3. Further, assume that there exist a
constant r ∈ (0, 1) and an open subset D ⊂ R3 with (x∗, x∗, x∗) ∈ D such that for
any (x, y, z) ∈ D and any n ≥ 0,

∣
∣ f ′x (0,n, x, y, z)

∣
∣ +

∣
∣ f ′y (0,n, x, y, z)

∣
∣ +

∣
∣ f ′z (0,n, x, y, z)

∣
∣ ≤ rn+1, (4.381)

and for all (m,n) ∈ D1 ∪D3,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣

+ r
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + r−m−n∣∣ f ′z
(
m,n, x∗, x∗, x∗

)∣∣ ≤ r,
(4.382)

and for all (m,n) ∈ D2 ∪D4,

∣∣ f ′x
(
m,n, x∗, x∗, x∗

)∣∣

+ r
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + r−σ−τ
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ r.
(4.383)

Then system (4.326) is D-B-exponentially stable.
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Proof . From the given conditions, and from (4.381), (4.382), and (4.383), there
exist positive constants M > 0 and ξ ∈ (r, 1), such that (4.346) holds and for all
n ≥ 0,

∣∣ f ′x (0,n, x, y, z)
∣∣ +

∣∣ f ′y (0,n, x, y, z)
∣∣ +

∣∣ f ′z (0,n, x, y, z)
∣∣ ≤ ξn+1, (4.384)

and for all (m,n) ∈ D1 ∪D3,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣

+ ξ
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + ξ−m−n∣∣ f ′z
(
m,n, x∗, x∗, x∗

)| ≤ ξ,
(4.385)

and for all (m,n) ∈ D2 ∪D4,

∣
∣ f ′x

(
m,n, x∗, x∗, x∗

)∣∣

+ ξ
∣
∣ f ′y

(
m,n, x∗, x∗, x∗

)∣∣ + ξ−σ−τ
∣
∣ f ′z

(
m,n, x∗, x∗, x∗

)∣∣ ≤ ξ
(4.386)

for |x − x∗| < M, |y − x∗| < M and |z − x∗| < M.
Let δ ∈ (0,M) be a constant and let ϕ = {ϕm,n} be a given bounded func-

tion defined on Ω which satisfies |ϕm,n − x∗| < δ for all (m,n) ∈ Ω. Let the
sequence {xm,n} be a solution of system (4.326) with the initial condition ϕ. In
view of (4.326) and the following inequalities:

∣
∣x0,n − x∗

∣
∣ ≤ δ < M,

∣
∣x0,n+1 − x∗

∣
∣ ≤ δ < M,

∣
∣x−σ ,n−τ

∣
∣ ≤ δ < M,

(4.387)

it follows from (4.346) and (4.384) that there exists a constant

t0,n = t
(
0,n, x0,n, x0,n+1, x−σ ,n−τ

) ∈ (0, 1) (4.388)

such that for any n ∈ N0,

∣∣x1,n − x∗
∣∣ = ∣∣ f (0,n, x0,n, x0,n+1, x−σ ,n−τ

)− f
(
0,n, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x
(
0,n, λ0,n,η0,n, θ0,n

)∣∣
∣
∣x0,n − x∗

∣
∣

+
∣∣ f ′y

(
0,n, λ0,n,η0,n, θ0,n

)∣∣∣∣x0,n+1 − x∗
∣∣

+
∣
∣ f ′z

(
0,n, λ0,n,η0,n, θ0,n

)∣∣
∣
∣x−σ ,n−τ − x∗

∣
∣ ≤Mξn+1,

(4.389)
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where λ0,n = x∗ + t0,n(x0,n − x∗), η0,n = x∗ + t0,n(x0,n+1 − x∗), and θ0,n = x∗ +
t0,n(x−σ ,n−τ − x∗).

Assume that for some m ∈ {1, . . . , σ},

∣∣xi, j − x∗
∣∣ ≤Mξi+ j ∀1 ≤ i ≤ m, j ∈ N0. (4.390)

Then, for all n ≥ 0, one has (m−σ ,n−τ) ∈ Ω and (m,n) ∈ D1∪D3. Hence, it fol-
lows from (4.346) and (4.385) that there exists a constant tm,n = t(m,n, xm,n, xm,n+1,
xm−σ ,n−τ) ∈ (0, 1) such that

∣
∣xm+1,n − x∗

∣
∣ = ∣∣ f (m,n, xm,n, xm,n+1, xm−σ ,n−τ

)− f
(
m,n, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x
(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm,n − x∗

∣
∣

+
∣
∣ f ′y

(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm,n+1 − x∗

∣
∣

+
∣
∣ f ′z

(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm−σ ,n−τ − x∗

∣
∣

≤ ∣∣ f ′x
(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·Mξm+n

+
∣
∣ f ′y

(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·Mξm+n+1

+ | f ′z
(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·M ≤Mξm+n+1,
(4.391)

where λm,n = x∗ + tm,n(xm,n − x∗), ηm,n = x∗ + tm,n(xm,n+1 − x∗), and θm,n =
x∗ + tm,n(xm−σ ,n−τ − x∗). By induction, |xm,n − x∗| ≤ Mξm+n for all (m,n) ∈
{1, 2, . . . , σ + 1} and all n ≥ 0.

Assume that for some m ≥ σ + 1,

∣
∣xi,n − x∗

∣
∣ ≤Mξi+n ∀1 ≤ i ≤ m, and all n ∈ N0. (4.392)

Then, for all n ≥ 0, one has (m − σ ,n − τ) /∈Ω and (m,n) ∈ D2 ∪ D4. Hence, it
follows from (4.346) and (4.386) that there exists a constant

tm,n = t
(
m,n, xm,n, xm,n+1, xm−σ ,n−τ

) ∈ (0, 1) (4.393)
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such that

∣
∣xm+1,n − x∗

∣
∣ = ∣∣ f (m,n, xm,n, xm,n+1, xm−σ ,n−τ

)− f
(
m,n, x∗, x∗, x∗

)∣∣

≤ ∣∣ f ′x
(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm,n − x∗

∣
∣

+
∣
∣ f ′y

(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm,n+1 − x∗

∣
∣

+
∣
∣ f ′z

(
m,n, λm,n,ηm,n, θm,n

)∣∣
∣
∣xm−σ ,n−τ − x∗

∣
∣

≤ ∣∣ f ′x
(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·Mξm+n

+
∣
∣ f ′y

(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·Mξm+n+1

+
∣
∣ f ′z

(
m,n, λm,n,ηm,n, θm,n

)∣∣ ·Mξm+n−σ−τ

=Mξm+n(∣∣ f ′x
(
m,n, λm,n,ηm,n, θm,n

)∣∣

+ ξ
∣
∣ f ′y

(
m,n, λm,n,ηm,n, θm,n

)∣∣

+ ξ−σ−τ
∣
∣ f ′z

(
m,n, λm,n,ηm,n, θm,n

)∣∣)

≤Mξm+n+1,
(4.394)

where λm,n = x∗ + tm,n(xm,n − x∗), ηm,n = x∗ + tm,n(xm,n+1 − x∗), and θm,n = x∗ +
tm,n(xm−σ ,n−τ − x∗). By induction, |xm,n − x∗| ≤Mξm+n for any (m,n) ∈ N1 ×N0,
that is, system (4.326) is D-B-exponentially stable. The proof is completed. �

From Theorem 4.76, it is easy to obtain the following corollaries.

Corollary 4.77. Assume that there exist two constants r ∈ (0, 1) and C ∈ (0, 1) such
that

∣
∣μ0,n

∣
∣ +

∣
∣a0,n

∣
∣ ≤ Crn+1 ∀n ≥ 0,

∣∣μm,n
∣∣ + r

∣∣am,n
∣∣ ≤ r for any (m,n) ∈ N1 ×N0.

(4.395)

Then, system (4.331) and (4.332) are both D-B-exponentially stable.

Corollary 4.78. Assume that there exists a constant r ∈ (0, 1) such that

∣
∣a0,n

∣
∣ +

∣
∣b0,n

∣
∣ +

∣
∣p0,n

∣
∣ ≤ rn+1 for any n ≥ 0,

r
∣
∣am,n

∣
∣ +

∣
∣bm,n

∣
∣ + r−m−n∣∣pm,n

∣
∣ ≤ r for any (m,n) ∈ D1 ∪D3,

r
∣∣am,n

∣∣ +
∣∣bm,n

∣∣ + r−σ−τ
∣∣pm,n

∣∣ ≤ r for any (m,n) ∈ D2 ∪D4.

(4.396)

Then, system (4.334) is D-B-exponentially stable.
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4.5. L2 stability in parabolic Volterra difference equations

Consider the linear parabolic Volterra difference equation

Δ2

(

um,n −
∞∑

j=1

qjum,n−r j

)

+
∞∑

i=1

pium,n−ki = cΔ2
1um−1,n+1 (4.397)

for m = 1, . . . ,M and n = 0, 1, . . . with homogeneous Neumann boundary condi-
tions (NBCs)

Δ1u0,n = Δ1uM,n = 0 for n = 0, 1, . . . (4.398)

and initial conditions (ICs)

um,i = μm,i for m = 1, . . . ,M, i = . . . ,−1, 0, (4.399)

where Δ1, Δ2
1, and Δ2 are defined as Section 3.7, pi, qj ∈ R, ki, r j ∈ N0 for i, j =

1, 2, . . . , μm,i ∈ R for m = 1, . . . ,M and i = . . . ,−1, 0, c ≥ 0. Throughout this
section, we assume that P=∑∞

i=1 pi > 0, P∗ = ∑∞
i=1 |pi|, P′ = ∑∞

i=1 ki|pi|, P′′ =∑∞
i=1 k

2
i |pi|, Q∗ = ∑∞

j=1 |qj|, Q′ = ∑∞
j=1 r j|qj|, and P,P∗,P′,P′′,Q∗,Q′ < ∞ and

that

‖μ‖ = sup
{∣∣μm,i

∣∣ for m = 1, . . . ,M, i = . . . ,−1, 0
}
<∞. (4.400)

For the sake of convenience, in proving the (unique) existence of solutions of
(4.397) with the initial boundary conditions (4.398) and (4.399), we let um,i = 0
for m < 0, m > M + 1, and i = 0, 1, . . . .

By a solution of (4.397)–(4.399), we mean a sequence {um,n} which is defined
for m = 1, . . . ,M and n = 0, 1, . . . and which satisfies (4.397), NBCs (4.398), and
ICs (4.399).

By using the method similarly to Chapter 2 or simply by successive calcula-
tion, it is easy to show that (4.397) has a unique solution for given boundary and
initial conditions which satisfies (4.400).

In the sequel, we only consider the solutions of (4.397) with the initial condi-
tions satisfying (4.400).

We now give some definitions which will be needed in this section.
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Definition 4.79. The zero solution of (4.397) is said to be attractive if every solu-
tion {um,n} of (4.397) with ICs satisfying (4.400) has the property

lim
n→∞um,n = 0 for m = 1, . . . ,M. (4.401)

Definition 4.80. The zero solution of (4.397) is said to be L2 stable if every solution
{um,n} of (4.397) with ICs satisfying (4.400) has the property

∞∑

n=0

u2
m,n <∞ for m = 1, . . . ,M. (4.402)

It is easy to see that L2 stability implies the attractivity.

Theorem 4.81. Assume that

Q∗ +
P

2
+ P′ < 1. (4.403)

Then the zero solution of (4.397) is L2 stable.

Proof . It is easy to show that

∞∑

i=1

pium,n−ki = Pum,n+1 − Δ2

( ∞∑

i=1

pi

n∑

s=n−ki
um,s

)

. (4.404)

Hence, we can rewrite (4.397) as follows:

Δ2

(

um,n −
∞∑

j=1

qjum,n−r j −
∞∑

i=1

pi

n∑

s=n−ki
um,s

)

= −Pum,n+1 + cΔ2
1um−1,n+1.

(4.405)

Define a Liapunov sequence as follows:

V (1)
n =

M∑

m=1

(

um,n −
∞∑

j=1

qjum,n−r j −
∞∑

i=1

pi

n∑

s=n−ki
um,s

)2

. (4.406)



316 Stability of PDEs

Then we have

ΔV (1)
n =

M∑

m=1

(− Pum,n+1 + cΔ2
1um−1,n+1

)

×
(

um,n+1 + um,n −
∞∑

j=1

qjum,n+1−r j −
∞∑

j=1

qjum,n−r j − Pum,n+1

− 2
∞∑

i=1

pi

n∑

s=n+1−ki
um,s −

∞∑

i=1

pium,n−ki

)

.

(4.407)

Here, we define that
∑n

i=m∗ = 0 if m > n.
For the estimation of the right-hand side of the above equality, let us consider

− P
M∑

m=1

um,n+1

(

um,n+1 + um,n −
∞∑

j=1

qjum,n+1−r j −
∞∑

j=1

qjum,n−r j

− Pum,n+1 − 2
∞∑

i=1

pi

n∑

s=n+1−ki
um,s −

∞∑

i=1

pium,n−ki

)

= −P
M∑

m=1

um,n+1

(

um,n+1 + um,n −
∞∑

j=1

qjum,n+1−r j −
∞∑

j=1

qjum,n−r j

− Pum,n+1 − 2
∞∑

i=1

pi

n∑

s=n+1−ki
um,s + um,n+1 − um,n

−
∞∑

j=1

qjum,n+1−r j +
∞∑

j=1

qjum,n−r j − cΔ2
1um−1,n+1

)

=
M∑

m=1

(

− 2Pu2
m,n+1 + 2P

∞∑

j=1

qjum,n+1um,n+1−r j + P2u2
m,n+1

+ 2P
∞∑

i=1

pi

n∑

s=n+1−ki
um,n+1um,s + Pcum,n+1Δ

2
1um−1,n+1

)

≤
M∑

m=1

[

− 2Pu2
m,n+1 + P

∞∑

j=1

∣∣qj
∣∣(u2

m,n+1 + u2
m,n+1−r j

)
+ P2u2

m,n+1

+ P
∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

(
u2
m,n+1 + u2

m,s

)
+ Pcum,n+1Δ

2
1um−1,n+1

]

=
M∑

m=1

{

− 2P
[

1 − 1
2

(
Q∗ + P + P′)

]
u2
m,n+1 + P

∞∑

j=1

∣
∣qj
∣
∣u2

m,n+1−r j

+ P
∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki
u2
m,s + Pcum,n+1Δ

2
1um−1,n+1

}

.

(4.408)
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Similarly, we have the following inequality:

c
M∑

m=1

(

um,n+1 + um,n −
∞∑

j=1

qjum,n+1−r j −
∞∑

j=1

qjum,n−r j − Pum,n+1

− 2
∞∑

i=1

pi

n∑

s=n+1−ki
um,s −

∞∑

i=1

pium,n−ki

)

Δ2
1um−1,n+1

≤ 2c
M∑

m=1

um,n+1Δ
2
1um−1,n+1 − 2c

∞∑

j=1

qj

M∑

m=1

um,n+1−r jΔ
2
1um−1,n+1

− Pc
M∑

m=1

um,n+1Δ
2
1um−1,n+1 − 2c

∞∑

i=1

pi

n∑

s=n+1−ki

M∑

m=1

um,sΔ
2
1um−1,n+1.

(4.409)

Therefore, we obtain

ΔV (1)
n ≤ −2P

[

1 − 1
2

(
Q∗ + P + P′)

] M∑

m=1

u2
m,n+1 + P

M∑

m=1

∞∑

j=1

∣
∣qj
∣
∣u2

m,n+1−r j

+ P
M∑

m=1

∞∑

i=1

∣∣pi
∣∣

n∑

s=n+1−ki
u2
m,s + 2c

M∑

m=1

um,n+1Δ
2
1um−1,n+1

− c
∞∑

j=1

qj

M∑

m=1

um,n+1−r jΔ
2
1um−1,n+1 − 2c

∞∑

i=1

pi

n∑

s=n+1−ki

M∑

m=1

um,sΔ
2
1um−1,n+1.

(4.410)

By using a summation by parts formula and NBCs (4.398), (here we define
Δ1ui,n = 0 for i ≤ 0 and i ≥M + 1), we obtain

2c
M∑

m=1

um,n+1Δ
2
1um−1,n+1 = −2c

M∑

m=1

(
Δ1um,n+1

)2
,

− 2c
∞∑

j=1

qj

M∑

m=1

um,n+1−r jΔ
2
1um−1,n+1

= 2c
∞∑

j=1

qj

M∑

m=1

Δ1um,n+1−r jΔ1um,n+1

≤ c
M∑

m=1

∞∑

j=1

∣
∣qj
∣
∣[(Δ1um,n+1

)2
+
(
Δ1um,n+1−r j

)2]

= cQ∗
M∑

m=1

(
Δ1um,n+1

)2
+ c

M∑

m=1

∞∑

j=1

∣
∣qj
∣
∣(Δ1um,n+1−r j

)2
,
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− 2c
∞∑

i=1

pi

n∑

s=n+1−ki

M∑

m=1

um,sΔ
2
1um−1,n+1

= 2c
∞∑

i=1

pi

n∑

s=n+1−ki

M∑

m=1

Δ1um,sΔ1um,n+1

≤ c
M∑

m=1

∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

[(
Δ1um,s

)2
+
(
Δ1um,n+1

)2]

= cP′
M∑

m=1

(
Δ1um,n+1

)2
+ c

M∑

m=1

∞∑

i=1

∣∣pi
∣∣

n∑

s=n+1−ki

(
Δ1um,s

)2
.

(4.411)

Using the above inequalities, we obtain

ΔV (1)
n ≤ −2P

[
1 − 1

2

(
Q∗ + P + P′)

] M∑

m=1

u2
m,n+1

− 2c
[

1 − 1
2

(
Q∗ + P′)

] M∑

m=1

(
Δ1um,n+1

)2

+ P
M∑

m=1

∞∑

j=1

∣
∣qj
∣
∣u2

m,n+1−r j + P
M∑

m=1

∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki
u2
m,s

+ c
M∑

m=1

∞∑

j=1

∣
∣qj
∣
∣(Δ1um,n+1−r j

)2
+ c

M∑

m=1

∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

(
Δ1um,s

)2
.

(4.412)

Now, define another Liapunov sequence as follows:

V (2)
n =

M∑

m=1

[

P
∞∑

j=1

∣
∣qj
∣
∣

n∑

s=n+1−r j
u2
m,s + P

∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

n∑

t=s
u2
m,t

+ c
∞∑

j=1

∣
∣qj
∣
∣

n∑

s=n+1−r j

(
Δ1um,s

)2
+ c

∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

n∑

t=s

(
Δ1um,t

)2
]

.

(4.413)
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Then, we obtain

ΔV (2)
n =

M∑

m=1

{

P
∞∑

j=1

∣
∣qj
∣
∣(u2

m,n+1 − u2
m,n+1−r j

)
+ P

∞∑

i=1

∣
∣pi
∣
∣
(

kiu
2
m,n+1 −

n∑

s=n+1−ki
u2
m,s

)

+ c
∞∑

j=1

∣∣qj
∣∣[(Δ1um,n+1

)2 − (Δ1um,n+1−r j
)2]

+ c
∞∑

i=1

∣
∣pi
∣
∣
[

ki
(
Δ1um,n+1

)2 −
n∑

s=n+1−ki

(
Δ1um,s

)2
]}

=
M∑

m=1

[

PQ∗u2
m,n+1 + PP′u2

m,n+1 + cQ∗(Δ1um,n+1
)2

+ cP′(Δ1um,n+1
)2

− P
∞∑

j=1

∣∣qj
∣∣u2

m,n+1−r j − P
∞∑

i=1

∣∣pi
∣∣

n∑

s=n+1−ki
u2
m,s

− c
∞∑

j=1

∣
∣qj
∣
∣(Δ1um,n+1−r j

)2 − c
∞∑

i=1

∣
∣pi
∣
∣

n∑

s=n+1−ki

(
Δ1um,s

)2
]

.

(4.414)

Finally, we take the Liapunov sequence as Vn = V (1)
n + V (2)

n . By using (4.403), we
finally obtain

ΔVn ≤ −2P
(

1 −Q∗ − P

2
− P′

) M∑

m=1

u2
m,n+1. (4.415)

Therefore, {Vn} is decreasing and there exists a nonnegative limitV0 = limn→∞Vn.
Now, summing both sides of (4.415) from n = 0 to n = ∞, we have

2P
(

1 −Q∗ − P

2
− P′

) ∞∑

n=0

M∑

m=1

u2
m,n+1 ≤ V0. (4.416)

Hence,

∞∑

n=0

M∑

m=1

u2
m,n ≤

M∑

m=1

μ2
m,0 +

V0

2P
(
1 −Q∗ − P/2 − P′) <∞. (4.417)

The proof is complete. �

Remark 4.82. Let um,n be independent of m, writing xn = um,n, qj = ki = 0 for
i, j = 1, 2, . . . and c = 0. Then (4.397) becomes an ordinary difference equation

Δxn + Pxn = 0 for n = 0, 1, . . . (4.418)
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and (4.403) becomes

P

2
< 1. (4.419)

One can easily prove that the condition (4.419) is a necessary and sufficient con-
dition for L2 stability of (4.418). In fact, its solutions {xn} with IC xi = μi for
i = . . . ,−1, 0 satisfying ‖μ‖ = sup{|μi| for i = . . . ,−1, 0} < ∞ has the property∑∞

n=0 |xn| < ∞. Therefore, in this sense, the condition (4.403) is a “sharp” condi-
tion.

As a special case, we consider a linear parabolic Volterra difference equation

Δ2um,n +
∞∑

i=1

pium,n−ki = cΔ2
1um−1,n+1 (4.420)

form = 1, . . . ,M and n = 0, 1, . . . , with NBCs (4.398) and ICs (4.399). By Theorem
4.81, we have the following conclusion.

Corollary 4.83. If

P

2
+ P′ < 1, (4.421)

then the zero solution of (4.420) is L2 stable.

The above argument can be used to the nonlinear parabolic Volterra differ-
ence equations.

4.6. Systems of nonlinear Volterra difference equations with
diffusion and infinite delay

We consider the r-dimensional Euclidean space Rr . For x = (x1, x2, . . . , xr)T ∈ Rr ,
we define its norm ‖x‖ = maxi∈I |xi|, where I = {1, 2, . . . , r}. In Rr , we introduce
a cone P = {x | xi ≥ 0, i ∈ I}. Then it is a solid cone in Rr . It is easy to show that
P is normal, regular, minimal, strong minimal, and regenerated (see Amann [9]).
For two elements x and y = (y1, y2, . . . , yr)T in P, we introduce a partial ordering
≤ such that x < (or =)y if and only if xi < (or =)yi for i ∈ I and x ≤ y means that
xi ≤ yi for i ∈ I . So, (Rr ,≤) becomes a partial-ordered Banach space. In Rr , we also
define an operation of multiplication ⊗ by x ⊗ y = (x1y1, x2y2, . . . , xr yr)T . In this
way, (Rr , +,⊗) will be a partial ordered commutative ring by installing both this
operation ⊗ and the ordinary addition + with the zero element 0 = (0, 0, . . . , 0)T

and the unit element u = (1, 1, . . . , 1)T . Define an ordered interval [·, ·] in Rr by
[x, y] = {z ∈ Rr | x ≤ z ≤ y}.
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In the r × r-dimensional matrix space Rr×r , we also introduce a partial or-
dering ≤. If X = (xi, j)r×r and Y = (yi, j)r×r are two elements in Rr×r , then define
that X < (or =)Y if and only if xi, j < (or =)yi, j for i, j ∈ I and X ≤ Y means
that xi, j ≤ yi, j for i, j ∈ I . Therefore, Rr×r also becomes a partial-ordered Banach
space.

Consider the systems of nonlinear Volterra difference equations of the popu-
lation model with diffusion and infinite delays

Δ2um,n = AΔ2
1um−1,n+1 + um,n ⊗

(

b− Cum,n −
∞∑

i=0

Dium,n−i

)

(4.422)

for (m,n) ∈ Ω×N0 � {1, 2, . . . ,M1}× · · ·×{1, 2, . . . ,Ms}×{0, 1, . . . }, where Δ1

and Δ2 are forward partial difference operators, Δ2
1 is discrete Laplacian operator,

A,C > (0)r×r are diagonal matrices, b ∈ Rr , and b > 0, u·,· ∈ Rr is a double vector
sequence (only in form), D0 = (0)r×r and Di ∈ Rr×r for i ∈ N0.

Together with (4.422), we consider homogeneous Neumann boundary con-
dition

ΔNum−1,n+1 = 0 for (m,n) ∈ ∂Ω×N0 (4.423)

and initial condition

um, j = φm, j for (m,n) ∈ Ω×N (0) � Ω× {. . . ,−1, 0}, (4.424)

where ΔN is the normal difference, ∂Ω is the boundary of Ω, and φm, j ∈ P for
(m,n) ∈ Ω×N (0).

By a solution of (4.422)–(4.424), we mean a double vector sequence {um,n},
which is defined on (m,n) ∈ Ω × N � Ω × N0 ∪ N (0), satisfies (4.422), (4.423),
and (4.424), respectively, when (m,n) ∈ Ω×N0, (m,n) ∈ ∂Ω×N0, and (m, j) ∈
Ω×N (0).

For any given initial and boundary condition (4.423) and (4.424), we can
show that the initial and boundary value problem (4.422)–(4.424) has a unique
solution.

We suppose that

∞∑

i=0

∣
∣Di

∣
∣ = D <∞,

0 < ‖φ‖ = sup
(m, j)∈Ω×N (0)

φm, j <∞.
(4.425)
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We write throughout this section that

Dn =
n∑

i=0

∣∣Di

∣∣, δn =
n∑

i=0

Di, D±
n = Dn ± δn

2
for n ∈ N0. (4.426)

Then Dn, D±
n are all nonnegative, nondecreasing, and bounded above by D.

Since P is regular, we can let D± = limn→∞D±
n . It is easy to see that

D+
n +D−

n = Dn, D+
n −D−

n = δn,

D+ +D− = D, D+ −D− = δ =
∞∑

i=0

Di.
(4.427)

Assume that

Cu > D−u. (4.428)

From Berman and Plemmons [20], we know that C−D− is a nonsingular and
inverse-positive Metzlerian matrix, that is,C−D− is invertible and det(C−D−)−1 >
0. Then (C−D−)−1b > 0. Since C + δ > C−D−, we know from Metzlerian matrix
theory that C + δ is invertible and det(C + δ)−1 > 0.

In addition, we let

b −D+(C −D−)−1
b > 0, (4.429)

p = max
{(
C −D−)−1

b,‖φ‖}. (4.430)

It is obvious that the nonlinear Volterra difference equation of the population
model

Δxn = xn

(

b− cxn −
∞∑

i=0

dixn−i

)

for n ∈ N0 (4.431)

is a special case when r = 1 and without diffusion, where Δ is the forward differ-
ence operator.

It is easy to show that (4.422) has only two equilibrium points um,n ≡ 0 and
um,n ≡ (C + δ)−1b. The purpose of this section is to give a sufficient condition for
the attractivity of the positive equilibrium solution um,n ≡ (C+δ)−1b of (4.422) by
using the method of lower and upper solutions and monotone iterative techniques.

Lemma 4.84. Let (4.425), (4.428), (4.429), and (4.430) hold. Suppose that {um,n}
is the unique solution of (4.422)–(4.424). Then

um,n ∈ [0, p] for (m,n) ∈ Ω×N0. (4.432)
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Proof . Consider the initial boundary value problems

Δ2vm,n≤ AΔ2
1vm−1,n+1 + vm,n ⊗

(

b− Cvm,n−
∞∑

i=0

Divm,n−i

)

for (m,n)∈Ω×N0,

ΔNvm−1,n+1 = 0 ≤ 0 for (m,n) ∈ ∂Ω×N0,

vm, j = 0 ≤ φm, j for (m,n) ∈ Ω×N (0);
(4.433)

Δ2wm,n≥ AΔ2
1wm−1,n+1 +wm,n⊗

(

b− Cwm,n−
∞∑

i=0

Diwm,n−i

)

for (m,n)∈ Ω×N0,

ΔNwm−1,n+1 = 0 ≥ 0 for (m,n) ∈ ∂Ω×N0,

wm, j = p ≥ φm, j for (m,n) ∈ Ω×N (0).
(4.434)

Since

b − (C + δ)p ≤ b − Cp +D−p = b − (C −D−)p ≤ 0, (4.435)

it is easy to see that v ≡ 0 and wm,n ≡ p are, respectively, solutions of (4.433) and
(4.434), that is, a pair of lower and upper solutions of (4.422)–(4.424). Therefore,
(4.432) holds. This completes the proof. �

Lemma 4.85. Assume that (4.425), (4.428)–(4.430) hold. Suppose that {p(1)
n } is the

unique solution of the Cauchy problem

Δp(1)
n = p(1)

n ⊗ (b− Cp(1)
n +D−p

)
for n ∈ N0,

p(1)
j = p for j ∈ N (0).

(4.436)

Then {p(1)
n } is nonincreasing and

p(1)
n ∈ [C−1(b +D−p

)
, p
]

for n ∈ N0. (4.437)

Proof . Consider the Cauchy problems

Δv(1)
n ≤ v(1)

n ⊗ (b− Cv(1)
n +D−p

)
for n ∈ N0,

v(1)
j = C−1(b +D−p

) ≤ p for j ∈ N (0);
(4.438)

Δw(1)
n ≥ w(1)

n ⊗ (b − Cw(1)
n +D−p

)
for n ∈ N0,

w(1)
j = p ≥ p for j ∈ N (0).

(4.439)
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It is easy for one to know that v(1)
n ≡ C−1(b +D−p) and w(1)

n ≡ p are, respectively,
solutions of (4.438) and (4.439), that is, a pair of lower and upper solutions of
(4.436). So, (4.437) holds.

By (4.437), we have that Δp(1)
n ≤ 0. Hence, {p(1)

n } is nonincreasing. The proof
is thus complete. �

Lemma 4.86. Let (4.425), (4.428)–(4.430) hold. Suppose that {um,n} and {p(1)
n } are,

respectively, the unique solutions of (4.422), (4.423), (4.424) and (4.436). Then

um,n ∈
[
0, p(1)

n

]
for (m,n) ∈ Ω×N0. (4.440)

Proof . Let J± satisfy that J+ ∪ J− = N0 and let J+ ∩ J− = ∅, the empty set, and be
such that

Di ≥ (0)r×r for i ∈ J+, Di < (0)r×r for i ∈ J−. (4.441)

Write δ± =∑i∈J± Di. Then we must have

δ+ = D+, −δ− = D−. (4.442)

Hence, from (4.437), we have

−
∞∑

i=0

Dip
(1)
n−i = −

∑

i∈J+

Dip
(1)
n−i −

∑

i∈J−
Dip

(1)
n−i ≤ −

∑

i∈J−
Dip

(1)
n−i ≤ −δ−p = D−p,

b− Cp(1)
n −

∞∑

i=0

Dip
(1)
n−i ≤ b− Cp(1)

n +D−p for n ∈ N0.

(4.443)

Therefore, wm,n ≡ p(1)
n is a solution of (4.434), and (4.440) holds. Thus the proof

is complete. �

For the regularity of P, we can let p(1) = limn→∞ p(1)
n . By virtue of (4.436), we

can obtain p(1) = C−1(b +D−p). It follows that

lim sup
n→∞

max
m∈Ω

um,n ≤ p(1). (4.444)

So, for any ε = (ε, . . . , ε)T > 0, there exist n1 > 0 and n2 > n1 such that

um,n < p(1) + ε for n ∈ Nn1 , (4.445)

(0)r×r ≤ D− −D−
n−n1−1 < (ε)r×r for n ∈ Nn2 . (4.446)
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Lemma 4.87. Let (4.425), (4.428)–(4.430) hold. Suppose that {p(2)
n } is the unique

solution of the Cauchy problem

Δp(2)
n = p(2)

n ⊗ (b − Cp(2)
n +D−(p1 + ε

)
+ ε ⊗ p

)
for n ∈ Nn2 ,

p(2)
j = p1 + ε for j ∈ N (n2),

(4.447)

where N (n2) = {. . . ,n2 − 1,n2}. Then p(2)
n is nonincreasing and

um,n ∈
[
0, p(2)

n

]
for (m,n) ∈ Ω×Nn2 . (4.448)

Proof . If (4.448) is not true, then there exist m3 ∈ Ω and n3 > n2 such that

um,n ≤ p(2)
n for n2 ≤ n < n3 and m ∈ Ω and um3,n3 > p(2)

n .

Let xm,n = um,n − p(2)
n . Then xm,n ≤ 0 for n2 ≤ n < n3 and m ∈ Ω and

xm3,n3 > 0. (4.449)

We can derive, from (4.447),

AΔ2
1xm−1,n+1 − Δ2xm,n + ym,n ⊗ xm,n = zm,n for (m,n) ∈ Ω×Nn2 , (4.450)

where

ym,n = b − Cum,n −
∞∑

i=0

Dium,n−i − Cp(2)
n for (m,n) ∈ Ω×Nn2 ,

zm,n = p(2)
n ⊗

(

D−(p1 + ε
)

+
∞∑

i=0

Dium,n−i + ε ⊗ p

)

for (m,n) ∈ Ω×Nn2 .

(4.451)

It is easy to show that ym,n is bounded. We will see in the following that zm,n ≥ 0.
Indeed, from (4.445) and (4.446), we have

−
∞∑

i=0

Dium,n−i = −
∞∑

i=0

(
Δδi−1

)
um,n−i = −

∞∑

i=0

(
ΔD+

i−1

)
um,n−i +

∞∑

i=0

(
ΔD−

i−1

)
um,n−i

≤
n−n1−1∑

i=0

(
ΔD−

i−1

)
um,n−i +

∞∑

i=n−n1

(
ΔD−

i−1

)
um,n−i

≤ D−
n−n1−1

(
p1 + ε

)
+
(
D− −D−

n−n1−1

)
p ≤ D−(p1 + ε

)
+ (ε)r×r p.

(4.452)

So, by (4.451) and (4.452), we have

zm,n ≥ 0 for (m,n) ∈ Ω×Nn2 . (4.453)
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It follows, from (4.450),

Δ2xm,n ≤ AΔ2
1xm−1,n+1 + ym,n ⊗ xm,n. (4.454)

Consider the initial boundary problems

Δ2vm,n = AΔ2
1vm−1,n+1 + ym,n ⊗ vm,n for (m,n) ∈ Ω×Nn2 ,

ΔNvm−1,n+1 = 0 for (m,n) ∈ ∂Ω×Nn2 ,

vm,n2 = 0 for m ∈ Ω,

(4.455)

Δ2xm,n ≤ AΔ2
1xm−1,n+1 + ym,n ⊗ xm,n for (m,n) ∈ Ω×Nn2 ,

ΔNxm−1,n+1 ≤ 0 for (m,n) ∈ ∂Ω×Nn2 ,

xm,n2 ≤ 0 for m ∈ Ω.

(4.456)

Obviously, vm,n ≡ 0 is the unique solution of (4.455). Comparing (4.455) with
(4.456), we know that xm,n ≤ 0 for (m,n) ∈ Ω×Nn2 . But, this contradicts (4.449).
Therefore, (4.448) holds.

Similar to the proof of Lemma 4.85, we can easily know that p(2)
n is nonin-

creasing, which completes the proof. �

Remark 4.88. In fact, we can directly use the maximum principle (see Cheng [29])
to obtain the contradiction.

We can obtain from (4.447) and the regularity of P that

lim
n→∞ p

(2)
n = C−1(b +D−(p1 + ε

)
+ ε ⊗ p

)
. (4.457)

Therefore,

lim sup
n→∞

max
m∈Ω

um,n ≤ C−1(b +D−(p1 + ε
)

+ ε ⊗ p
)
. (4.458)

Because ε is arbitrary, we have

lim sup
n→∞

max
m∈Ω

um,n ≤ C−1(b +D−p1
)

� p2. (4.459)

Define a sequence {p�} as follows:

p� = C−1(b +D−p�−1
)

for � ∈ Z+(1), p0 = p. (4.460)

Lemma 4.89. Let (4.425), (4.428)–(4.430) hold. Suppose that {p�} is defined by
(4.460). Then {p�} is nonincreasing and

(
C −D−)−1

b ∈ [0, p�
]

for � ∈ N0. (4.461)
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Proof . We rewrite (4.460) as follows:

Δp� = C−1D−Δp�−1 for � ∈ N1. (4.462)

We know from Δp0 = p1 − p ≤ 0 that Δp� ≤ 0 for all � ∈ N0. That is, {p�} is
nonincreasing.

Noting that p ≥ (C − D−)−1b, we have from the equations in (4.460) and
(4.437) that Cp1 = b+D−p ≥ b+D−p1. Hence, p1 ≥ (C−D−)−1b. By induction,
we obtain (4.461). This completes the proof. �

Because P is regular, we let γ = lim�→∞ p� . From (4.460), we have γ = C−1(b+
D−γ). We can solve γ = (C −D−)−1b.

Repeating the above procedure, we can show that

lim sup
n→∞

max
m∈Ω

um,n ≤ γ. (4.463)

From (4.429), we have that b > D+γ. So, we can select an ε0 > 0 such that

b > D+(γ + ε0
)

+ ε0 ⊗ p. (4.464)

Let 0 < ε < ε0. By (4.452), there exist n4 > n3 and n5 > n4 such that

um,n < γ + ε for (m,n) ∈ Ω×Nn4 ,

(0)r×r ≤ D+ −D+
n−n4−1 < (ε)r×r for n ∈ Nn5 .

(4.465)

From (4.423), Lemma 4.84 and the maximum principle (see Cheng [29]),
we know that um,n > 0 for (m,n) ∈ Ω × N0 and can select an η > 0 such that
minm∈Ω um,n5 ≥ 2η.

Consider the Cauchy problem

Δqn = qn ⊗
(
b− Cqn −D+(γ + ε) − ε ⊗ p

)
for n ∈ Nn5 ,

qj = η for j ∈ Nn5 .
(4.466)

Repeating a similar argument of the above, we can obtain that

qn < um,n for (m,n) ∈ Ω×Nn5 ,

lim
n→∞ qn = C−1(b −D+(γ + ε) − ε)⊗ p.

(4.467)

Consequently, we have

lim inf
n→∞ min

m∈Ω
um,n ≥ C−1(b−D+γ

)
(4.468)

for ε > 0 being arbitrary.
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Define a pair of coupled sequences {μk} and {νk} as follows:

Cμk = b−D+νk−1 +D−μk−1 for k ∈ N1,

Cνk = b +D−νk−1 −D+μk−1 for k ∈ N1,

ν0 =
(
C −D−)−1

b, μ0 = C−1(b −D+ν0
)
.

(4.469)

Lemma 4.90. Let (4.425), (4.428)–(4.430) hold. Suppose that the pair {μk} and
{νk} is defined by (4.469). Then

[
μ0, ν0

] ⊇ [μ1, ν1
] ⊇ · · · ⊇ [μk, νk

] ⊇ · · · for k ∈ N0, (4.470)

lim
k→∞

μk = lim
k→∞

νk = (C + δ)−1b. (4.471)

Proof . Because

Cμ1 ≥ b −D+ν0 = Cμ0, Cν0 =
(
C −D−)ν0 +D−ν0 = b +D−ν0 ≥ Cν1,

Cν0 ≥
(
C −D−)ν0 = b ≥ b −D+ν0 = Cμ0,

(4.472)

so we have

[
μ0, ν0

] ⊇ [μ1, ν1
]
. (4.473)

We can get (4.470) by induction.
By virtue of the regularity of P, we can let μ = limk→∞ μk and ν = limk→∞ νk.

Then we get

Cμ = b −D+ν +D−μ,

Cν = b +D−ν −D+μ.
(4.474)

Subtracting the two equalities in (4.474), we obtain

C(μ− ν) = (D+ +D−)(μ− ν) = D(μ− ν). (4.475)

So, (C −D)(μ− ν) = 0.
Since

(C −D)ν0 =
(
C −D+ −D−)(C −D−)−1

b = b−D+(C −D−)−1
b > 0

(4.476)

from (4.429), we have from the properties of Metzlerian matrices that det(C −
D)−1 > 0. Therefore, μ = ν.
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It follows from (4.474) that

Cμ = b−D+μ +D−μ = b− δμ or (C + δ)μ = b. (4.477)

This leads to (4.471). The proof is thus complete. �

Lemma 4.91. Let (4.425), (4.428)–(4.430) hold. Suppose that the pair {μk} and
{νk} is defined by (4.469). Then

[
lim inf
n→∞ min

m∈Ω
um,n, lim sup

n→∞
max
m∈Ω

um,n

]
⊆ [μk, νk

]
for k ∈ N0. (4.478)

Proof . From the above, (4.478) holds for k = 0.
Take an ε1 > 0 such that ε1 < μ0 and

b > D+(ν0 + ε1
)−D−(μ0 − ε1

)
+ 2ε1 ⊗ p. (4.479)

For 0 < ε < ε1, there exist n6 > n5 and n7 > n6 such that

μ0 − ε < um,n < ν0 + ε for (m,n) ∈ Ω×Nn6 ,

(0)r×r ≤ D −Dn−n6−1 < (ε)r×r for n ∈ Nn7 .
(4.480)

Now, we consider the Cauchy problems

Δpn = pn ⊗
(
b − C pn +D−(ν0 + ε

)−D+(μ0 − ε
)

+ 2ε ⊗ p
)
, n ∈ Nn7 ,

p j = ν0 + ε, j ∈ N (n7);
(4.481)

Δqn = qn ⊗
(
b− C qn −D+(ν0 + ε

)
+D−(μ0 − ε

)− 2ε ⊗ p
)
, n ∈ Nn7 ,

q j = μ0 − ε, j ∈ N (n7).
(4.482)

Similar to the above argument, we can obtain

qn < um,n < pn for (m,n) ∈ Ω×Nn7 ,

lim
n→∞ pn = C−1(b +D−(ν0 + ε

)−D+(μ0 − ε
)

+ 2ε ⊗ p
)
,

lim
n→∞ qn = C−1(b−D+(ν0 + ε

)
+D−(μ0 − ε

)− 2ε ⊗ p
)
.

(4.483)

Letting ε → 0, we know that (4.478) holds for k = 1.
Again, by repeating the above process, we have that (4.478) holds. �

Using the above seven lemmas, together with the property that P is normal,
we have the following main result.
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Theorem 4.92. Let (4.425), (4.428)–(4.430) hold. Assume that {um,n} is the unique
solution of (4.422), (4.423), and (4.424). Then

lim
n→∞,m∈Ω

um,n = (C + δ)−1b. (4.484)

Remark 4.93. It is well known that (4.422) describes the growth of r-species alive
in Ω that the densities of the r-populations at place m and time n are um,n and
the summation represents the effects of the past history on the present growth rate
in mathematical ecology. Therefore, we can only consider the case ‖φ‖ > 0. If it
is not the case, this will mean these species do not exist. The condition ‖φ‖ < ∞
means that the densities of these species should be finite in practice. Equation
(4.484) means that the growth of these species will go to an equilibrium state under
ordinary conditions.

4.7. Notes

Theorems 4.1 and 4.2 are taken from Tian and Zhang [140]. Theorems 4.8,4.10,
4.11, 4.18, and 4.20 are taken from Tian et al. [138]. Theorems 4.12 and 4.13 are
adopted from Tian and Zhang [142]. Theorem 4.16 is taken from Zhang and Deng
[166]. The material of Section 4.2.2 is taken from Tian and Zhang [139]. The ma-
terial of Section 4.3 is adopted from Zhang and Deng [165]. Lemma 4.39 is based
on Banaś and Goebal [17]. The material of Section 4.4 is taken from Tian and
Chen [134, 135]. The material of Section 4.5 is taken from Shi et al. [127]. The
material of Section 4.6 is adopted from Shi [124]. The global attractivity of a class
IBVP of delay partial difference equations can be seen from Zhang and Yu [191].



5
Spatial chaos

5.1. Introduction

In 1975, Li and Yorke introduced the first precise mathematical definition of chaos
and obtained the well-known result, that is, “period 3 implies chaos.” The theory of
chaos of dynamic systems has grown at an accelerated pace in the past thirty years.
There are several different definitions of chaos in the literature. In this chapter,
we will describe some of the recent developments in chaos of partial difference
equations.

The iteration problem of spatially multivariable sequence is not only a heart
problem of spatial orbits of the motion in research progress but also an important
concept. In Section 5.2, an iterative method of the spatial sequence is given. Then,
spatially k-periodic orbit is produced and a basic criterion of spatially chaotic be-
havior in the sense of Li-York is obtained.

In Section 5.3, we establish the relation between chaos of certain partial differ-
ence equations and chaos of discrete dynamical system in complete metric spaces
in the sense of Devaney.

In Section 5.4, we discuss discrete dynamical systems governed by continuous
maps in complete metric spaces and present some criteria of chaos.

5.2. On spatial periodic orbits and spatial chaos

In this section, we introduce a constructive technique for generating spatial peri-
odic orbits and then give a criterion of spatial chaos for the following 2D nonlinear
system:

xm+1,n + axm,n+1 = f
[
(1 + a)xmn

]
, (5.1)

where a is a real constant, and f is a nonlinear continuous function, m,n ∈ N0.
Let Ω = N0 × N0\N0 × N1. As in Section 1.2, for a given function ϕ(i, j) defined
on Ω, it is easy to construct a double sequence {xi, j} that equals ϕ(i, j) on Ω and
satisfies system (5.1) for i, j = 0, 1, 2, . . . . Such double sequence is a solution of
system (5.1) and is unique.



332 Spatial chaos

One can see that system (5.1) can be regarded as a discrete analog of the partial
differential system

∂v

∂x
+ a

∂v

∂y
+ av = f

[
(1 + a)v

]
. (5.2)

In fact, system (5.2) is a convection equation with a forced term, which is quite
classical in physics. Therefore, qualitative properties of system (5.1) should provide
some useful information for analyzing this companion partial differential system.

5.2.1. Spatial period orbit

First, we introduce a basic definition.

Definition 5.1. Let V ⊆ R3, let V0 be a nonempty subset of V , and take I ⊆ V0,
and I ⊂ R. Assume that f : I → I is a continuous map, with f k(x) = f ( f k−1(x))
and f 0(x) = x. Then, f is said to be a continuous self-map in I if f ∈ C0(I , I) and
f (I) ⊂ I . Also, x0 is said to be a spatial periodic point of period k if x0 ∈ I such
that

f k
(
x0
) = x0, (5.3)

and x0 �= f s(x0) for 1 ≤ s < k, where k is called the prime period of x0. Moreover,
the sequence

x0, x1, x2, . . . , xk, x0, x1, . . . , (5.4)

is called a spatial period orbit of f (x) with period k.

Theorem 5.2. For any given sequence of nonzero real functions

xmn + axmn, xm+1,n + axm,n+1, . . . , xm+(k−1),n + axm,n+(k−1), (5.5)

if they satisfy

xm+i,n + axm,n+i �= xm+ j,n + axm,n+ j , i �= j, i, j = 1, 2, . . . , k, (5.6)

for m,n ∈ N0, then the map

f (x + y) = a1(x + y)k + a2(x + y)k−1 + · · · + ak(x + y) (5.7)



On spatial periodic orbits and spatial chaos 333

has a periodic point xmn + axmn with prime period k, where ai = �(i)/�, i =
1, 2, . . . , k, in which

� =

∣
∣
∣∣
∣
∣
∣∣
∣
∣
∣∣

rk0 rk−1
0 · · · r0

rk1 rk−1
1 · · · r1

· · · · · · · · · · · ·
rkk−1 rk−1

k−1 · · · rk−1

∣
∣
∣∣
∣
∣
∣∣
∣
∣
∣∣

, (5.8)

where, for simplicity, let xm+i,n + axm,n+i = ri(m,n) = ri, i = 0, 1, 2, . . . , k − 1, and
determinant �(i) is obtained from � by replacing the ith column of � with the fol-
lowing vector:

(
r1, r2, . . . , rk−1, r0

)T
, i = 1, 2, . . . , k. (5.9)

Proof . Given a nonzero real sequence (5.5) satisfying (5.6) for m,n ∈ N0, suppose
that the map

f (x + y) = a1(x + y)k + a2(x + y)k−1 + · · · + ak(x + y) (5.10)

satisfies

f
(
xmn + axmn

) = xm+1,n + axm,n+1,

f
(
xm+1,n + axm,n+1

) = xm+2,n + axm,n+2,

...
...

...

f
(
xm+(k−1),n + axm,n+(k−1)

) = xmn + axmn.

(5.11)

By our simplistic notations, (5.11) is equivalent to the following system:

a1r
k
0 + a2r

k−1
0 + · · · + akr0 = r1,

a1r
k
1 + a2r

k−1
1 + · · · + akr1 = r2,

...
...

...

a1r
k
k−2 + a2r

k−1
k−2 + · · · + akrk−2 = rk−1,

a1r
k
k−1 + a2r

k−1
k−1 + · · · + akrk−1 = r0,

(5.12)

which determines the unknown ai, i = 1, 2, . . . , k.
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It is easy to check that the determinant of the coefficients of system (5.12) is
the kth Vandermonde determinant, and

� =

∣
∣∣
∣
∣∣
∣
∣
∣∣
∣
∣

rk0 rk−1
0 · · · r0

rk1 rk−1
1 · · · r1

· · · · · · · · · · · ·
rkk−1 rk−1

k−1 · · · rk−1

∣
∣∣
∣
∣∣
∣
∣
∣∣
∣
∣

= (−1)k(k−1)/2

( k∏

i=0

ri

)[
∏

k−1≥i> j≥1

(
ri − r j

)
]

.

(5.13)

Since (5.6) holds, one has Δ �= 0, so that there exists a unique solution of system
(5.12) given by

a∗i = Δ(i)

Δ
, i = 1, 2, . . . , k. (5.14)

Now, substituting ai = a∗i into (5.10), i = 1, 2, . . . , k, one has

f (x + y) = a∗1 (x + y)k + a∗2 (x + y)k−1 + · · · + a∗k (x + y). (5.15)

It is easy to see that the function f in (5.15) is continuous and

f k
(
xmn + axmn

) = f k
(
r0
) = r0 = xmn + axmn, (5.16)

but

xmn + axmn �= f s
(
xmn + axmn

)
for 1 ≤ s < k. (5.17)

Hence, the function f in (5.15) is a continuous map with a spatial periodic point
xmn + axmn of period k. �

5.2.2. Spatial chaos

To consider chaos of (5.1), we introduce the definition of chaos in the sense of Li
and Yorke.

Consider the following system:

xn+1 = F
(
xn
)
, n ≥ 0, (5.18)

where F : X → X is a map and (X ,d) is a metric space.
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Definition 5.3. Let (X ,d) be a compact metric space and let F : X → X be a con-
tinuous map. A subset S of X is called a scrambled set of F if, for any two different
points x, y ∈ S,

(i) lim infn→∞ d(Fn(x),Fn(y)) = 0;
(ii) lim supn→∞ d(Fn(x),Fn(y)) > 0.

F is said to be chaotic in the sense of Li-Yorke if there exists an uncountable scram-
bled set S of F.

For (5.1), the following result for the 1D dynamic system will be used.

Theorem 5.4 (Li-Yorke theorem). Let I ⊂ R be an interval and let f : I → I be a
continuous map. Assume that there is a point a ∈ I satisfying

f 3(a) ≤ a < f (a) < f 2(a) or f 3(a) ≥ a > f (a) > f 2(a). (5.19)

Then
(1) for every k = 1, 2, . . . , there is a k-periodic point of f ;
(2) there is an uncountable set S ⊂ I , containing no periodic points such that

(A) for every p, q ∈ S with p �= q,

lim sup
n→∞

∣
∣ f n(p) − f n(q)

∣
∣ > 0, lim inf

n→∞
∣
∣ f n(p) − f n(q)

∣
∣ = 0, (5.20)

(B) for every p ∈ S and periodic point q ∈ I with p �= q,

lim sup
n→∞

∣∣ f n(p) − f n(q)
∣∣ > 0. (5.21)

From Definition 5.3 and the above Li-Yorke Theorem, the 1D dynamical sys-
tem xi+1 = f (xi) is chaotic in the sense of Li-Yorke if (5.19) holds.

Remark 5.5. It is known, (A) implies (B).

The following is the definition of chaos in the sense of Li-Yorke for system
(5.1).

Definition 5.6. Let V ⊆ R3, let V0 be a nonempty subset of V , and take I ⊆ V0,
and I ⊂ R. Then, f is said to be chaotic on V0 if it is chaotic on I , and f is said to
be chaotic on V if it is chaotic on V0, both in the sense of Li and Yorke.

Theorem 5.7. Let V ⊆ R3, let V0 be a nonempty subset of V , and let I ⊂ R be an
interval in V0. Denote

ri = ri(m,n) = xm+i,n + axm,n+i, i = 0, 1, 2, (5.22)
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and assume the following conditions:
(i) ri(m,n) �= 0, i = 0, 1, 2, and ri(m,n) �= r j(m,n) if i �= j for all m,n ∈ N0,

i, j = 0, 1, 2;
(ii) r0(m,n) < r1(m,n) < r2(m,n) or r0(m,n) > r1(m,n) > r2(m,n) for all

m,n ∈ N0;
(iii) let

f ∗(x + y) = a∗1 (x + y)3 + a∗2 (x + y)2 + a∗3 (x + y), (5.23)

where a∗i = D(i)/D, i = 1, 2, 3,

D =

∣∣
∣
∣
∣∣
∣
∣
∣

r3
0 r2

0 r0

r3
1 r2

1 r1

r3
2 r2

2 r2

∣∣
∣
∣
∣∣
∣
∣
∣

, (5.24)

and the determinant D(i) is obtained from D by replacing the ith column of D with
the following vector:

(
xm+1,n + axm,n+1, xm+2,n + axm,n+2, xmn + axmn

)T
, i = 1, 2, 3; (5.25)

(iv) f ∗(I) ⊂ I .
Then, system

xm+1,n + axm,n+1 = f ∗
(
(1 + a)xmn

)
(5.26)

is chaotic on V in the sense of Li and Yorke.

Proof . Without loss of generality, consider system

xs+1,n + axm,t+1 = f ∗
(
xsn + axmt

)
, (5.27)

where s, t,m,n ∈ N0. Then, one can compute and obtain the above ri(m,n), i =
0, 1, 2, where r0(m,n) = xmn + axmn. Next, by Theorem 5.2, we obtain

xs+1,n + axm,t+1 = a∗1
(
xsn + axmt

)3
+ a∗2

(
xsn + axmt

)2
+ a∗3

(
xsn + axmt

)
. (5.28)

Since s, t,m,n ∈ N0, letting s = m and t = n gives

xm+1,n + axm,n+1 = a∗1
(
xmn + axmn

)3
+ a∗2

(
xmn + axmn

)2

+ a∗3
(
xmn + axmn

) = f ∗
[
(1 + a)xmn

]
.

(5.29)

Note that

f ∗3(xmn + axmn
) = f ∗3(r0(m,n)

) = r0(m,n) = xmn + axmn,

f ∗i
(
r0(m,n)

) �= r0(m,n), i = 1, 2.
(5.30)

Therefore, the map f ∗ has a periodic point r0(m,n) of period 3.
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Since ri(m,n) are distinct points and ri(m,n) �= 0 for m,n ∈ N0, i = 0, 1, 2, it
follows immediately from Theorem 5.2 that D �= 0, that is, a∗i are uniquely deter-
mined. Therefore, f ∗(xm,n + axmn) = f ∗[(1 + a)xmn] is uniquely determined. In
addition, since ri(m,n) ∈ I and f ∗(I) ⊂ I , one concludes that f ∗ is a continuous
self-map in I ⊂ V0.

On the other hand, it follows from (ii) that

f ∗3(r0(m,n)
) = r0(m,n) < r1(m,n)

= f ∗
(
r0(m,n)

)
< f ∗2(r0(m,n)

)

= r2(m,n)

(5.31)

for m,n ∈ N0.
Thus, by Li-Yorke Theorem, system (5.26) is chaotic on I , from Definition 5.6,

which implies that system (5.26) is chaotic on V , in the sense of Li and Yorke. �

5.3. Method of infinite-dimensional discrete dynamical systems

In this section, the following 2D discrete systems are studied:

xm+1,n = f
(
xm,n, xm,n+1

)
, (5.32)

where m,n ∈ N0 and f : R2 → R is a function.
System (5.32) includes the following equations as special cases:

xm+1,n = μxm,n
(
1 − xm,n

)
, (5.33)

xm+1,n = 1 − μx2
m,n, (5.34)

xm+1,n = μxm,n
(
1 − xm,n+1

)
, (5.35)

axm+1,n + bxm,n + cxm,n+1 = 0. (5.36)

Systems (5.33)–(5.35) are regular 2D discrete logistic systems in different forms.
Let n0 be a fixed integer. If n ≡ n0, then systems (5.33) and (5.34) become

xm+1,n0 = μxm,n0

(
1 − xm,n0

)
,

xm+1,n0 = 1 − μx2
m,n0

.
(5.37)

Systems (5.37) are the standard 1D logistic systems.
Hence, system (5.32) is quite general.
Let Ω = {(0,n) | n ∈ N0} = {(0, 0), (0, 1), . . . , (0,n), . . . }. For any given

sequence φ = {φm,n} defined on Ω, it is easy to construct by induction a double-
indexed sequence x = {xm,n}∞m,n=0 that equals the initial condition on Ω and sat-
isfies (5.32) on N1 × N0, which is said to be a solution of system (5.32) with the
initial condition φ.
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In order to introduce Devaney’s definition of chaos for discrete dynamical
systems, several preliminary concepts are first presented.

Definition 5.8. Let (X ,d) be a metric space, and let g : X → X be a map on (X ,d)
with x0 ∈ X . The (positive or forward) orbit O(x0) of the point x0 is defined to the
following set of points:

O
(
x0
) = {gn(x0

)}∞
n=0 =

{
x0, g

(
x0
)
, g2(x0

)
, g3(x0

)
, . . .

}
, (5.38)

where g0(x0) = x0 and gn+1 = g(gn(x0)) for all n ∈ N0.
Let xn = gn(x0). Then, the orbit O(x0) of the point x0 ∈ X is a 1D sequence,

O
(
x0
) = {xn

}∞
n=0 =

{
x0, x1, x2, . . .

}
. (5.39)

Obviously, O(x0) is a solution of the 1D system xn+1 = g(xn), n ∈ N0.
Let x ∈ X and let ε be a positive number. Then, an ε-open ball Bε(x) at x is

defined as Bε(x) = {y ∈ X | d(x, y) < ε}. A subset U of X is open if for any x ∈ U
there exists a δ > 0 such that Bδ(x) ⊆ U .

Let x ∈ X and let G be an open subset of X . If x ∈ G, then G is called a
neighborhood of the point x. Let U ⊆ V be two subsets of X . If, for any x ∈ V
and any small ε > 0, Bε(x) ∩U �= ∅, where ∅ denotes the empty set, then the set
U is said to be dense in V . Especially, if V = X , then U is a dense subset of X .

The definition of chaos in the sense of Devaney contains three important in-
gredients, that is, dense periodic points, transitivity, and sensitive dependence on
initial conditions, defined as follows.

Definition 5.9. Let g : X → X be a continuous map on a metric space (X ,d) and
x ∈ X . If there exists a positive integer n such that gn(x) = x, then x is called a
periodic point of g and n is called a period of x. If gn(x) = x and gk(x) �= x for all
k = 1, 2, . . . ,n− 1, then x is called a primitive n-periodic point and n is called the
prime period of x. In particular, if n = 1, then x is called a fixed point of the map
g.

If, for any point a ∈ X and any neighborhood U of the point a, there exist a
point x ∈ U and an integer n ∈ N1 such that gn(x) = x, then it is said that system
(5.32) has a dense set of periodic points (in X).

If, for any two nonempty open subsets U and V of X , there is an integer k > 0
such that gk(U) ∩ V �= ∅, then the map g is said to be (topologically) transitive
on X .

If there is a δ > 0, called a sensitivity constant such that, for each point x ∈ X
and each neighborhood G of x, there exist a point y ∈ G and a positive integer
n such that d(gn(x), gn(y)) > δ, then it is said that system (5.32) has sensitive
dependence on initial conditions.

The above sensitivity condition captures the idea that in chaotic systems a tiny
difference in initial value eventually leads to a large-scale divergence.
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Definition 5.10. Let F : X → X be a continuous map on a metric space (X ,d). The
map F is said to be chaotic in the sense of Devaney on X if

(1) F is transitive on X ;
(2) the set of periodic points of F is dense in X ;
(3) F has sensitive dependence on initial conditions.

It was pointed out that if F is continuous, then condition (3) is implied by
other two conditions (1) and (2), which shows that the sensitive dependence is
redundant in Devaney’s definition of chaos for a continuous map F.

Remark 5.11. Huang and Ye [71] point out that under some conditions, chaos in
the sense of Devaney is stronger than that in the sense of Li-Yorke.

Let R∞ be a set of all 1D real sequences, that is,

R∞ = {{an
}∞
n=0 =

(
a0, a1, . . . , an, . . .

) | an ∈ R, n ∈ N0
}
. (5.40)

Obviously, different metrics can be defined on R∞. For example, for any two
sequences, x1 = {x1,n}∞n=0, x2 = {x2,n}∞n=0 ∈ R∞, one may define

d1
(
x1, x2

) =
∞∑

n=0

∣
∣x1,n − x2,n

∣
∣

2n
, (5.41)

or

d2
(
x1, x2

) = sup
{∣∣x1,n − x2,n

∣
∣ | n = 0, 1, 2, . . .

}
. (5.42)

Then, it is easy to prove that d1 and d2 define two metrics on two subsets of R∞. For
simplicity of notations, use (R∞,d1) and (R∞,d2) to denote the two metric spaces
defined by these two metrics, respectively. Note that both (R∞,d1) and (R∞,d2) are
complete metric spaces.

In the following, for convenience, (R∞,d) is used to denote a metric space
with any metric d including d1 and d2 defined above.

Let I be a subset of R and denote

I∞ = {{an
}∞
n=0 =

(
a0, a1, . . . , an, . . .

) | an ∈ I , n ∈ N0
}
. (5.43)

It is obvious that (I∞,d) is also a metric space and I∞ is a metric subspace of R∞.
Let f : I × I → I be a function and let x = {xm,n}∞m,n=0 be any solution of

system (5.32) with the initial condition φ = φ0 = {φn = φ0,n}∞n=0, where φn ∈ I
for all n ∈ N0, and denote

xm = {xm,n
}∞
n=0 =

(
xm,0, xm,1, xm,2, . . .

)
for any m = 0, 1, 2, . . . . (5.44)



340 Spatial chaos

Note that xm,n ∈ I for all (m,n) ∈ N0 × N0, and for any m ∈ N0, xm is a 1D
sequence, x0 = φ0, xm ∈ I∞, and for all m ∈ N0, denote

xm+1 =
(
xm+1,0, xm+1,1, . . .

) = ( f (xm,0, xm,1
)
, f
(
xm,1, xm,2

)
, . . .

) = F
(
xm
)
.
(5.45)

System (5.32) is equivalent to the following system defined in the metric space
(I∞,d):

xm+1 = F
(
xm
)
, m ∈ N0. (5.46)

The map F defined in (5.45) is said to be induced by system (5.32) and ( f ,F) is a
pair of maps associated with the two systems.

Obviously, a double-indexed sequence {xm,n}∞m,n=0 is a solution of system
(5.32) if and only if the sequence {xm}∞m=0 is a solution of system (5.46), where
xm = {xm,n}∞n=0, m ∈ N0.

Definition 5.12. Let I be a subset of R, let f : I × I → I be a function, and let
F : I∞ → I∞ be a map on the metric space (I∞,d) induced by system (5.32). If
system (5.46) is chaotic on I∞ in the sense of Devaney (or Li-Yorke), then system
(5.32) is said to be chaotic on I∞ in the sense of Devaney (or Li-Yorke).

In the following, an example is given to illustrate that system (5.32) indeed is
chaotic in the sense of Devaney under the given conditions.

Consider a 2D discrete system of the form

xm+1,n = f
(
xm,n, xm,n+1

)
, m,n = 0, 1, 2, . . . , (5.47)

where f : I × I → I is a function defined f (x, y) = 〈x + y〉 for any x, y ∈ I , in
which 〈a〉 denotes the decimal part of the real number a, and I = [0, 1).

Let a ∈ I = [0, 1), b ∈ [0, 1], and

�a, b� =

⎧
⎪⎨

⎪⎩

(a, b), 0 ≤ a < b ≤ 1,

(a, 1) ∪ [0, b), 0 ≤ b ≤ a < 1.
(5.48)

Denote a set Δ by

Δ = {�a, b� | a ∈ I , b ∈ [0, 1]
}∪ {[0, 1)

}
. (5.49)
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Lemma 5.13. Let �a1, b1�, �a2, b2� ∈ Δ. Then, f (�a1, b1� × �a2, b2�) ∈ Δ and

∣∣ f
(⌈
a1, b1

⌉× ⌈a2, b2
⌉)∣∣ ≥ min

{
1,
∣∣⌈a1, b1

⌉∣∣ +
∣∣⌈a2, b2

⌉∣∣}, (5.50)

where |�a, b�| denotes the Lebesgue measure for any �a, b� ∈ Δ.

Proof . (1) If �a1, b1� = [0, 1) or �a2, b2� = [0, 1), then the conclusions of Lemma
5.13 hold obviously.

(2) If 0 ≤ a1 < b1 ≤ 1 and 0 ≤ a2 < b2 ≤ 1, then �a1, b1� = (a1, b1) and
�a2, b2� = (a2, b2).

If a1 + a2, b1 + b2 ∈ [0, 1], then f (�a1, b1� × �a2, b2�) = (a1 + a2, b1 + b2) ∈ Δ.
Hence (5.50) holds.

If a1 + a2 ∈ [0, 1] and b1 + b2 ∈ [1, 2], then f (�a1, b1� × �a2, b2�) = (a1 +
a2, 1) ∪ [0, b1 + b2 − 1) ∈ Δ. Hence (5.50) holds.

If a1+a2, b1+b2 ∈ [1, 2], then f (�a1, b1�×�a2, b2�) = (a1+a2−1, b1+b2−1) ∈
Δ. Hence (5.50) holds.

(3) If 0 ≤ b1 ≤ a1 < 1 and 0 ≤ a2 < b2 ≤ 1, then �a1, b1� = (a1, 1) ∪ [0, b1)
and �a2, b2� = (a2, b2).

If b1 + a2, b1 + b2, a1 + a2, a1 + b2 ∈ [0, 1), then f (�a1, b1� × �a2, b2�) = (a1 +
a2, 1)∪ [0, b2)∪ (a2, b1 + b2) = (a1 + a2, 1)∪ [0, b1 + b2) ∈ Δ. Hence (5.50) holds.

If b1 + a2, b1 + b2, a1 + a2 ∈ [0, 1), and a1 + b2 ∈ [1, 2], then f (�a1, b1� ×
�a2, b2�) = (a1 + a2, 1) ∪ [0, b2) ∪ (a2, b1 + b2) = (a1 + a2, 1) ∪ [0, b1 + b2) ∈ Δ.
Hence (5.50) holds.

If b1 + a2, b1 + b2 ∈ [0, 1) and a1 + a2, a1 + b2 ∈ [1, 2], then f (�a1, b1� ×
�a2, b2�) = (a1 +a2−1, b2)∪ (a2, b1 +b2) = (a1 +a2−1, b1 +b2) ∈ Δ. Hence (5.50)
holds.

If b1 + a2, a1 + a2 ∈ [0, 1) and b1 + b2, a1 + b2 ∈ [1, 2], then f (�a1, b1� ×
�a2, b2�) = (a1 + a2, 1) ∪ [0, b2) ∪ (a2, 1) ∪ [0, b1 + b2 − 1) = (a2, 1) ∪ [0, b2) ∈ Δ.
Hence (5.50) holds.

If b1 + a2 ∈ [0, 1) and b1 + b2, a1 + a2, a1 + b2 ∈ [1, 2], then f (�a1, b1� ×
�a2, b2�) = (a1+a2−1, b2)∪(a2, 1)∪[0, b1+b2−1) = (a1+a2−1, 1)∪[0, b1+b2−1) ∈
Δ. Hence (5.50) holds.

If b1 + a2, b1 + b2, a1 + a2, a1 + b2 ∈ [1, 2), then f (�a1, b1� × �a2, b2�) = (a1 +
a2 −1, b2)∪ [a2, 1)∪ [0, b1 +b2 −1) = (a1 +a2 −1, 1)∪ [0, b1 +b2 −1) ∈ Δ. Hence
(5.50) holds.

(4) If 0 ≤ b2 ≤ a2 < 1 and 0 ≤ a1 < b1 ≤ 1, then �a2, b2� = (a2, 1) ∪ [0, b2)
and �a1, b1� = (a1, b1). Similar to the proof in (3), the conclusions of Lemma 5.13
hold.

(5) If 0 ≤ b1 ≤ a1 < 1 and 0 ≤ b2 ≤ a2 ≤ 1, then �a1, b1� = (a1, 1) ∪ [0, b1)
and �a2, b2� = (a2, 1) ∪ [0, b2).

If a1 + a2, b1 + b2 ∈ [0, 1], then f (�a1, b1� × �a2, b2�) = [0, 1) ∈ Δ. Hence
(5.50) holds.

If b1 + b2 ∈ [0, 1] and a1 + a2 ∈ [1, 2], then f (�a1, b1�× �a2, b2�) = (a1 + a2 −
1, 1)∪[a1, 1)∪[0, b2)∪(a2, 1)∪[0, b1)∪[0, b1+b2) = (a1+a2−1, 1)∪[0, b1+b2) ∈ Δ.
Hence (5.50) holds.
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If b1 + b2, a1 + a2 ∈ [1, 2], then f (�a1, b1� × �a2, b2�) = [0, 1) ∈ Δ. Hence
(5.50) holds.

From the proof for cases (1)–(5), one can see that the conclusions of
Lemma 5.13 hold. The proof is thus completed. �

Let F : I∞ → I∞ be a map in (I∞,d) induced by system (5.47). Then, from
Lemma 5.13, the following result holds.

Corollary 5.14. Let ε > 0 be a constant and (ai, bi) ⊂ I = [0, 1), with bi−ai = εi ≥ ε
for all i ∈ N0. Then there exists an integer n > 0 such that

Fn
( ∞∏

i=0

(
ai, bi

)
)

= Fn
((
a0, b0

)× (a1, b1
)× · · · ) = I∞. (5.51)

Proof . From the given conditions, (ai, bi), (ai+1, bi+1) ∈ Δ for all i ∈ N0. Hence,
from Lemma 5.15, one has

Fn
( ∞∏

i=0

(
ai, bi

)
)

= ( f ((a0, b0
)× (a1, b1

))
, f
((
a1, b1

)× (a2, b2
))

, . . .
)

=
∞∏

i=0

⌈
a1
i , b

1
i

⌉
,

(5.52)

where �a1
i , b

1
i � = f ((ai, bi) × (ai+1, bi+1)) for all i ∈ N0. Thus, in view of Corollary

5.14 and the given conditions, |�a1
i , b

1
i �| ≥ min{1, 2ε} for all i ∈ N0. By the iter-

ative method, it can be verified that there exists an integer n > 0 such that (5.51)
holds. The proof is completed. �

Now, one can prove that F induced by (5.47) is chaotic on (I∞,d1) in the sense
of Devaney, where d1 is defined by (5.41).

First, it is to prove that F is transitive on I∞.
Let U and V be two nonempty open subsets of I∞. Since d1 is a metric of I ,

there exist a number ε > 0 and a set
∏∞

i=0(ai, bi) ⊆ U with |bi − ai| > ε. Hence,
from Corollary 5.14, there exists an integer k > 0 such that Fk(U) = I∞. Therefore,
Fk(U) ∩V = V �= ∅. Thus, the map F is transitive in I∞.

Second, it is to prove that F has a dense set of periodic points.

Lemma 5.15. For any integer n ∈ N0, let An be a set of all solutions of the following
equations:

F
(
x0
) = x1,F

(
x1
) = x2, . . . ,F

(
xn−1

) = xn,F
(
xn
) = x0. (5.53)

Then, the set A = ⋃∞
n=0 An of periodic points of F is dense in I∞ on the metric space

(I∞,d1), where d1 is defined by (5.41).
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Proof . Since ( f ,F) is pair of maps, (5.53) is equivalent to the following equations:

x1,0 =
〈
x0,0 + x0,1

〉
, . . . , x1,k =

〈
x0,k + x0,k+1

〉
, . . . , k = 0, 1, . . . ,

x2,0 =
〈
x1,0 + x1,1

〉
, . . . , x2,k =

〈
x1,k + x1,k+1

〉
, . . . , k = 0, 1, . . . ,

· · · · · · · · · · · ·
x0,0 =

〈
xn,0 + xn,1

〉
, . . . , x0,k =

〈
xn,k + xn,k+1

〉
, . . . , k = 0, 1, . . . ,

(5.54)

which implies that

x0,k =
〈 n+1∑

m=0

Cmn+1x0,k+m

〉

, k = 0, 1, . . . . (5.55)

Let a = {aj}∞j=0 be any point of I∞, let ε be any small positive number, and let
Bε(a) ⊆ I∞ be any open ball at the center a. Define a sequence of sets as follows:

VM=
{
b∈ I∞ | ∣∣b0−a0

∣
∣<

ε

3
, . . . ,

∣
∣bM−aM

∣
∣<

ε

3
, bj∈ [0, 1), j=M+1,M+2, . . .

}
,

(5.56)

where M ∈ N0. Then, from the definition of the metric d1 in (5.41), one can
see that there exists an integer M0 > 0 such that for any b = {bj}∞j=0 ∈ VM0 ,
d1(a, b) < ε, that is, VM0 ⊆ Bε(a) ⊆ I∞.

Take a sufficiently large integer p > 0 such that for any point y ∈ I = [0, 1)
there exists an integer q ∈ {0, 1, . . . , p − 1} satisfying |q/p − y| < ε/6. Then, there
exist integers q0, q1, . . . , qM0 ∈ {0, 1, . . . , p − 1} such that |qj/p − aj| < ε/3 for
j = 0, 1, . . . ,M0.

Let n = p. In view of (5.55), it is obvious that there exist integers qj ∈
{0, 1, . . . , p − 1} such that qj/p ∈ I for all j ∈ {M0 + 1,M0 + 2, . . . } and (5.55)
holds for the point x0 = {x0, j = qj/p}∞j=0. It is easy to verify that the point
x0 = {x0, j = qj/p}∞j=0 ∈ I∞ is a periodic point of F with period p + 1 and
x0 ∈ Bε(a). Hence, the set A = ⋃∞

n=0 An of periodic points of F is dense in I∞.
The proof is thus completed. �

In view of Lemma 5.15 and its proof, it is clear that F has a dense set of peri-
odic points.

Third, it is to prove that F has sensitive dependence on initial conditions.
Let δ = 0.1, let a = {ai}∞i=0 ∈ I∞ be any point, and let U be any neighborhood

of a. In view of Corollary 5.14 and the proof of Lemma 5.13, it is obvious that there
exist a constant ε0 > 0, a point b ∈ Bε0 (a) with b �= a, and an integer n ∈ N1, such
that Bε0 (a) ⊆ U and d1(Fn(b),Fn(a)) > δ, that is, F has sensitive dependence on
initial conditions.

Therefore, F induced by system (5.47) is chaotic on (I∞,d1) in the sense of
Devaney. Then system (5.47) is chaotic in the sense of Devaney.
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5.4. Criteria of chaos in complete metric spaces

Consider the following discrete dynamical system:

xn+1 = F
(
xn
)
, n ≥ 0, (5.57)

where F : X → X is a map and (X ,d) is a metric space.
Definition 5.10 about chaos is for the space X . Since chaos of F often appears

on a subset of X , it is necessary to give a corresponding definition of chaos of a
map on a subset. Let V be a subset of a metric space (X ,d). A continuous map F :
V → V is said to be chaotic on V in the sense of Devaney if F satisfies properties
(1) and (2) in Definition 5.10 on V .

At first, we give some definitions and prepare several lemmas. For the conve-
nience of the following discussion, we first introduce some notations.

Let (X ,d) be a metric space, x ∈ X , and letA,B be subsets ofX . The boundary
of A, denoted by ∂A, is the set of all x ∈ X such that each neighborhood of x
intersects both A and X \ A; the distance between the point x and the set A is
denoted by

d(x,A) = inf
{
d(x, y) | y ∈ A

}
; (5.58)

the distance between two sets A and B, respectively, is denoted by

d(A,B) = inf
{
d(x, y) | x ∈ A, y ∈ B

}
; (5.59)

the maximal distance between two points in A and B is denoted by

ds(A,B) = sup
{
d(x, y) | x ∈ A, y ∈ B

}
; (5.60)

and the diameter of the set A is denoted by

d(A) = sup
{
d(x, y) | x, y ∈ A

}
. (5.61)

Definition 5.16. Let (X ,d) be a metric space and let F : X → X be a map. A point
z ∈ X is called an expanding (or repelling) fixed point (or a repeller) of F in Br(z)
for some constant r > 0 if F(z) = z and there exists a constant λ > 1 such that

d
(
F(x),F(y)

) ≥ λd(x, y) ∀x, y ∈ Br(z), (5.62)

where Br(z) is the closed ball centered at z, that is, Br(z) = {x ∈ X | d(x, z) ≤ r}.
The constant λ is called an expanding coefficient of F in Br(z).

Definition 5.17. Assume that z is an expanding fixed point of F in Br(z) for some
r > 0. Then z is said to be a snap-back repeller of F if there exists a point x0 ∈ Br(z)
with x0 �= z and Fm(x0) = z for some positive integer m, where Br(z) is the open
ball centered at z.
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Definition 5.18. Assume that z is a snap-back repeller of F, associated with an x0,
an m, and an r as specified in Definition 5.17. Then z is said to be a nondegenerate
snap-back repeller of F if there exist positive constants μ and r0 < r such that
Br0 (x0) ⊂ Br(z) and

d
(
Fm(x),Fm(y)

) ≥ μd(x, y) ∀x, y ∈ Br0

(
x0
)
. (5.63)

Next, we study the expansion of sets near an expanding fixed point. In general, a
map may not expand the sets near its expanding fixed point. However, we have the
following result.

Lemma 5.19. Let (X ,d) be a metric space and let F : X → X be map with an ex-
panding fixed point z in Br∗(z) for some r∗ > 0. If F is continuous on Br∗(z) and z is
an interior point of F(Br∗(z)), then there exists a positive constant r0 ≤ r∗ such that
for each positive constant r ≤ r0, F(Br(z)) is closed set, F(Br(z)) is an open set, and

F
(
Br(z)

) ⊃ Br(z), F
(
Br(z)

) ⊃ Br(z). (5.64)

Proof . Suppose that λ > 1 is an expanding coefficient of F in Br∗(z), then

d
(
F(x),F(y)

) ≥ λd(x, y) ∀x, y ∈ Br∗(z). (5.65)

By the assumption, z is an interior point of F(Br∗(z)). So there exists a con-
stant δ0 > 0 such that Bδ0 (z) ⊂ F(Br∗(z)). It follows that F−1(Bδ0 (z)) is open
from the continuity of F. Then there exists a positive constant r0 ≤ r∗ such that
Br0 (z) ⊂ F−1(Bδ0 (z)) ⊂ Br∗(z). It is evident that

F : F−1(Bδ0 (z)
)
�→ Bδ0 (z) (5.66)

is bijective and continuous. Now, we show that the inverse

F−1 : Bδ0 (z) �→ F−1(Bδ0 (z)
)

(5.67)

is continuous. If it is the case, then F is homeomorphic on F−1(Bδ0 (z)) and then
F(Br(z)) is open and F(Br(z)) is closed for each positive constant r ≤ r0. In fact,
for any x, yεBδ0 (z), F−1(x), F−1(y) ∈ F−1(Bδ0 (z)) and then

d
(
F−1(x),F−1(y)

) ≤ λ−1d(x, y), (5.68)

which implies that F−1 is continuous on Bδ0 (z).
For each positive constant r ≤ r0, it follows from the above discussion that

∂F(Br(z)) ⊂ F(∂Br(z)) and F(Br(z)) ⊂ F(Br(z)). For each x ∈ ∂Br(z), we have

d
(
F(x), z

) ≥ λd(x, z) = λr, (5.69)
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which implies that d = d(z, ∂F(Br(z))) ≥ λr > r. Hence, it follows that

Br(z) ⊂ Bd(z) ⊂ F
(
Br(z)

)
, Br(z) ⊂ Bd(z) ⊂ F

(
Br(z)

) ⊂ F
(
Br(z)

)
, (5.70)

which implies that (5.64) holds. This completes the proof. �

Definition 5.20. Let (X ,d) be a metric space and let F : X → X be a map.
(1) Assume that z ∈ X is an expanding fixed point of F in Br(z) for some

constant r > 0. Then z is called a regular expanding fixed point of F in Br(z) if z
is an interior point of F(Br(z)). Otherwise, z is called a singular expanding fixed
point of F in Br(z).

(2) Assume that z is snap-back repeller of F, associated with x0,m, and r as
specified in Definition 5.17. Then z is called a regular snap-back repeller of F if
F(Br(z)) is open and there exists a positive constant δ0 such that Bδ0(x0) ⊂ Br(z) and
for each positive constant δ ≤ δ0, z is an interior point of Fm(Bδ(x0)). Otherwise,
z is called a singular snap-back repeller of F.

Remark 5.21. (1) In (2) of Definition 5.20, the condition “F(Br(z)) is open” en-
sures that z is a regular expanding fixed point of F in Br(z).

(2) Suppose that z is a nondegenerate snap-back repeller of F, associated with
x0, m, r, r0, and μ as specified in Definitions 5.17 and 5.18. If F(Br(z)) is open, z
is an interior point of Fm(Br0 (x0)), and Fm is continuous on Br0 (x0), then for each
positive constant δ ≤ r0, z is an interior point of Fm(Bδ(x0)) by a similar argument
to the proof of Lemma 5.19 and consequently, z is a regular nondegenerate snap-
back repeller of F.

Next, we extend the concepts of homoclinic point and heteroclinic point and
the concept of local unstable set of a repeller of a differentiable function on R,
to that of a continuous map on a metric space. Before that, we first establish the
following results.

Lemma 5.22. Let (X ,d) be a metric space and let F : X → X be a map with a regular
expanding fixed point z in Br∗(z) for some r∗ > 0. If F is continuous on Br∗(z), then
there exists an open neighborhood U of z such that

(1) for each x∈U with x �=z, there exists an integer k≥1 such that Fk(x) �∈U ;
(2) for each x ∈ U with x �= z, F−n(x) is uniquely defined in U for all n ≥ 1,

and F−n(x) → z as n→∞.

Proof . By Lemma 5.19, there exists a positive constant r ≤ r∗ such that
F(Br(z)) is open and F(Br(z)) ⊃ Br(z). Set U = Br(z). By Definition 5.16, there is
a constant λ > 1 such that

d
(
F(x),F(y)

) ≥ λd(x, y) ∀x, y ∈ Br(z). (5.71)
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Then, for each x ∈ Br(z) with x �= z, there exists an integer k ≥ 1 such that
Fk(x) �∈ Br(z). Otherwise, there exists a point x0 ∈ Br(z) with x0 �= z such that
Fk(x0) ∈ Br(z) for all k ≥ 1. It follows from (5.71) that

d
(
Fk
(
x0
)
, z
) ≥ λd

(
Fk−1(x0

)
, z
) ≥ λkd

(
x0, z

) ∀k ≥ 1, (5.72)

which implies that

λkd
(
x0, z

) ≤ r ∀k ≥ 1. (5.73)

Since d(x0, z) > 0 and λ > 1, this is impossible.
Let x be any point in U . Since F(U) ⊃ U and F is injective in U , F−n(x) is

uniquely defined in U for all n ≥ 1. In addition, by using the fact that F is expand-
ing in U = Br(z), it is easily concluded that F−n(x) → z as n → ∞. Therefore, the
proof is complete. �

Based on Lemma 5.22, we now introduce the following definitions.

Definition 5.23. Let (X ,d) be a metric space and let F : X → X be a continuous
map with a regular expanding fixed point z ∈ X . Let U be the maximal open
neighborhood of z such that for each x ∈ U with x �= z there exists an integer
k ≥ 1 with Fk(x) �∈ U and for each x ∈ U with x �= z, F−n(x) is uniquely defined
in U with F−n(x) → z as n→∞. This set U is called the local unstable set of F at z
and is denoted by Wu

loc(z).
Clearly it is possible that Wu

loc(z) = X .

Definition 5.24. Let (X ,d) be a metric space and let F : X → X be a continuous
map with a regular expanding fixed point z ∈ X .

(1) A point x is called homoclinic to z if x ∈ Wu
loc(z), x �= z, and there exists

an n ≥ 1 such that Fn(x) = z. The homoclinic point x, together with its backward
orbit {F− j(x)}∞j=1 and its finite forward orbit {F j(x)}n−1

j=1 , is called a homoclinic
orbit from z.

(2) A homoclinic orbit is called nondegenerate if, for each point x0 on the
orbit, there exist positive constants r0 and μ such that

d
(
F(x),F(y)

) ≥ μd(x, y) ∀x, y ∈ Br0

(
x0
)
. (5.74)

(3) A homoclinic orbit is called regular if, for each point x0 on the orbit, there
exists a positive constant r1 such that, for each positive constant r ≤ r1, F(x0) is an
interior point of F(Br(x0)). Otherwise, it is called singular.

(4) A point x is called heteroclinic to z if x ∈Wu
loc(z) and there exists an n ≥ 1

such that Fn(x) lies on a different periodic orbit from z.
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We next establish a fixed point theorem for an expanding continuous map in
a complete metric space. Here, F : V → X is expanding in V ⊂ X if there exists a
constant λ > 1 such that

d
(
F(x),F(y)

) ≥ λd(x, y) ∀x, y ∈ V. (5.75)

Lemma 5.25. Let (X ,d) be a complete metric space and let V be a nonempty closed
subset of X . If F : V → X is continuous, satisfies F(V) ⊃ V , and F is expanding in
V , then F has a unique fixed point in V .

Proof . It is clear that F : V → F(V) is bijective. Consider its inverse F−1 : F(V) →
V . We first show that F−1 has a unique fixed point in F(V). With a similar argu-
ment to that in the proof of Lemma 5.19, it is easily concluded that F(V) is closed.
On the other hand, from (5.75) it follows that

d
(
F−1(y),F−1(z)

) ≤ λ−1d(y, z) ∀y, z ∈ F(V), (5.76)

which implies that F−1 is contractive on F(V) since λ > 1. Hence, by the Banach
contraction mapping principle in complete metric spaces, F−1 has a unique fixed
point y∗ ∈ F(V). It is clear that y∗ is also a fixed point of F in V . The uniqueness
of the fixed point of F in V is easily derived from (5.75). This completes the proof.

�
All the criteria of chaos obtained in this section are related to Cantor sets in

metric spaces and a symbolic dynamical system, which has plentiful dynamical
structures. As a matter of convenience, we introduce the concept of Cantor set
in a general topological space. We also present some relevant results of symbolic
dynamical systems.

Definition 5.26. Let X be a topological space and let ∧ be a subset in X . Then ∧ is
said to be a Cantor set if it is compact, totally disconnected, and perfect. A set in X
is totally disconnected if each of its connected component is a single point; a set is
perfect if it is closed and every point in it is an accumulation point or a limit point
of other points in the set.

Let

+∑

2

:= {s = (s0s1s2 · · ·
)

: s j = 0 or 1
}

(5.77)

and define a distance between two points s = (s0s1s2 · · · ) and t = (t0t1t2 · · · ) by

ρ(s, t) =
∞∑

i=0

∣
∣si − ti

∣
∣

2i
. (5.78)

For any s, t ∈∑+
2 , ρ(s, t) ≤ 1/2n of si = ti for 0 ≤ i ≤ n. Conversely, if ρ(s, t) < 1/2n,

then si = ti for 0 ≤ i ≤ n.
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Lemma 5.27. (
∑+

2 , ρ) is a complete, compact, totally disconnected, and perfect metric
space.

Proof . The completeness of (
∑+

2 , ρ) can be easily proved. By Devaney [52, Part
1, Theorem 7.2], (

∑+
2 , ρ) is homeomorphic to a Cantor set ∧0 in the real line R.

It is well known that ∧0 is compact, totally disconnected, and perfect. Since the
compactness, total disconnectedness, and perfectness are topological properties,
this lemma is proved. �

The shift map σ :
∑+

2 → ∑+
2 defined by σ(s0s1s2 · · · ) = (s1s2 · · · ) is contin-

uous. The dynamical system governed by σ is called a symbolic dynamical system
and it has the following properties.

Lemma 5.28 (see [52]). (1) Card Pern(σ) = 2n,
(2) Per(σ) is dense in

∑+
2 ,

(3) there exists a dense orbit of σ in
∑+

2 , where Card Pern(σ) denotes the num-
ber of periodic points of period n for σ .

It is clear that property (3) implies that σ is transitive. Hence, this symbolic dy-
namical system is chaotic in the sense of Devaney.

There is a well-known theorem in the topology theory: a topological space X
is compact if and only if each collection of closed subsets of X having the finite
intersection property (i.e., every finite subset has a nonempty intersection) has
nonempty intersection. If X is not compact, the finite intersection property of
closed subsets of X does not imply nonempty intersection in general. However, we
have the following result for a complete metric space, which will be used in the
proof of Theorem 5.30.

Lemma 5.29. Let (X ,d) be a complete metric space and let {An} be a sequence of
bounded and closed subsets of X which have the finite intersection property. If the
diameter d(An) → 0 as n→∞, then {An} has a nonempty intersection, that is,

⋂

n≥1

An �= φ. (5.79)

Furthermore,
⋂
n≥1 An contains only one point.

Proof . Let

Bn =
⋂

1≤m≤n
Am, n ≥ 1. (5.80)

Then {Bn} forms a nested sequence of nonempty, bounded, and closed subsets of
X . Further, Bn ⊂ An for all n ≥ 1 and consequently,

d
(
Bn
)
�→ 0 as n �→∞. (5.81)
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Choose a point xn ∈ Bn for each n ≥ 1. Then we get a sequence {xn} which satisfies

xm ∈ Bn for m ≥ n (5.82)

by the nestedness of {Bn}. Then, from (5.81), we have

d
(
xn, xm

) ≤ d
(
Bn
)
�→ 0 as n �→∞, (5.83)

which implies that {xn} is a Cauchy sequence in X . Since X is complete, {xn}
converges. Suppose xn → x∗ as n → ∞. Then, x∗ ∈ Bn for all n ≥ 1 by (5.82)
and by the closeness of Bn. This implies that

x∗ ∈
⋂

n≥1

Bn ⊂
⋂

n≥1

An (5.84)

and consequently, (5.79) is proved. In addition, by using the condition that d(An)
→ 0 as n → ∞, it follows that

⋂
n≥1 An contains only one point. Thus, the proof is

complete. �
In the following, we establish two criteria of chaos generated from continuous

maps in complete metric spaces and in compact subsets of metric spaces, respec-
tively.

Theorem 5.30. Let (x,d) be a complete metric space and let V0,V1 be nonempty,
closed, and bounded subsets of X with d(V0,V1) > 0. If a continuous map F : V0 ∪
V1 → X satisfies

(1) F(Vj) ⊃ V0 ∪V1 for j = 0, 1;
(2) F is expanding in V0 and V1, respectively, that is, there exists a constant

λ0 > 1 such that

d
(
F(x),F(y)

) ≥ λ0d(x, y) ∀x, y ∈ V0, ∀x, y ∈ V1; (5.85)

(3) there exists a constant μ0 > 0 such that

d
(
F(x),F(y)

) ≤ μ0d(x, y) ∀x, y ∈ V0, ∀x, y ∈ V1, (5.86)

then there exists a Cantor set ∧ ⊂ V0 ∪ V1 such that F : ∧ → ∧ is topologically
conjugate to the symbolic dynamical system σ :

∑+
2 → ∑+

2 , defined in the above.
Consequently, F is chaotic on ∧ in the sense of Devaney.

Proof . The proof is divided into three steps.

Step 1. Construct an invariant set ∧ of F.
Let K := V0 ∪V1. Define the set ∧ as

∧ := {x ∈ K : Fn(x) ∈ K , n ≥ 0
}
. (5.87)
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By Lemma 5.25, F has a unique fixed point in V0 and in V1, respectively. Thus ∧
is nonempty. Obviously, ∧ is an invariant set of F. We will show that ∧ is a Cantor
set in Step 3.

Step 2. F : ∧ → ∧ is topologically conjugate to the symbolic dynamical system
σ :
∑+

2 →∑+
2 .

Define a map T : ∧ →∑+
2 as follows:

T(x) = s = (s0s1 · · ·
)

for x ∈ ∧, (5.88)

where s j = 0 if F j(x) ∈ V0 and s j = 1 if F j(x) ∈ V1. The sequence T(x) is called
the itinerary of x. We now show that T is homeomorphic and T ◦F = σ ◦T . Since
the proof is long, it is divided into four parts.

(i) T is bijective. As a matter of convenience, for a subsetΩ of K and n ≥ 1, define
the following set:

F−n(Ω) = {x ∈ K | Fn(x) ∈ Ω
}
. (5.89)

Let s = (s0s1 · · · ) ∈∑+
2 . We can find x ∈ ∧ such that T(x) = s, that is, F j(x) ∈ Vsj

for j ≥ 0. Consider the sets

Us0s1···sn =
{
x ∈ K | F j(x) ∈ Vsj , 0 ≤ j ≤ n

}
(5.90)

for n ≥ 0. It is clear that Us0 = Vs0 and

Us0s1···sn = Vs0 ∩ F−1(Vs1

)∩ · · · ∩ F−n(Vsn

)

= Vs0 ∩ F−1(Us1···sn
) = Us0s1···sn−1 ∩ F−n(Vsn

) (5.91)

for n ≥ 1. This implies that {Us0s1···sn} form a nested sequence of bounded and
closed subsets of K . Now, we show by induction that they are nonempty. Obvi-
ously, Us0 = Vs0 is nonempty. From (5.91), it follows that Us0s1 = Vs0 ∩ F−1(Vs1 ).
By assumption (1), we see that F−1(Vs1 ) = V01 ∪ V11, where V01 and V11 are
nonempty closed subsets of V0 and V1, respectively, and F(V01) = F(V11) = Vs1 .
Hence,

Us0s1 = Vs01 (5.92)

is nonempty. Next, suppose that Us1···sn is nonempty. It follows from (5.91) that
Us1s2···sn ⊂ Vs1 . Similarly, F−1(Us1s2···sn) = V0n ∪ V1n, where V0n and V1n are
nonempty close subsets ofV0 andV1, respectively, and F(V0n)= F(V1n)=Us1s2···sn .
Then, from (5.91), it follows that

Us0s1···sn = Vs0n (5.93)

is nonempty. By induction, Us0s1···sn is nonempty for all n ≥ 0.
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By Lemma 5.29, in order to prove that

⋂

n≥0

Us0s1···sn �= φ, (5.94)

it suffices to show that

d
(
Us0s1···sn

)
�→ 0 as n �→∞. (5.95)

By assumption (1), V0 and V1 contain infinitely many points, respectively. Let
γ = max{d(V0),d(V1)}. Then γ > 0 and

d
(
Us0

) = d
(
Vs0

) ≤ γ. (5.96)

It follows that for all x, y ∈ Us0s1 , F(x),F(y) ∈ Vs1 and then by assumption (2),

d
(
F(x),F(y)

) ≥ λ0d(x, y), (5.97)

which implies that

d(x, y) ≤ λ−1
0 d

(
F(x),F(y)

)
. (5.98)

Hence,

d
(
Us0s1

) ≤ λ−1
0 d

(
Vs1

) ≤ λ−1
0 γ. (5.99)

By induction and by the definition of Us0s1···sn ,

d
(
Us0s1···sn

) ≤ λ−n0 γ, (5.100)

which implies that (5.95) holds. Therefore, (5.94) holds and
⋂
n≥0 Us0s1···sn only

contains one point.
Let

⋂
n≥0 Us0s1···sn = {x}. Then x ∈ ∧ and T(x) = s by the definition of

Us0s1···sn . Hence, T is surjective. In addition, if T(y) = s = (s0s1 · · · ) for some
y ∈ ∧, then, by the definition of T , F j(y) ∈ Vsj for j ≥ 0, which implies that y ∈⋂
n≥0 Us0s1···sn . Therefore, y = x and consequently, the injectivity of T is proved.

(ii) T is continuous. Fix a point x ∈ ∧ and let T(x) = s = (s0s1 · · · ). For each
ε > 0, there exists a positive integer n such that 2−n < ε. Consider the closed set
Ut0t1···tn for all possible combinations t0t1 · · · tn. It is clear that the number of these
closed sets is finite and they are all disjoint by the definition of Ut0t1···tn . Now, we
first show

d
(
Us0s1···sn ,Ut0t1···tn

)
> 0 (5.101)
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for all s0s1 · · · sn �= t0t1 · · · tn. Let s0s1 · · · sn �= t0t1 · · · tn. Then, there exists 0 ≤
j ≤ n such that si = ti for 0 ≤ i ≤ j − 1 and s j �= t j . In the case of j = 0, s0 �= t0.
Since Us0s1···sn ⊂ Vs0 and Ut0t1···tn ⊂ Vt0 , it follows that

d
(
Us0s1···sn ,Ut0t1···tn

) ≥ d
(
Vs0 ,Vt0

)
> 0. (5.102)

If j ≥ 1, then Us0s1···sn ⊂ V ∩ F− j(Vsj ) and Ut0t1···tn ⊂ V ∩ F− j(Vtj ), where V =
Us0s1···s j−1 and s j �= t j . For any u ∈ Us0s1···sn and v ∈ Ut0t1···tn , Fi(u),Fi(v) ∈ Vsi for
0 ≤ i ≤ j − 1 and F j(u) ∈ Vsj , F

j(v) ∈ Vtj . By assumption (3), we have

d(u, v) ≥ μ−1
0 d

(
F(u),F(v)

) ≥ · · · ≥ μ
− j
0 d

(
F j(u),F j(v)

) ≥ μ
− j
0 d

(
V0,V1

)
,

(5.103)

which implies that

d
(
Us0s1···sn ,Ut0t1···tn

) ≥ μ
− j
0 d

(
V0,V1

)
> 0, (5.104)

namely, (5.101) holds. Let

δ = min
s0s1···sn �=t0t1···tn

{
d
(
Us0s1···sn ,Ut0t1···tn

)}
. (5.105)

Then δ > 0 and for each y ∈ ∧ with d(x, y) ≤ δ/2, it follows that y ∈ Us0s1···sn .
Therefore, the first n + 1 terms of T(x) and T(y) are the same, that is, s j = t j for
0 ≤ j ≤ n, where T(y) = t = (t0t1 · · · tn). This implies that

ρ
(
T(x),T(y)

) ≤ 1
2n

< ε. (5.106)

Therefore, T is continuous.

(iii) T−1 :
∑+

2 → ∧ is continuous. Fix a point s = (s0s1 · · · ) ∈ ∑+
2 , and let

T−1(s) = x. Then x ∈ Us0s1···sn for all n ≥ 0. For each ε > 0, from (5.95), it
follows that there exists a positive integer N such that

d
(
Us0s1···sn

)
< ε ∀n ≥ N. (5.107)

Setting δ0 = 1/2N for all t ∈ ∑+
2 and ρ(t, s) < δ0, we see that t0t1 · · · tN =

s0s1 · · · sN and so y = T−1(t) ∈ Us0s1···sN . This implies that

d
(
T−1(t),T−1(s)

) = d(y, x) ≤ d
(
Us0s1···sn

)
< ε. (5.108)

Hence, T−1 is continuous.
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(iv) T ◦ F = σ ◦ T . For each x ∈ ∧, let T(x) = s = (s0s1 · · · ). Then Fn(x) ∈ Vsn

for n ≥ 0. By (i), {x} = ⋂n≥0 Us0s1···sn . From (5.91) and F(Vs0 ) � Vs1 , we get

F
(
Us0s1···sn

) = F
(
Vs0 ∩ F−1(Vs1

)∩ · · · ∩ F−n(Vsn

))

= F
(
Vs0

)∩Vs1 ∩ · · · ∩ F−n+1(Vsn

)

= Vs1 ∩ F−1(Vs2

)∩ · · · ∩ F−n+1(Vsn

) = Us1s2···sn .

(5.109)

Hence,

T
(
F(x)

) = T

(

F

(
⋂

n≥0

Us0s1···sn

))

= T

(
⋂

n≥1

Us1s2···sn

)

= (s1s2 · · ·
)
. (5.110)

On the other hand, σ(T(x)) = σ(s) = (s1s2 · · · ). This implies that (T ◦ F)(x) =
(σ ◦ T)(x) for all x ∈ ∧. Therefore, F and σ are topologically conjugate.

Step 3. ∧ is a Cantor set.
From Step 2, T : ∧ → ∑+

2 is homeomorphic. Hence, by Lemma 5.27, ∧ is
compact, totally disconnected, and perfect, namely, ∧ is a Cantor set.

By combining Steps 1–3 and by Lemma 5.28, the proof of Theorem 5.30 is
completed. �

Next, we consider chaos generated from a continuous map in two compact
subsets of a metric space. Recall from the fundamental theory of topology that
a compact subset of a metric space is closed, bounded, and complete as a sub-
space; a closed subset of a compact space is compact; and the distance between
two disjoint compact subsets of a metric space is positive. Therefore, if V0 and V1

are compact subsets of a metric space (X ,d), (5.94) and (5.101) in Step 2 of the
proof of Theorem 5.30 can be easily concluded by the compactness of Us0s1···sn ,
and therefore assumption (3) in Theorem 5.30 can be dropped.

Remark 5.31. By a known result, if all assumptions of Theorem 5.30 are satisfied,
then F is chaotic in the sense of Li-Yorke also.

The following is the corresponding result for chaos from a continuous map
in two compact subsets of a metric space. Since the proof is trivial, based on the
above illustration, it is omitted.

Theorem 5.32. Let (x,d) be a metric space and let V0,V1 be two disjoint compact
subsets of X . If the continuous map F : V0 ∪V1 → X satisfies that

(1) F(Vj) ⊃ V0 ∪V1 for j = 0, 1;
(2) there exists a constant λ0 > 1 such that

d
(
F(x),F(y)

) ≥ λ0d(x, y) ∀x, y ∈ V0, ∀x, y ∈ V1, (5.111)
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then there exists a Cantor set ∧ ∈ V0 ∪ V1 such that F : ∧ → ∧ is topologically
conjugate to the symbolic dynamical system σ :

∑+
2 →∑+

2 . Consequently, F is chaotic
on ∧ in the sense of Devaney.

Next, we establish two criteria of chaos by means of snap-back repellers.

Theorem 5.33. Let (x,d) be a complete metric space and let F : X → X be a map.
Assume that

(1) F has a regular nondegenerate snap-back repeller z ∈ X , that is, there exist
positive constants r1 and λ1 > 1 such that F(Br1 (z)) is open and

d
(
F(x),F(y)

) ≥ λ1d(x, y) ∀x, y ∈ Br1 (z), (5.112)

and there exist a point x0 ∈ Br1 (z), x0 �= z, a positive integerm, and positive constants
δ1 and γ such that Fm(x0) = z, Bδ1 (x0) ⊂ Br1 (z), z is an interior point of Fm(Bδ1 (x0)),
and

d
(
Fm(x),Fm(y)

) ≥ γd(x, y) ∀x, y ∈ Bδ1

(
x0
)
; (5.113)

(2) there exists a positive constant μ1 such that

d
(
F(x),F(y)

) ≤ μ1d(x, y) ∀x, y ∈ Br1 (z); (5.114)

(3) there exists a positive constant μ2 such that

d
(
Fm(x),Fm(y)

) ≤ μ2d(x, y) ∀x, y ∈ Bδ1

(
x0
)
. (5.115)

Further, assume that F is continuous on Br1 (z) and Fm is continuous on Bδ1 (x0).
Then, for each neighborhood U of z, there exist a positive integer n > m and a Cantor
set ∧ ⊂ U such that Fn : ∧ → ∧ is topologically conjugate to the symbolic dynamical
system σ :

∑+
2 →∑+

2 . Consequently, Fn is chaotic on ∧ in the sense of Devaney.

Proof . We prove this theorem by Theorem 5.30. According to Theorem 5.30, it
suffices to show that for each neighborhood U of z, there exist a positive integer
n > m, two constants λ0 > 1 and μ0 > 0, and two bounded and closed subsets
V0, V1 of U with V0 ∩V1 = φ such that Fn is continuous on V0 ∪V1 and

Fn
(
Vj
) ⊃ V0 ∪V1, j = 0, 1; d

(
V0,V1

)
> 0, (5.116)

d
(
Fn(x),Fn(y)

) ≥ λ0d(x, y) ∀x, y ∈ V0, ∀x, y ∈ V1, (5.117)

d
(
Fn(x),Fn(y)

) ≤ μ0d(x, y) ∀x, y ∈ V0, ∀x, y ∈ V1. (5.118)

From assumption (1) and by an argument similar to the proof of Lemma 5.19,
one can easily conclude that F(Br(z)) ⊃ Br(z) and F(Br(z)) ⊃ Br(z) for each
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positive constant r ≤ r1 and F(D) is open for each open subset D ⊂ Br1 (z). We
remark that this conclusion is repeatedly used in this proof.

Without loss of generality, we can suppose that Br1 (z) ⊂ U . Otherwise, we can

choose an integer m̂, a point x̂0 ∈ Br1 (z) ∩ U , and positive constants r̂ ≤ r1, δ̂1, γ̂,
and μ̂2 such that assumptions (1)–(3) hold with m, x0, r1, δ1, γ, μ2 replaced by

m̂, x̂0, r̂1, δ̂1, γ̂, μ̂2, respectively. In fact, F−n(x0) ∈ Br1 (z) ⊂ Wu
loc(z) is uniquely

defined for each n ≥ 1 and F−n(x0) → z as n → ∞ by Lemma 5.22. Then there
exist a positive integer n0 and a positive constant r̂1 ≤ r1 such that x̂0 := F−n0 (x0) ∈
Br̂1 (z) ⊂ U ∩Br1 (z). It follows that Fn0 (x̂0) = x0, Fm̂(x̂0) = z with m̂ = m+n0, and

there exists a sufficiently small positive constant δ̂1 such that Bδ̂1
(x̂0) ⊂ Br̂1 (z) and

Fi(Bδ̂1
(x̂0)) ⊂ Br1 (z) for 1 ≤ i ≤ n0 − 1 and Fn0 (Bδ̂1

(x̂0)) ⊂ Bδ1 (x0). Obviously, z is

an interior point of Fm̂(Bδ̂1
(x0)) by (2) of Remark 5.21 and by referring to the fact

that Fi(Bδ̂1
(x̂0)) is open for 1 ≤ i ≤ n0. From (5.112)–(5.115), it follows that for all

x, y ∈ Bδ̂1
(x̂0),

d
(
Fm̂(x),Fm̂(y)

) ≥ γ̂d(x, y), γ̂ := γλn0
1 ,

d
(
Fm̂(x),Fm̂(y)

) ≤ μ̂2d(x, y), μ̂2 := μ2μ
n0
1 .

(5.119)

Obviously (5.112) and (5.114) hold in Br̂1 (z) since r̂1 ≤ r1.
The following proof is divided into three steps.

Step 1. Construct the closed set V1 as a closed neighborhood of x0.
Since λ1 > 1, there exists a large integer j ≥ 1 such that

λ
j
1γ > 1, λ

−(m+ j)
1 r1 <

d
(
z, x0

)

2
. (5.120)

From Fm(x0) = z and assumption (1), it follows that there is a small positive
constant δ2 ≤ δ1 such that

r0 = d
(
z,Bδ2

(
x0
))
>
d
(
z, x0

)

2
, (5.121)

Fm+i(Bδ2

(
x0
)) ⊂ Br1 (z), 0 ≤ i ≤ j, (5.122)

Fm+i(Bδ2

(
x0
))∩ Bδ2

(
x0
) = φ, 0 ≤ i ≤ j, (5.123)

and z is an interior point of Fm+ j(Bδ2 (x0)). From (5.112), (5.113), and (5.122), it
follows that for all x, y ∈ Bδ2 (x0),

d
(
Fm+ j(x),Fm+ j(y)

) ≥ λ
j
1d
(
Fm(x),Fm(y)

) ≥ λ
j
1γd(x, y), (5.124)

which implies that Fm+ j is expanding on Bδ2 (x0). Then Fm+ j(Bδ′2 (x0)) is open for
some positive constant δ′2≤δ2 by Lemma 5.19. So we can suppose that Fm+j(Bδ2 (x0))
is open. It follows that ∂Fm+ j(Bδ2 (x0)) ⊂ Fm+ j(∂Bδ2 (x0)).
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Let d0 = d(z,Fm+ j(∂Bδ2 (x0))) and l0 = [ln(r1d
−1
0 )/ln λ1] + 1, where d0 < r1 by

(5.122) and [a] is the integer part of a. From (5.124), it follows that λ
j
1γδ2 ≤ d0 <

r1.
In addition, from (5.122), it follows that

Bd0 (z) ⊂ Fm+ j(Bδ2

(
x0
)) ⊂ Br1 (z). (5.125)

Setting V ′
1 = F−(m+ j)(Bd0 (z))∩Bδ2 (x0), we see that V ′

1 is a closed subset of Bδ2 (x0),
x0 is an interior point of V ′

1, and

Fm+i(V ′
1

) ⊂ Br1 (z) for 0 ≤ i ≤ j − 1,

Fm+ j(V ′
1

) = Bd0 (z) ⊂ Br1 (z),

Fm+i(V ′
1

)∩V ′
1 = φ, 0 ≤ i ≤ j,

(5.126)

from (5.122) and (5.123). Let d1 = d(z, ∂Fm+ j+1(V ′
1)). Since Bd0 (z) ⊂ F(Bd0 (z)) =

Fm+ j+1(V ′
1), it follows from (5.112) that

d1 ≥ λ1d0. (5.127)

To choose a suitable set V1, the following discussion is divided into two cases of
d1 ≥ r1 and d1 < r1.

Case 1. d1 ≥ r1. We have

Fm+ j+1(V ′
1

) ⊃ Bd1 (z) ⊃ Br1 (z) ⊃ Bδ2

(
x0
) ⊃ V ′

1 . (5.128)

So, we set V1 = V ′
1 in this case.

Case 2. d1 < r1. We can continue to apply the above procedure, that is, set V ′
2 =

F−(m+ j+1)(Bd1 (z)) ∩ V ′
1. It is clear that V ′

2 is closed, V ′
2 ⊂ V ′

1 ⊂ Bδ2 (x0), x0 is an
interior point of V ′

2, and

Fm+i(V ′
2

) ⊂ Br1 (z) for 0 ≤ i ≤ j,

Fm+ j+1(V ′
2

) = Bd1 (z) ⊂ Br1 (z),

Fm+i(V ′
2

)∩V ′
2 = φ, 0 ≤ i ≤ j.

(5.129)

Let d2 = d(z, ∂Fm+ j+2(V ′
2)). Since Bd1 (z) ⊂ F(Bd1 (z)) = Fm+ j+2(V ′

2), we get

d2 ≥ λ1d1 ≥ λ2
1d0. (5.130)

If d2 ≥ r1, then

Fm+ j+2(V ′
2

) ⊃ Bd2 (z) ⊃ Br1 (z) ⊃ Bδ2

(
x0
) ⊃ V ′

1 ⊃ V ′
2 . (5.131)
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Hence, we set V1 = V ′
2 in this case. If d2 < r1, the above procedure will be contin-

ued. From (5.127) and (5.130), we see that the procedure may be continued for at
most l0 times. Suppose that the procedure is continued exactly l times, that is,

dl = d
(
z, ∂Fm+ j+l(V ′

l

)) ≥ r1, dl−1 < r1, (5.132)

V ′
l ⊂ V ′

l−1 ⊂ · · · ⊂ V ′
1 ⊂ Bδ2 (x0), x0 is an interior point of V ′

l , and

Fm+i(V ′
l

) ⊂ Br1 (z) for 0 ≤ i ≤ j + l − 2,

Fm+ j+l−1(V ′
l

) = Bdl−1 (z) ⊂ Br1 (z),

Fm+i(V ′
l

)∩V ′
l = φ, 0 ≤ i ≤ j.

(5.133)

Then, we get

Fm+ j+l(V ′
l

) ⊃ Bdl (z) ⊃ Br1 (z) ⊃ Bδ2

(
x0
) ⊃ V ′

l . (5.134)

By setting k = j + l and V1 = V ′
l , we can see that V1 ⊂ Bδ2 (x0) is a closed neigh-

borhood of x0, and Fm+k satisfies the following on V1:

Fm+i(V1
) ⊂ Br1 (z), 0 ≤ i ≤ k − 1,

Fm+i(V1
)∩V1 = φ, 0 ≤ i ≤ j,

Fm+k(V1
) ⊃ Br1 (z) ⊃ V1.

(5.135)

Furthermore, from (5.112), (5.113), and (5.135), it follows that for all x, y ∈ V1,

d
(
Fm+k(x),Fm+k(y)

) ≥ λ1d
(
Fm+k−1(x),Fm+k−1(y)

)

≥ · · · ≥ λk1d
(
Fm(x),Fm(y)

) ≥ λk1γd(x, y) ≥ λ
j
1γd(x, y),

(5.136)

where λ
j
1γ > 1.

Step 2. Construct V0 as a closed neighborhood of z.
As a matter of convenience, define the following set for a subset A of Br1 (z):

F−1(A) = {x ∈ Br1 (z) : F(x) ∈ A
}
. (5.137)

Let

W0 = F−1(Br1 (z)
)
, Wi = F−1(Wi−1

)
, 1 ≤ i ≤ m + k − 1. (5.138)
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Then

Wi ⊂ Br1 (z), 0 ≤ i ≤ m + k − 1,

F
(
W0
) ⊂ Br1 (z),

F
(
Wi
) ⊂Wi−1, 1 ≤ i ≤ m + k − 1.

(5.139)

It follows that

Fi+1(Wi
) ⊂ Fi

(
Wi−1

) ⊂ · · · ⊂ F
(
W0
) ⊂ Br1 (z). (5.140)

We claim that

Fi+1(Wi
) = Br1 (z), 0 ≤ i ≤ m + k − 1. (5.141)

From (5.140), it suffices to show that

Fi+1(Wi
) ⊃ Br1 (z), 0 ≤ i ≤ m + k − 1. (5.142)

For i = 0, we have Br1 (z) ⊂ F(Br1 (z)). Then, for each x ∈ Br1 (z), there exists
y ∈ Br1 (z) such that x = F(y). It is evident that y ∈ W0 and x = F(y) ∈ F(W0),
which implies that Br1 (z) ⊂ F(W0), so that (5.142) holds for i = 0. With a similar
argument, one can easily show that (5.142) holds for 1 ≤ i ≤ m + k − 1.

On the other hand, from (5.112) and (5.139), it follows that for each x ∈Wi,

d
(
F(x), z

) ≥ λ1d(x, z) (5.143)

so that

d(x, z) ≤ λ−1
1 d

(
F(x), z

) ≤ λ−1
1 ds

(
z,Wi−1

)
, (5.144)

which implies that

ds
(
z,Wi

) ≤ λ−1
1 ds

(
z,Wi−1

) ≤ · · · ≤ λ−(i+1)
1 r1, 0 ≤ i ≤ m + k − 1. (5.145)

Especially, from (5.139), (5.141), and (5.145), it follows that

Fi
(
Wm+k−1

) ⊂ Br1 (z), 0 ≤ i ≤ m + k − 1, (5.146)

Fm+k(Wm+k−1
) = Br1 (z), ds

(
z,Wm+k−1

) ≤ λ−(m+k)
1 r1. (5.147)

It is clear that z is an interior point of Wi, 0 ≤ i ≤ m + k − 1, and so Wm+k−1 is a
closed neighborhood of z.

Setting V0 =Wm+k−1, we see that V0 is a closed neighborhood of z.
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Step 3. Prove that V0 and V1 satisfy all the conditions (5.116)–(5.118).
It is clear that V0 and V1 are closed subsets of Br1 (z) and, consequently, they

are bounded and closed subsets of U . Set n = m + k. Then, we have

Fn
(
V1
) ⊃ V0 ∪V1, Fn

(
V0
) ⊃ V0 ∪V1 (5.148)

by using the third relation in (5.135) and the first relation in (5.147). Therefore,
the first relation in (5.116) follows. We now turn to show that

V0 ∩V1 = φ, d
(
V0,V1

)
> 0. (5.149)

From (5.147), we see that

ds
(
z,V0

) = ds
(
z,Wm+k−1

) ≤ λ−(m+k)
1 r1 ≤ λ

−(m+ j)
1 r1, (5.150)

which, together with (5.120) and (5.121), implies that V0 ∩V1 ⊂ V0 ∩Bδ2 (x0) = φ
and

d
(
V0,V1

) ≥ d
(
V0,Bδ2

(
x0
)) ≥ d

(
z,Bδ2

(
x0
))− ds

(
z,V0

) ≥ r0 − λ
−(m+ j)
1 r1 > 0.

(5.151)

Therefore, (5.149) holds.
Next, consider (5.117). From (5.146), we have

Fi
(
V0
) ⊂ Br1 (z), 0 ≤ i ≤ m + k − 1. (5.152)

Then, for any x, y ∈ V0, by (5.112), we have

d
(
Fn(x),Fn(y)

) ≥ λm+k
1 d(x, y) ≥ λ1d(x, y). (5.153)

Set λ0 = min{λ1, λ
j
1γ}. Then, λ0 > 1 and (5.117) follows from (5.136) and (5.153).

Finally, consider (5.118). From (5.114) and (5.152) for any x, y ∈ V0, we have

d
(
Fn(x),Fn(y)

) ≤ μn1d(x, y). (5.154)

On the other hand, from (5.114) and (5.115), and the first relation in (5.135), it
follows that

d
(
Fn(x),Fn(y)

) ≤ μk1d
(
Fm(x),Fm(y)

) ≤ μk1μ2d(x, y). (5.155)

By setting μ0 = max{μn1,μk1μ2}, (5.118) follows from (5.154) and (5.155). There-
fore, (5.116)–(5.118) hold. By the constructions of V0 and V1, we see that f n is
continuous on V0 ∪V1. Hence, the proof is completed. �
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By Theorem 5.32 and with an argument similar to the proof of Theorem 5.33,
the following result for metric spaces with a certain compactness can be estab-
lished.

Theorem 5.34. Let (x,d) be a metric space in which each bounded and closed subset
is compact. Assume that F : X → X has a regular nondegenerate snap-back repeller z,
associated with x0,m, and r as specified in Definition 5.20, F is continuous on Br(z),
and Fm is continuous in a neighborhood of x0. Then, for each neighborhood U of z,
there exist a positive integer n and a Cantor set ∧ ⊂ U such that Fn : ∧ → ∧ is topo-
logically conjugate to the symbolic dynamical system σ :

∑+
2 →∑+

2 . Consequently, Fn

is chaotic on ∧ in the sense of Devaney.

In recent years, there is growing interest in research on chaotification of dy-
namical systems. Now, we investigate the chaotification of partial difference equa-
tion (5.32).

Consider the controlled system

xm+1,n = f
(
xm,n, xm,n+1

)
+ sawε

(
μxm,n

)
, m,n ∈ N0, (5.156)

where sawr is the classical sawtooth function, that is

sawr(x) = (−1)m(x − 2mr), (2m− 1)r ≤ x < (2m + 1)r, m ∈ Z. (5.157)

μ > 0 is controlled parameter. We want to show the condition on controlled pa-
rameter μ such that the controlled system (5.156) is chaotic in the sense of both
Devaney and Li-Yorke. From Section 5.3, (5.156) is equivalent to

xm+1 = F
(
xm
)

+ sawε
(
μxm

)
(5.158)

in the complete metric space (l∞,d).
Equation (5.156) is chaotic in the sense of Devaney (or Li-Yorke) on V ⊂ l∞

if its induced system (5.158) is chaotic in the sense of Devaney (or Li-Yorke) on
V ⊂ l∞.

Suppose that f ∈ C1 in [−r, r]2 for some r > 0. Denote

{∣∣
∣∣
∂ f

∂x

∣
∣
∣∣ +

∣
∣
∣∣
∂ f

∂y

∣
∣
∣∣ : x, y ∈ [−r, r]

}
. (5.159)

Then, F ∈ C1 in I∞, I = [−r, r]. Using Theorem 5.30, we can prove the following
corollary.

Corollary 5.35. Assume that f ∈ C1 in [−r, r] for some r > 0 and f (0, 0) = 0. Then
for each constant μ satisfying

μ > μ0 = max
{

5
2
r−1ε, 5(L + 1)

}
, (5.160)
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there exists a Cantor set Λ ⊂ B(5/2)μ−1ε(0) ⊂ l∞ such that (5.156) is chaotic on Λ in
the sense of both Devaney and Li-Yorke, where ε is any given positive number.

Consider a special case of (5.156), given below:

xm+1,n = cxm,n
(
1 − xm,n

)
+ dxm,n+1 + sawε

(
μxm,n

)
, m,n ≥ 0. (5.161)

It is easy to see that f (x, y) = cx(1 − x) + dy is continuously differentiable in R2,
f (0, 0) = 0, fx(x, y) = c(1 − 2x), and fy(x, y) = d. Hence

∣∣ fx(x, y)
∣∣ +

∣∣ fy(x, y)
∣∣ ≤ 3|c| + |d|, x, y ∈ [−1, 1]. (5.162)

By Corollary 5.35, for each

μ > μ0 = max
{

5
2
ε, 5
(
3|c| + |d| + 1

)}
, (5.163)

there exists a Cantor set Λ ⊂ B(5/2)μ−1ε(0) ⊂ l∞ such that the controlled system
(5.161) is chaotic on Λ in the sense of both Devaney and Li-Yorke.

5.5. Notes

First mathematical definition of chaos is from Li and Yorke [93]. Martelli et al.
[112] include several definitions of chaos and their comparison; also refer to [12].
The related contents of chaos can refer Devaney [52] and Elaydi [57]. The main
part of Section 5.2 is from Chen and Liu [26]. Remark 5.5 is taken from Shi et al.
[131]. The contents of Section 5.3 is based on Chen et al. [27]. Banks et al. [18]
point out that condition (3) in the definition of chaos in the sense of Devaney
is redundant. Remark 5.11 can be seen from Huang and Ye [71]. The contents of
Section 5.4 is taken from Shi and Chen [129]. Corollary 5.35 can be seen from Shi
et al. [131].
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[78] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with
Applications, vol. 256 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The
Netherlands, 1993.

[79] F. Koehler and C. M. Braden, “An oscillation theorme for solutions of a class of partial difference
equations,” Proceedings of the American Mathematical Society, vol. 10, no. 5, pp. 762–766, 1959.

[80] H. J. Kuo and N. S. Trudinger, “On the discrete maximum principle for parabolic difference
operators,” Mathematical Modelling and Numerical Analysis, vol. 27, no. 6, pp. 719–737, 1993.

[81] G. Ladas, L. Pakula, and Z. Wang, “Necessary and sufficient conditions for the oscillation of
difference equations,” Panamerican Mathematical Journal, vol. 2, no. 1, pp. 17–26, 1992.

[82] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations
with Deviating Arguments, vol. 110 of Monographs and Textbooks in Pure and Applied Mathemat-
ics, Marcel Dekker, New York, NY, USA, 1987.

[83] V. V. Astakhov, V. S. Anishchenko, and A. V. Shabunin, “Controlling spatiotemporal chaos in a
chain of the coupled logistic maps,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 42, no. 6, pp. 352–357, 1995.

[84] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations. Numerical Methods and
Applications, vol. 181 of Mathematics in Science and Engineering, Academic Press, Boston, Mass,
USA, 1988.

[85] B. S. Lalli, B. G. Zhang, and J. Z. Li, “On the oscillation of solutions and existence of positive
solutions of neutral difference equations,” Journal of Mathematical Analysis and Applications,
vol. 158, no. 1, pp. 213–233, 1991.

[86] B. S. Lalli and B. G. Zhang, “Oscillation and comparison theorems for certain neutral difference
equations,” Journal of Australian Mathematical Society. Series B. Applied Mathematics, vol. 34,
no. 2, pp. 245–256, 1992.

[87] B. S. Lalli and B. G. Zhang, “On existence of positive solutions and bounded oscillations for
neutral difference equations,” Journal of Mathematical Analysis and Applications, vol. 166, no. 1,
pp. 272–287, 1992.

[88] D. Levi, “Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction
of the lattice potential KdV,” Journal of Physics. A. Mathematical and General, vol. 38, no. 35, pp.
7677–7689, 2005.



Bibliography 367

[89] H. Levy and F. Lessman, Finite Difference Equations, Pitman & Sons, London, UK, 1958.
[90] C. Li and G. Chen, “An improved version of the Marotto theorem,” Chaos, Solitons & Fractals,

vol. 18, no. 1, pp. 69–77, 2003.
[91] C. Li and G. Chen, “On the Marotto-Li-Chen theorem and its application to chaotification of

multi-dimensional discrete dynamical systems,” Chaos, Solitons & Fractals, vol. 18, no. 4, pp.
807–817, 2003.

[92] X. P. Li, “Partial difference equations used in the study of molecular orbits,” Acta Chimica Sinica,
vol. 40, no. 8, pp. 688–698, 1982 (Chinese).

[93] T. Y. Li and J. A. Yorke, “Period three implies chaos,” The American Mathematical Monthly,
vol. 82, no. 10, pp. 985–992, 1975.

[94] Y.-Z. Lin and S. S. Cheng, “Stability criteria for two partial difference equations,” Computers &
Mathematics with Applications, vol. 32, no. 7, pp. 87–103, 1996.

[95] Y.-Z. Lin and S. S. Cheng, “Bounds for solutions of a three-point partial difference equation,”
Acta Mathematica Scientia. Series B, vol. 18, no. 1, pp. 107–112, 1998.

[96] S. S. Cheng and Y.-Z. Lin, “Exponential stability of a partial difference equation with nonlinear
perturbation,” Acta Mathematicae Applicatae Sinica, vol. 15, no. 1, pp. 98–108, 1999.

[97] B. M. Liu and B. G. Zhang, “Linearized oscillation theorems for certain nonlinear delay partial
difference equations,” in Proceeding of International Conference on Dynamical Systems and Dif-
ferential Equations, pp. 89–96, Shanghai Jiaotong University Press, Shanghai, China, June 1998.

[98] S. T. Liu and G. Chen, “On spatial Lyapunov exponents and spatial chaos,” International Journal
of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 13, no. 5, pp. 1163–1181, 2003.

[99] S. T. Liu and S. S. Cheng, “Asymptotic stability of analytic difference equations—part A: physical
Science and Engineering,” Tamkang Journal of Mathematics, vol. 24, no. 5, pp. 390–393, 2000.

[100] S. T. Liu, X.-P. Guan, and J. Yang, “Nonexistence of positive solutions of a class of nonlinear
delay partial difference equations,” Journal of Mathematical Analysis and Applications, vol. 234,
no. 2, pp. 361–371, 1999.

[101] S. T. Liu, Y. Q. Liu, X.-P. Guan, J. Yang, and S. S. Cheng, “Existence of monotone positive solu-
tion of neutral partial difference equation,” Journal of Mathematical Analysis and Applications,
vol. 247, no. 2, pp. 384–396, 2000.

[102] S. T. Liu and P. Jin, “Oscillatory behavior of delay partial difference equations,” Periodica Math-
ematica Hungarica, vol. 47, no. 1-2, pp. 151–167, 2003.

[103] S. T. Liu, Y. Q. Liu, X.-P. Guan, and J. Yang, “Existence of monotone positive solutions of neutral
partial difference equations,” Journal of Mathematical Analysis and Applications, vol. 246, pp.
1–14, 2000.

[104] S. T. Liu, Y. Q. Liu, and F. Q. Deng, “Oscillation for nonlinear delay partial difference equations
with positive and negative coefficients,” Computers & Mathematics with Applications, vol. 43,
no. 10-11, pp. 1219–1230, 2002.

[105] S. T. Liu and H. Wang, “Necessary and sufficient conditions for oscillations of a class of de-
lay partial difference equations,” Dynamic Systems and Applications, vol. 7, no. 4, pp. 495–500,
1998.

[106] S. T. Liu and B. G. Zhang, “Oscillations of a class of partial difference equations,” Panamerican
Mathematical Journal, vol. 8, no. 1, pp. 93–100, 1998.

[107] S. T. Liu and B. G. Zhang, “Oscillatory behavior of delay partial difference equations with posi-
tive and negative coefficients,” Computers & Mathematics with Applications, vol. 43, no. 8-9, pp.
951–964, 2002.

[108] S. T. Liu, B. G. Zhang, and G. Chen, “Asymptotic behavior and oscillation of delay partial dif-
ference equations with positive and negative coefficients,” The Rocky Mountain Journal of Math-
ematics, vol. 33, no. 3, pp. 953–970, 2003.

[109] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters,
vol. 64, no. 8, pp. 821–824, 1990.

[110] F.-Y. Maeda, A. Murakami, and M. Yamasaki, “Discrete initial value problems and discrete par-
abolic potential theory,” Hiroshima Mathematical Journal, vol. 21, no. 2, pp. 285–299, 1991.

[111] F. R. Marotto, “Snap-back repellers imply chaos in Rn,” Journal of Mathematical Analysis and
Applications, vol. 63, no. 1, pp. 199–223, 1978.



368 Bibliography

[112] M. Martelli, M. Dang, and T. Seph, “Defining chaos,” Mathematics Magazine, vol. 71, no. 2, pp.
112–122, 1998.

[113] E. Merzrath, “Direct solution of partial difference equations,” Numerische Mathematik, vol. 9,
no. 5, pp. 431–436, 1967.

[114] A. Musielak and J. Popenda, “On the hyperbolic partial difference equations and their oscillatory
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