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Preface

This monograph is devoted to a rapidly developing area of the research of the
qualitative theory of difference equations. In particular, we are interested in the
qualitative theory of delay partial difference equations. The qualitative theory of
delay difference equations has attracted many researchers since 1988. The prolifer-
ation of this area has been witnessed by several hundreds of research papers and a
number of research monographs. It is known that most practical problems are of
multiple variables. Therefore, the research of partial difference equations is signif-
icant.

Recently, a monograph of partial difference equations has been published by
S. S. Cheng. The mathematical modeling of many real-world problems leads to
differential equations that depend on the past history in addition to the current
state. An excellent monograph of partial functional differential equations has been
published by J. Wu in 1996. By the same reason, many mathematicians have been
working on the delay partial difference equations. Much fundamental framework
has been done on the qualitative theory of delay partial difference equations in the
past ten years. And to the best of our knowledge, there has not been a book in the
literature presenting the systematical theory on delay partial difference equations
so far.

This book provides a broad scenario of the qualitative theory of delay partial
difference equations. The book is divided into five chapters. Chapter 1 introduces
delay partial difference equations and related initial value problems, and offers
several examples for motivation. In Chapter 2, we first discuss the oscillation of
the linear delay partial difference equations with constant parameters, where the
characteristic equations play an important role, then we present some techniques
for the investigation of the oscillation of the linear delay partial difference equa-
tions with variable coefficients. Chapter 3 is devoted to the study of the oscillation
of the nonlinear delay partial difference equations. In Chapter 4, we consider the
stability of the delay partial difference equations. In the last chapter, we introduce
some recent works on spatial chaos.

Most of the material in this book is based on the research work carried out by
authors and some other experts and graduate students during the past ten years.
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1.1. Introduction

Mathematical computations are frequently based on equations that allow us to
compute the value of a function recursively from a given set of values. Such an
equation is called a “difference equation.” Partial difference equations are types of
difference equations that involve functions of two or more independent variables.
Such equations occur frequently in the approximation of solutions of partial dif-
ferential equations by finite difference methods, random walk problems, the study
of molecular orbits, dynamical systems, economics, biology, population dynamics,
and other fields.

The theory of delay partial differential equations has been studied rigorously
recently. Delay partial difference equations can be considered as discrete analogs
of delay partial differential equations.

Example 1.1. In order to describe the survival of red blood cells in animals,
Wazewska-Czyzeska and Lasota proposed the equation

P(t) = —8p(t) + ge P, (1.1)

where p(t) is the number of the red blood cells at time ¢, § is the rate of death of
the red blood cells, g and a are parameters related to the generation of red blood
cells per unit time, and 7 is the time needed to produce blood cells. If we add one
spatial variable to (1.1) and assume that spatial migration is possible, then (1.1)
becomes the delay reaction diffusion equation

ap(x,t)
ot

=dAp(x,t) — 6p(x,t) + qe’“P("’”’t’T), (x,t) € QA x(0,0) = G,
(1.2)

where d is a positive constant, () is a bounded domain in R, where R denotes the

set of all real numbers, A p(x,t) = 9?p(x,t)/dx?, T and o are positive constants.
By means of standard difference method, we replace the second-order partial

derivative Ap(x,t) by central difference and dp(x, t)/0t by the forward difference,
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then under the assumption p(xm,t,) = pmn, (1.2) becomes the nonlinear delay
partial difference equation

Pm+in t Pmpn+l — Pman = _8pm,n + qe_apmfo’nq, (m: }’l) € Ng: (13)

where ¢g,a € (0,0),8 € (0,1), 0 and 7 € Ni, Ny = {t,t+ 1,...}, pm,n represents
the number of the red blood cells at site m and time n.

Example 1.2. Consider the temperature distribution of a “very long” thin rod. We
put a uniform grid on the rod and label the grid vertices with integers. Let uy,, be
the temperature at the integral time n and the integral position m of the rod. At
time n, if the temperature u,,_ , is higher than u,, ,, heat will flow from the point
m — 1 to m. The change of temperature at position m is Uy, pr1 — Ump, and it is
reasonable to postulate that this change is proportional to the difference 4,1, —
Umpn> SaY, T(Um—1,1 — Umn), Where 7 is a positive diffusion rate constant. Similarly,
heat will flow from the point m + 1 to m. Thus, the total effect is

um,n+1 - um,n = r(um—l,n - ”m,n) + r(um+l,n - um,n)a me Z) ne NO) (14)

whereZ ={...,-2,-1,0,1,2,...}.

Such a postulate can be regarded as a discrete form of the Newton law of
cooling. If we assume that the rod is semi-infinite, then (1.4) is defined on (m, n) €
N&.

In the model (1.4), we assume that heat flow is instantaneous. However, in
reality, it takes time for heat to flow from one point m to its neighboring points
m—1and m+ 1. Thus a corresponding model is the following delay heat equation:

Unmnel = Umn = 1 (Um-1,0-0 = Umn-g) + 1 (Umstn-0 — Umn-o),  (L.5)

that is,
Uil = Umn = Thm—1,n-0 = 2MlUmp—g + TUm+1n—o- (1.6)
In this monograph, we develop the qualitative theory of delay partial differ-
ence equations, especially the oscillation theory and the stability theory for delay

partial difference equations with two variables. We will introduce some recent re-
sults about spatial chaos in the final chapter.

1.2. Initial value problems and initial boundary value problems

In Chapter 2, we will consider the delay partial difference equations of the form

Am+1,n + Am,n+1 - pAm,n + Z q:’Am—k,-,n—l,- = 0’ (17)

i=1
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where p and g; are real numbers, k; and [; € Ny, i = 1,2,...,u, and u is a positive
integer.

Set k = maxk;, | = maxl;,i=1,2,...,u. Theset Q = N_;x X N_; \ No X N; is
called the initial domain. A function ¢; ; defined on € is called the initial function.
Equation (1.7) together with an initial condition

Aij=0ij (1,j) €Q, (1.8)

is called an initial value problem.

Using inductive arguments it is easy to see that the initial value problem (1.7)
and (1.8) has a unique solution {A,,,}, (m,n) € Ny X N;. In fact, we rewrite (1.7)
in the form

u
Am,n+1 = PAm,n - Am+1,n - Z QiAm—k,,n—li: (1.9)
i=1
and use it to successively calculate Ag 1, A1,1, Aoz, A21> A1z, Aos, - ... The double

sequence {A,,,} is unique, and is called a solution of the initial value problem
(1.7) and (1.8).

For some partial difference equations, we have to consider the initial condi-
tion together with certain boundary value conditions, which is usually the case in
partial differential equations.

Example 1.3. Consider the delay parabolic equation

ou(x,t)

w0 a(t) ?u(x, t)

ox?

—q(Ou(x,t — o), (1.10)

where ¢ > 0 is the delay. Such equations can be used to model problems of popu-
lation dynamics with spatial migrations. However, in population dynamics where
the population density fluctuation in a seasonal manner and settlements are al-
lowed only in concentrated locations, it is more appropriate to consider partial
difference equations with delay of the form

2 . .
Azui’j = ajAlu,-_l,j — qjUij-o> 1<i<n, ] = 0, (111)
where ¢ is a nonnegative integer, a;,q; : No — R, and
Aruij = Ui1,j — Ui

Aouij = ujj+1 — Ui, (1.12)

2
Afuiorj = Ay (Avuioyj) = tivnj — 2uij + Uioyj.
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We will assume that u; j is subject to the conditions

Uo, j + ajuyj = 0, ] > 0,

Uni1,j + Bjunj =0, j=0, (1.13)
Uij = Pij» —USjS0,0SiSn-f—l,

where j +1=0and;+1=0forj = 0.

Given an arbitrary function p; ; which is defined on —0 < j <0and 0 < i <
n + 1, we can show that a solution to (1.11)—(1.13) exists and is unique. Indeed,
from (1.11), we have

uin = aopir1,0 + (1 — 2a0) pio + dopi-1,0 — Gopi—o» 1<i<n

(1.14)
Up,1 = —X1U1,15 Upt+1,1 = —ﬁlun,l-

Inductively, we see that {u,,jﬂ !is uniquely determined by {u;} i~ o k<.
We will introduce some 1n1t1al boundary value problems of nonlinear partial
difference equations in the later chapters.

1.3. The z-transform

Let {A,,,} be a double sequence, (m,n) € Ng. The z-transform of this sequence is
denoted by Z(A,,,) and is defined by

Z(Ann) = F(z1,22) Z Z mnZ] ™ (1.15)

if series (1.15) converges for |z;| > r;, r; = 0,i = 1,2. The notation Z denotes the
operation of applying the z-transform. z; and z, are complex variables which may
take any value in the complex plane. Equation (1.15) defines a complex analytic
function of the variables z; and z; in the region |z;| > r; and |z| > r».

Lemma 1.4. Assume that there exist positive constants My, M, and N such that
|Apn| < Myr*r), m=>M, n>N. (1.16)

Then the z-transform of {Am,n} exists in the region |z1| > 1y and |z| > 1.

In the following, we assume that A,,, = 0 for m < 0 and n < 0 in the series
S » Z:f:q Amnzi "2y ". By direct calculations we can prove the following lemma
easily.
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Lemma 1.5. The following formulas are true:

(@)
Z(Amkn1) = 2°%,'Flz1,22); (1.17)
(ii)
iF(k +i,2)27" = 2f (F(zl,Zz) - kZ:LF(WZ,Zz)Zlm), (1.18)
pard =

where F(k+i,22) = Yoo Akiny s

(iif)

o -1 k-1 1-1
> D> Awnzi™z Z ZAm,,zl z ) (1.19)

HMg

Z k+i,n21_izz_n = Zlf(
(iv)
D D Amnzi" ZF z1,i)z5", (1.20)

where F(zi,n) = X0 0 Amnzi ™

(v)

Z(Am+k,n+l) = ZIsz< (z1,22) — Z F(m,z)z

k=1 I-1 (1.21)

-1
= > Flzim)z"+ D> D Amnzi "2y )
n=0

m=0 n=0

1.4. The Laplace transform

Assume that A(x, y) is a real or complex value function of two real variables, de-
fined on the region D = {(x,y) | 0 < x < 0,0 < y < co} and integrable in the
Lebesgue sense over an arbitrary finite rectangle D, (0 < x < a,0 < y < b).

We will consider the expression

a b
F(p,qsa,b) :J J e PVA(x, y)dxdy, (1.22)
0 JO

where p = 0+ipand g = 7+iv are complex parameters determining a point (p, q)
in the plane of two complex dimensions. Let S be the class of all functions A(x, y)
such that the following conditions are satisfied for at least one point (p, q).
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(1) The integral (1.22) is bounded at the point (p, q) with respect to the vari-
ables a and b, that is,

|F(p,q;a,b)| <M(p,q) Ya=0,b=>0, (1.23)

where M(p, q) is a positive constant independent of a and b.
(2) At the point (p, q),

lbim F(p,q;a,b) = F(p,q) (1.24)

exists. We denote the limit by

F(prq) = Lpg{AGx )} = H: e P Ax, y)dx dy. (1.25)

The integral (1.25) is called the two-dimensional Laplace transform (or integral)
of the function A(x, y).

If the conditions 1 and 2 are satisfied simultaneously, we will say that the in-
tegral (1.25) converges boundedly for at least one point (p, g). Thus the class S
consists of functions for which the integral (1.25) converges boundedly for at least
one point (p, q). When the integral (1.25) converges boundedly, we will call A(x, y)
the determining function and F(p, q) the generating function.

Remark 1.6. If the function A(x, y) satisfies the condition
|A(x, y)| < Me*tkr (1.26)

forall x = 0, y = 0, where M, h, k are positive constants, then it is easy to prove
that A(x, y) belongs to the class S at all points (p, g) for which Re p > h, Regq > k.

Theorem 1.7. If the integral (1.25) converges boundedly at the point (po, qo), then it
converges boundedly at all points (p, q) for which Re(p — po) > 0, Re(q — qo) > 0.

1.5. Some useful results from functional analysis and function theory

Theorem 1.8 (Fabry theorem). Let F(z1,2,) be defined by

F(z1,2) = Z Zam,,,z;ng”, (1.27)
0

where z) and z; are complex and |z;| < a;, i = 1,2. Assume that a,, = 1+ 0(1/M),
M = max(m, n). Then F(z1,z,) is singular at zy = 1 and z, = 1.

Let Q) be a convex subset of R, and let f : O — R be convex, that is,

flax+ (1 —a)y) <af(x)+(1-a)f(y), (xy)€Q, ac(0,1). (1.28)
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Then the following Jensen’s inequality holds:

— Lbf(x(t))dt > f(— Lb x(t)dr). (1.29)

A nonempty and closed subset E of a Banach space X is called a cone if it possesses
the following properties.
(1) fa € R"and y € E, then au € E.
(2) Ify,v € E,thenpy+v € E.
(3) Ify € E— {0}, then —u € E.
A Banach space X is partially ordered if it contains a cone E with nonempty
interior. The ordering < in X is defined by

u<v iffv—u€ckE (1.30)
Let S be a subset of a partially ordered Banach space X. Set
S={ueX:v<uforeveryv € S}. (1.31)

The point uy € X is the supremum of Sif uyp € S and for every u € S, u < u.
Then infimum of § is defined in a similar way.

Theorem 1.9 (Knaster-Tarski fixed point theorem). Let X be a partially ordered
Banach space with ordering <. Let S be a subset of X with the property that the
infimum of S belongs to S and every nonempty subset of S has a supremum which
belongs to S. Let T : S — S be an increasing mapping, that is, u < v implies that
Tu < Tv. Then T has a fixed point in S.

Remark 1.10. In Knaster-Tarski fixed point theorem the continuity of T is not
required.

Theorem 1.11 (Brouwer fixed point theorem). Let Q be a nonempty, closed, bound-
ed, and convex subset of R", and let T : Q — Q be a continuous mapping. Then T
has a fixed point in Q.

Theorem 1.12 (Banach fixed point theorem). Let (X,d) be a nonempty complete
metric space and let T : X — X be a contraction mapping. Then T has a fixed point
inX.

Theorem 1.13 (Schauder fixed point theorem). Let Q be a nonempty, closed, and
convex subset of a Banach space X. Let T : Q — Q be a continuous mapping such
that TQ is a relatively compact subset of X. Then T has at least one fixed point in Q).

Theorem 1.14 (Krasnoselskii fixed point theorem). Let X be a Banach space and let
Q be a bounded closed convex subset of X. Ty and T, are maps of Q into X such that
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Tix + Try € Q for every pair x, y € Q. If Ty is a contraction and T, is completely
continuous, then the equation

Tix+Thx=x (1.32)

has a solution in Q.

1.6. Notes

Elementary discussions of partial difference equations and various applications are
included in several books, for example, Levy and Lessman [89], Cheng [29], Kelley
and Peterson [77], Agarwal [2], and so forth, also see [19, 22, 48, 49, 92, 118, 132].
In [2, 77, 89], authors only discuss the partial difference equations without de-
lay. There are few discussions of the delay partial difference equations in [29]. The
theory of delay partial differential equations can be found by Wu [154]. The be-
havior of differential equations can be different with its corresponding difference
versions, see Hooker [70].

Example 1.1 is taken from Zhang and Saker [177]. Example 1.2 is taken from
Cheng [29]. The initial value problem of (1.7) is posed by Zhang et al. [176] and
Zhang and Liu [169]. Example 1.3 is taken from Cheng and Zhang [42]. Equation
(1.10) is studied by Bainov and Mishev [15]. Theory of the z-transform can be
seen from Vich [146], also see Gregor [67]. Laplace transform of two variables
is taken from Ditkin and Prudnikov [54]. Theorem 1.8 is taken from Gilbert [63].
Some fixed point theorems in Section 1.5 are classical, which can be found in many
books.



Oscillations of linear delay partial

it .

2.1. Introduction

In this chapter, we will systematically describe the theory of oscillations of linear
delay partial difference equations, that is, we study the existence and nonexistence
of positive solutions of the initial value problem of linear delay partial difference
equations. We will begin with linear PDEs with constant parameters by the anal-
ysis of characteristic equations and then discuss the case with variable coefficients
presenting various available techniques. We present results for the equation with
integer variables first, then we show which technique is needed for the equation
with continuous arguments to the similar results.

2.2. Linear PDEs with constant parameters

Consider the delay partial difference equation

u
Am+1,n + Am,n+1 - pAm,n + Z q;‘Amfk,,nfl, =0, mmn=012,..., (2.1)

i=1

where p and g; are real numbers, k; and [; € Ny, i = 1,2,...,u, u is a positive
integer. A solution of (2.1) is a real double sequence {A;;}, (i, j) € Np X N, which
satisfies (2.1).

A solution {A;;} of (2.1) is said to be eventually positive (negative) if A;; >0
(Aj; < 0) for all large i and j. It is said to be oscillatory if it is neither eventually
positive nor eventually negative. The purpose of this section is to derive a sufficient
and necessary condition for all solutions of (2.1) to be oscillatory.

A solution {A;j} of (2.1) is called to be proper if there exist positive numbers
M, a, and f3 such that

| Apn | < Ma™B" (2.2)

for all large m and n.
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It is not difficult to prove that if the initial data satisfy
|G| < Mia”B",  (m,n) € Q, (2.3)

for some positive numbers M, «, and 3, then the corresponding solution is proper.
We look for the solution of the form

Ay = A", (2.4)

where A and y are complex. Substituting (2.4) into (2.1), we obtain the character-
istic equation

Ohu) =A+u—p+> grFpl=o. (2.5)

i=1

Theorem 2.1. Every proper solution {A,,,} of (2.1) is oscillatory if and only if its
characteristic equation (2.5) has no positive roots.

Proof .

Necessity. Otherwise, let (Ao, o) be a positive root of (2.5). Then it is easy to find
that {A,,,} with A,,, = Aj'ug is a positive proper solution of (2.1), a contradic-
tion.

Sufficiency. Assume that (2.5) has no positive roots. Let {A,,,, } be a positive proper
solution of (2.1) with the initial data ¢,, , such that |¢,.| < ¢, (m,n) € Q. Then,
by induction, it is easy to find that there exists b > 0 such that

|Apn| < bc™m,  (m,n) € N§. (2.6)

Hence, by Lemma 1.4, for |z;| > ¢, i = 1,2, the z-transform of {A,,,,}

Z(Amn) = Z Apnzi 2" = F(z1,22) (2.7)

m,n=0

exists. By taking the z-transform on both sides of (2.1), we obtain

Z(Am+1,n) + Z(Am,n+1) - pZ(Am,n) + Z q:’Z(Amfk,,n—l,ﬂ) =0. (28)
i=1

By Lemma 1.5, (2.8) becomes

u
z21F(21,22) + 22F (21, 22) — pF(z1,22) + ZQikaiZEZiF(Z1,Zz)
i-1

o o (2.9)
-7 ZAO,HZZ‘” -2 Z Amozi™ =0, |zi| >c, i=1,2

n=0 m=0
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Set

u
(D(Zl,Zz) =z1+t2z, — p + z qisz"z;l",
i=1

. . (2.10)
v(z2) =21 ) Auzy "+ 20 D, Amozi ™
n=0 m=0
Then (2.9) becomes
(D(Z1,Zz)F(Zl,Zz) = V/(Z],Zz), |Z,‘| >c i=1,2. (2.11)
We rewrite (2.11) in the form
oL 1)e(L 1) =y(L 1) e
VAR %) VAR %) VAR %)
Set
11 o o
wianz) = F(5 1) = Y At (2.13)
VAR %)

m,n=0

Equation (2.13) has the radius of convergence r;, i = 1,2, that is, (2.12) holds for
|zil < r;,i=1,2.Equivalently, (2.11) holds for |z;| > 1/r;,i = 1,2. By Theorem 1.8,
a power series with positive coefficients having the radius of convergence r;, i = 1,2
has the singularity at z; = r;, i = 1,2. Since (2.5) has no positive roots, we have
DO(z1,2;) # 0 for (z1,23) € (0,0) X (0, 00). Thus ®(1/r1, 1/r2) # 0, and hence

l//(l/Z], 1/22)

q)(l/Zl,l/Zz) (2.14)

w(z,22) =

is analytic in the region |z; — ri| < p; and |z, — 2| < p,, where p; and p, are
positive constants, which contradicts the singularity of w(z;,z;) atz; = r;, i = 1,2.
Therefore we must have r; = o0, i = 1,2, that is, (2.11) holds for |z;| >0,i = 1,2,
which leads to A,,, = 0 for all large m and n. Otherwise, the equality in (2.11)
does not hold. This contradiction proves Theorem 2.1. ]

From Theorem 2.1, we can derive an explicit condition for the oscillation of
all proper solutions of (2.1).

Theorem 2.2. Assume that p >0, g; = 0, i = 1,2,...,u. Then every proper solution
of (2.1) oscillates if

u

Z A (k, +L+1
i-1 @ K1 phevliet

)k,-+l,-+1
> 1. (2.15)
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Proof. If (2.15) holds, we are going to prove that the characteristic equation (2.5)
has no positive roots. Clearly, (2.5) has no positive roots for A + y — p = 0. For
A+ u— p <0, we write (A, y) in the form

) = (p— A )( 3 g A ) (2.16)
DA, = — A= -1+ i— . 2.16
U p u < q P 21— u
Set
/\—ki‘“—li
Apu) = ———. (2.17)
filh,u Py

Solving dfi/0A = 0 and df;/du = 0, we obtain

_ pki _ pli
Aofki+l,-+1>0’ yofki+l,ﬂ+1>0' (2.18)

It is easy to find that f;(A, u) reaches its minimum value at (Ao, o), that is,

: (/1 ) — (/\ ) — (k’+l’+—1)k‘+ll+l (2 19)
O<r/{1+1[ipﬁ = fl 0>Ho) = klk"lf‘pkﬁlﬁl :
Hence, for 0 < A + y < p, we have
u (ki i li i 1)k,-+—l,-+—1
‘D(A,//‘)>(P_A—//‘)(—1+i_zl%lmw >0, (2.20)

which implies that (2.5) has no positive roots. By Theorem 2.1, every proper solu-
tion of (2.1) oscillates. O

For u=1, (2.15) is not only sufficient but also necessary for every proper solu-

tion of (2.1) to be oscillatory.
Consider the equation

Am+l,n +Am,nJrl - pAm,n + qu—k,n—l = 0> (221)
where k,l € Nj.
Theorem 2.3. Every proper solution of (2.21) oscillates if and only if

(k+1+ 1)k

kkllpk+l+1 > 1. (2'22)
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Proof. To prove this theorem it is sufficient to prove that if (2.22) does not hold,
then (2.21) has a positive proper solution. In fact, the characteristic equation of
(2.21) is

O\ p)=A+u—p+grFul=o0. (2.23)

Obviously, if (2.22) does not hold, then

plk+1) pl )
(D<k+l+1’k+l+1 >0,
(2.24)

k+l+1
( pk pl ) p (71+ (k+1+1) )SO'

k+1+1k+1+1)  k+l+1 Kkl pk+l+1

Since @ (A, ) is continuous, then there exist

pk p(k+1)) _pl
Aoe[k+l+1’k+l+1 ’ #0_k+l+1 (2.25)

such that ®(Ao, 4o) = 0. By Theorem 2.1, (2.21) has a positive solution. The proof
is complete. O

The above method is available for other linear PDEs with constant parame-
ters.
For example, we consider the hyperbolic type partial difference equation

u
Am—l,n - Am,n—l - pAm,n + Z inm+k,-,n+l,v = O) m,n = 0) 1) 2>- ce (226)

i=1

where p, q; are real numbers, k; and l; € Ny, i = 1,2,...,u, u is a positive integer.
A solution of (2.26) is a real double sequence {A;;}, (i, j) € N, which satisfies
(2.26).

We look for the solution of the form (2.4). Substituting (2.4) into (2.26) we
obtain the characteristic equation

OLp) =11 —p = p+ > gy =o. (2.27)

i=1

Theorem 2.4. Every proper solution {A,,,} of (2.26) is oscillatory if and only if its
characteristic equation (2.27) has no positive roots.

The proof is similar to the proof of Theorem 2.1.

From Theorem 2.4, we can obtain sufficient conditions, given explicitly in
terms of the coefficients and the delays, for the oscillation of all proper solutions
of (2.26).
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Theorem 2.5. Assume that p >0, q; = 0, and 1 +k; > 1I;, i = 1,2,...,u. Then every
proper solution of (2.26) oscillates if

(k= L+ 1)
> q,-—( T kv+)l — > (2.28)
i=1 kil prith
For u = 1, (2.28) is not only sufficient but also necessary for the oscillation of
all proper solutions of (2.26).
Consider the equation

Am—l,n - Am,n—l - PAm,n + qu+k,n+l = 0) m,n = 0) l) 2) ) (229)
where k,I € Nj.

Theorem 2.6. Assume that p,q > 0, 1 + k > I Every proper solution of (2.29)
oscillates if and only if

k—1+1 k—I+1
qW (2.30)
Remark 2.7. From Theorem 2.1, the characteristic equation (2.1) plays an impor-
tant role in the investigation of the oscillation of solutions of linear PDEs with
constant parameters. But to determine if the characteristic equation has no pos-
itive roots is quite a problem itself. We want to find the necessary and sufficient
condition expressed in terms p, gq;, k;, I; for the oscillation of (2.1), which is an
open problem.

2.3. Systems of linear PDEs with constant parameters

Consider the linear partial difference system in the form

u v
Am,n = Z piAm—ki,n—l, + Z QjAm+rj,n+z7j) m,n = 0) 1>- B (231)
i=1 j=1
where p; and g; are r X r matrices, Apn = (@}, 02> @) s kis i 7j, 05 € No,
i=1,2,...,u,j=1,2,...,v, uand v are positive integers.

By a solution of (2.31) we mean a sequence {A,,} of Ay, € R", which satis-
fies (2.31) for m,n € Nj.

A sequence of real numbers {4}, ,} is said to oscillate if the term 4}, ,, is not all
eventually positive or eventually negative in m, n. Let {A,,,,} be a solution of (2.31)
with Ay = (@), 8%, ah,,)T for myn € Ny. We say that the solution {A,,,}
oscillates componentwise if each component {aﬁn,n} oscillates. Otherwise, the solu-
tion {A,,} is called nonoscillatory. Therefore a solution of (2.31) is nonoscillatory
if it has a component {a, ,}, which is eventually positive or eventually negative in
m, n.
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The solution {A,,,} of (2.31) is said to be proper if there exist positive num-
bers M, a, and f3 such that

[[Apn|] < Ma™B"  for m,n € No. (2.32)

In the following, we will show the sufficient condition for all solutions to be
proper for the linear difference system

Am,n = ZpiAm—kg,n—li~ (2-33)
i=1

Set k = maxk;, | = maxl;, i = 1,2,...,u, Q = N_x X N_; \ Ny X N;. Given a
function ¢; ; defined on (), it is easy to construct by induction a double sequence
{A;;} which equals ¢;; on Q and satisfies (2.31) on Ny x Ni. It is not difficult
to prove that if the initial data ¢,,, satisfy (2.32) on Q, then the corresponding
solution of (2.33) is proper. Similarly, we can find some conditions to guarantee
that every solution of (2.31) is proper.

The purpose of this section is to derive the sufficient and necessary condition
for all proper solutions of (2.31) to be oscillatory componentwise.

Theorem 2.8. Every proper solution {Ap,,} of (2.31) oscillates componentwise if and
only if its characteristic equation

det <Zp,‘lk"‘ul" -1+ Z qﬂﬂy”j) =0 (2.34)

i=1 j=1
has no positive roots.

Proof. The proof of “only if” is simple. Suppose to the contrary, let (Ao, yo) be a
positive root of (2.34), then there would be a nonzero vector { € R” such that

(prlo"wo"‘ SEDY qjkoffﬂo”j)( -0 (2:39)

i=1 j=1

which implies that A, = Ag'ug( is a proper solution of (2.31) with at least one
nonoscillatory component, which is a contradiction.

The proof of “if” uses the z-transform. Assume that (2.34) has no positive
roots and (2.31) has a proper solution {A,,, } with at least one nonoscillatory com-
ponent. Without loss of generality, we assume that {a), ,} is eventually positive. As
(2.31) is autonomous, we may assume that a}, , > 0 for m, n € Ny. For the proper
solution {A;,,}, the z-transform

Z(Amn) = D Amazi"z" = F(z1,22) (2.36)

m,n=0
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exists for |z;| > a > 0, |z2] > 8 > 0. By taking the z-transform of both sides of
(2.31) and using some formulas of the z-transform in Section 1.3, we obtain

¢(z1,22)F(z1,22) = ¥(z1,22), (2.37)

where

d(z1,22) = ZP:Z1 z +Z%Z1 Zz -1

i=1 j=1

v 7i-1
v(z1,22) Z z1 2 (Z ZAmnz1 2"+ Z ZA,MZ1 " (2.38)

m=0 n=0 n=0 m=0

7j—1 0j—1
— Z Z Am)nzf’”zz_").

m=0 n=0

By condition (2.34), det¢(z1,22) # 0 for z; X z; € (0,0)%. Let Fy(z1,22)
be the z-transform of the first component {a}ﬂ,n} of the solution {A,,,} and let
b be the modulus of the largest zero of det ¢(z;,z,). Then by Cramer’s rule, for
|zi| > max{a, b}, |z2| > max{p, b},

det(/)(Zl,Zz)Fl (Zl,Zz) = detD(Zl,Zz), (2.39)

where D(z1,z,) has components of ¢(z1,2,) and y(z1,2;) as its entries and

[

Fi(z1,22) = z Ay, n2i "2 " (2.40)
m,n=0
Let
1 1 < 1 m_n
wi(zi,2) = Fi| =, — ) = > al,,zl'z. (2.41)
Z1 Z m,n=0

Equation (2.41) is a power series with positive coefficients having the radius of
convergence p;, i = 1,2. Hence

detgb(i,l)wl(zl,zz) detD(— i) (2.42)
21 2 21 2

for |zi| < pi, i = 1,2. By Theorem 1.8, a power series with positive coefficients hav-
ing the radius of convergence p;, i = 1,2 has the singularity at z; = p;, i = 1,2. By
condition det ¢(z1,2,) # 0 for (z1,22) € (0, ) X (0, c0). Thus det ¢(1/p1, 1/p2) #0,
and hence

detD(1/z1,1/22)

det¢(1/z1,1/22) (243)

WI(ZI)ZZ) =
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is analytic in the regions |z; — p1| < d; and |z; — p2| < dy, where d; and d,
are positive constants, which contradicts the singularity of w,(z1,22) at z; = p;,
i = 1,2. Therefore, we must have p; = o0, i = 1,2, that is, (2.39) holds for |z;| > 0,
i = 1,2, whichleads to a}, , = 0 for all large m and n. Otherwise, for any fixed large
numbers M and N, the left-hand side of (2.39) has the nonzero term by, ,z; "z, ",
where m = M and n > N. But the right-hand side of (2.39) has no such term. This
contradiction proves Theorem 2.8. |

For the scalar linear difference equation

u v
Amn = Z piam—ki,n—li + Z qjam+rj,n+oj) m,n = 0) 1) 2) e (244)
i=1 j=1

we have the following result.

Corollary 2.9. Every proper solution of (2.44) oscillates if and only if the character-
istic equation

1= Z pi/\"k"y_l" + Z qjA"u (2.45)
i=1 j=1

has no positive roots.

From Corollary 2.9 we can derive explicit conditions for the oscillation of all
proper solutions of some special equations.

2.4. Linear PDEs with continuous arguments

In this section, we will consider the linear delay partial difference equation with
continuous arguments

Ax+1,y)+Ax,y+1) —Alx, y) + pAlx —0,y —7) =0, (2.46)

where p € R, 72 0,0 = 0.

By a solution of (2.46) we mean a continuous function A € C([—o0, ) X
[-7,),R), which satisfies (2.46) forall x = 1, y = 1. Let Q = [—0,+) X
[—7,+00)\ [1,+00) X [1,+00). Given an initial function ¢(x, y) € C(Q,R), by the
method of steps, one can see that (2.46) has a unique solution on [1, o) X [1, o),
which satisfies the initial condition on Q.

A solution A(x, y) of (2.46) is said to be eventually positive (negative) if
A(x,y) > 0 (A(x,y) < 0) for all large x and y. It is said to be oscillatory if it is
neither eventually positive nor eventually negative.

A solution A(x, y) is said to be proper, if there are positive constants M, h, and
k such that

|A(x, y)| < MeM™™>  for all sufficiently large x and y. (2.47)
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It is easy to prove that if the initial function ¢(x, y) satisfies |§(x, y)| < M exp(h1x+
kiy), hi > 0, ki > 0, (x,y) € Q, then the corresponding solution of (2.46) is
proper.

Consider (2.46) together with its characteristic equation

S ) = A+u—1+prou ™ =0. (2.48)

Theorem 2.10. Every proper solution A(x, y) of (2.46) is oscillatory if and only if the
characteristic equation (2.48) has no positive roots.

Proof.
Necessity. Otherwise, let (Ao, po) be a positive root of (2.48). Then it is easy to find
that A(x, y) = /lf)‘yg is a proper positive solution of (2.46), a contradiction.

Sufficiency. Assume that (2.48) has no positive roots. Let A(x, y) be a proper pos-
itive solution of (2.46). By Theorem 1.7, for Res > h, Req > k, the Laplace trans-
form of A(x, y)

F(s,q) = Ly {A(x, )} = H eV A(x, y)dxdy (2.49)
0
exists. Taking the Laplace transform on both sides of (2.46), we obtain

f(s,q)F(s,q) = W(s,q), (2.50)

where

f(s,q9) =¢e +el—1+ pe ™7,
+oo 1

W(S) q) = eSJ J e—sx—qus(x,y)dx dy
0 0

+oo 1
+ et J' J e Ve(x, y)dydx +y(s,q),
o Jo

+0co 0 (251)
y(s,q) = —pe 1" ( Jo J‘, e V¢(x,y)dxdy

+o0 0
+ J J e V(x,y)dydx
0 -0

+ J: Ji e V¢(x, y)dx dy).

Since F(s,q) is the Laplace transform of a positive function, if sy > —o0, g >
— o0, in the sense of analytic continuous, F(s, q) must have the singularity at point
(s0,q0). But W (s, q) is an entire function of (s,q) on the two-dimensional plane,
and because f(s,q) = ®(e%, 1), so f(s,q) # 0 for all real (s,q). Equation (2.50)
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shows that F(s,q) can be analytically continued to a neighborhood of any real
(s,q). Thus, we must have sy = —o0, gy = —o0, and (2.50) holds for all real (s, q).
Now limg 41w f(5,q) = +00, 50 f(s,q) > 0 for all (s,g). f(s,q) is dominated by
pe 9" ass — —o0, g — —0c0, so we must have p > 0. On the other hand, W (s, q)
is dominated by y, as s = —o, g — —oo0. Since p > 0,e7*°71" > 0, and ¢(x, y) > 0,
we conclude that W (s, q) is negative as s — —o0, g — —oo. But F(s,q) = 0. Itis a
contradiction. This contradiction proves Theorem 2.10. |

The next result provides explicit conditions for the oscillation of all proper

solutions of (2.46).

Theorem 2.11. Assume that p > 0. Then every proper solution of (2.46) oscillates if
and only if

(o+T+1)7+H

e > 1. (2.52)

Proof. To prove the necessity of this theorem, we need to prove that if (2.52) does
not hold, then (2.46) has a positive proper solution. In fact, the characteristic equa-
tion of (2.46) is

DA, p) =A+u—1+pAu ™ =0. (2.53)

Obviously,

+1
q>(" — )>0,
c+17+1 o+7+1

q)( g L ): ! (—1+pw)s0.

o+1+170+1+1 o+1+1 0917

(2.54)

Since @ is continuous, there exist

o o+1 T
A E[ , ), = — 2.55
0 oc+17+1 o+7+1 Ho o+71+1 ( )

such that ®(Ag, yg) = 0. Then by Theorem 2.10, (2.46) has a positive proper solu-
tion.

Sufficiency. 1f (2.52) holds, we are going to prove that the characteristic equation
(2.48) has no positive roots. Clearly, (2.48) has no positive roots for A + y = 1. For
A+ u < 1, we have

A0y T
®(A,y)=(l—)t—y)(—l+f_/\7‘u_‘u>. (2.56)
Set

/\—a‘u—r

Fp) = ey — (2.57)
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It is easy to see that f(A,u) reaches its minimum value at 4y = o/(c + 7 + 1),
po = /(0 + 7+ 1), that is,

(o+71+1)7F7H

of?ljllf()"”) = s (2.58)
Hence, for 0 < A + u < 1, we have
o+1+1
®(A,y)2(l—A—y)<—l+%>>o (2.59)

which implies that (2.48) has no positive roots. By Theorem 2.10, the proof is com-
pleted. ]

Example 2.12. Consider the partial difference equation
Alx+1,y) +Al,y+1) —Alx, y) +A(x — 2,y —4) =0, (2.60)
its characteristic equation is
Ap—1+12ut=0. (2.61)

Obviously, (2.61) has no positive roots.

By Theorem 2.10, every proper solution of (2.60) is oscillatory. It is easy to
find that A(x, y) = ¢ sinzx + ¢, siny is a proper solution of (2.60) and is oscil-
latory, where ¢; and ¢, are arbitrary constants.

The above results can be extended to the partial difference equation with sev-
eral delays of the form

Alx+1,) +A(x, y +1) — pA(x, y) + > piA(x — g,y — 11) = 0, (2.62)
i=1

where p >0, 05,7, € (0,00),i=1,2,...,n.

Theorem 2.13. Every solution of (2.62) is oscillatory if and only if its characteristic
equation

Op) =A+u—p+> pA % =0 (2.63)

i=1

has no positive roots.
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Theorem 2.14. Assume that p > 0, p; > 0, i = 1,2,...,n, then every solution of
(2.62) oscillates if
i 4(01‘ + 71+ 1)Ji+T‘+1

e > 1. (2.64)

i=1
2.5. Linear PDEs with variable coefficients

2.5.1. Oscillation of PDEs with variable coefficients (1)

Consider the linear delay partial difference equation
aAm+1,n+1 + bAm+1,n + CAm,n+1 - dAm,n + pm,nAm—k,n—l = 0) (265)

where p,,., > 0on Ng, k,I € Ny.

A double sequence {A, .}, (m,n) € Ny, X Ny, is said to be a solution of
(2.65), if it satisfies (2.65) for m = mq, n > ny.

We assume that a, b, ¢, d, and py, », (m,n) € Ny, X Ny, are positive.

Define the set E by

E={A>0|d—Apmnn, >0 eventually}. (2.66)

Theorem 2.15. Assume that

) limsupm,naw Pmn > 05
(ii) fork =1 = 1, there exist M,N € Ny such that

1 k-1

- I
sup ALT(d=Apmoin-i) [1(d = Apmotejnt) < (a N %) b,

AeE,m=M,n=N ;=1 j=1

(2.67)

and forl = k = 1,
k -k bk
sup A 1_[ (d = Apm—in-i) 1_[ (d = Apm—kn-k-j) < (a + 7) -,

AeE,m>=M,n>=N =1 j=1

(2.68)

Then every solution of (2.65) oscillates, where H?:l * = 1.

Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(2.65). We define the set S(A) of positive numbers by

S(A)={A >0 | aApr1nr1+bAms1n+cAmnr1 — (d — Apimy) Amy < 0 eventually}.
(2.69)
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From (2.65), we have
aAm+1,n+1 + bAm+1,n + CAm,n+1 < dAm,n- (270)

If k > I, then we obtain

1 1 k-1
a a\ (b
Am—k,n—l > (E) Am—k+l,n > (E) (E) Am,n- (271)
If I > k, then we obtain
k k I-k
a a C
Am—k,n—l > (a) Am,n—l+k > (E) (E) Am,n- (272)

Substituting (2.71) and (2.72) into (2.65), we obtain
I

k-1
a\ (b
aAm+1,n+1 + bAm+l,n + CAm,n+1 - dAm,n + (E) (E) Pm,nAm,n < 0>

(2.73)

k -k
a C
aApiipe bAm+1,n + cAmni1 — dAm,n + (E) (E) PmpnAmn <0,

respectively. Equations (2.73) show that S(A) is nonempty. For A € S(A), we have
eventually

d—Apmn >0, (2.74)

which implies that S(A) < E. Due to condition (i), the set E is bounded, and hence
S(A) is bounded. Let 4 € S(A). From (2.70), we have

d d
Am+1,n+1 < EAm,n-*—l) Am+1,n+1 =< ;Am-%—l,n- (275)

Hence, we obtain

2bc
(a + 7)Am+l,n+1 < aAm+1,n+1 + bAm+l,n + CAm,n+1 < (d - ,“pm,n)Am,n-
(2.76)

If k > [, we have

-1
Am,n = (a + %) (d - ,upm—i,n—i)Am—l,n—l:

I
=1

1

1
Am—l,n—l = E(d - ."‘Pm—l—l,n—l)Am—l—l,n—l (2.77)

IA

1 k-1 k-1
= (E) [T(d = ppmi-jn-1)Am-knt-
j=1
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Combining the above two inequalities, we obtain

23

b -1 I k-1
Am,n = (61 + 76) bl_k l_[ (d - ,“pm—i,n—i) l_[ (d - ,“pm—l—j,n—l)Am—k,n—l-
j=1

i=1

Similarly, if I > k, we have

(2.78)

2be k l k -k
Am,n =< ( ) 1_[ d - ﬂpm—i,n—i) 1_[ (d - ﬂpm—k,n—k—j)Am—k,n—l-
i=1 j=1

Substituting (2.78) and (2.79) into (2.65), we find, for I > k,

2bc\" -
Am+1,n+1 + bAm+1,n + CAm,rH—l dA m,n + pm n (a + 7) C k

k -k -1
X (n (d - ,upmfi,n—i) l_[ (d - ,“pmk,nkj)) Am,n <0,
i=1 j=1
and, fork > [,

2bc
aAm+1,n+1 + bAm+l,n + CAm,n+1 - dAm,n + Pm,n (a d ) bk !

k-l -
(d - #Pm—z-j,n—z)> Apn <0.

1
x ( [T~ tpmsn-d)
i=1

j=1
Hence we have, for [ > k,

aAerl,nJr] + bAm+1,n + CAm,n+1

k
- (d — Pmn (a + %) ok

I-k

(2.79)

(2.80)

(2.81)

k -1
X sup N |:1_[ (d UPm—in—i 1_[ (d - ,upmk,nkj):| )Am,n <0,

—

i=1 j=

(2.82)
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and, fork > [,

aAm+1,n+1 + bAm+1,n + CAm,n+1
2bc!
(oo 2

1 k-1 -1
X sup |:l_[ (d - ﬂpm—i,n—i) 1_[ (d - ﬂpm—l—j,n—l)j| )Am,n < 0.
j=1

m=M,n=N | j—1
(2.83)
From (2.82) and (2.83), we obtain, for [ > k,
2bc\* k Lk -
(a+7) ClikX ( sup I:l_[ (d_,upmfi,nfi) l_[ (d_[/‘pmk,nkj)] ) eS(4),
m=M,n=N | j—1 j=1
(2.84)
and, for k > I,
by 1 k-1 -1
(a+7) bk’x( sup [ (d=ppmin—i) | | (d—ﬂpm—l—jm—l)} ) €5(A).
m=M,n=N [ ;= i=1

-

(2.85)

On the other hand, (2.67) implies that there exists € (0, 1) such that

I k-1 by
sup A [ (d=Apm-in-i) (d—/\Pm—z—j,n—l)Sﬁ<ﬂ+ 7) bl k=1,

A€E,m>=M,n>=N ;=1

-.
l
—_

(2.86)

and (2.68) implies that there exists § € (0, 1) such that

k -k k
sup /\n(d—)tpm,i,n,i)n(d—Apm,k,n,k,j)sﬁ(a+27bc> dk sk

AeE,m>=M,n=N ;=1 j=

—

(2.87)

Hence, for k > I, we have

1 k-1

2be\!
(d- Hpm—i,n—i) n (d - #Pmlj,nl)] = g(ﬂ + 7) /A

sup |:
m=M,n=N | j— i=1
(2.88)

—
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and, for | > k, we have

k I-k
sup [E (d ,upmfz,nﬂ)j:l_[l (d .”pmk,nk]):| < #( a+ y ) Ak

m>M,n>N

(2.89)

From (2.84) and (2.89), for [ = k, (2.85) and (2.88), for k > I, we have that y/f3 €
S(A). Repeating the above procedure, we conclude that y/f" € S(A), r = 1,2,...,
which contradicts the boundedness of S(A). The proof is complete. O

From Theorem 2.15, we can derive an explicit condition for the oscillation of
(2.65).

Corollary 2.16. In addition to (i) of Theorem 2.15, assume that

1k
liminf p = P> ' ((a+ 226) b)) (ka k=1 (290
or
k -1 1
timinf pyy = P > ((a+ 25) o4) ﬁ >k (1)

Then every solution of (2.65) oscillates.

Proof. We see that

k+17.k
max AM(d — AP)F = "k

_— 2.92
d/P>A>0 P(1 + k)t+k’ (2.92)

Hence (2.90) and (2.91) imply that (2.67) and (2.68) hold. By Theorem 2.15, every
solution of (2.65) oscillates. The proof is complete. |

From (2.65), we have

k k 1
Am,n < %Am—l,n <s-e < (%) Am—k,n <-0-< <é> (g) Am—k,n—l- (293)

Letu € S(A). Then

) (i) ﬁ (d = ppm-in) (d = pPpm—kn-1)Am-kn-1 (2.94)

k 1
1_[ d UPm—in 1_[ d _Mpmfk,nfj)Amfk,n—l-
j=1
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Substituting the above inequality into (2.65), we obtain

aAm+1,n+1 + bAm+1,n + CAm,n+1 - dAm,n
k I -1
+ Pm,nbkcl |: n (d - [/‘Pm—i,n) n (d - [/lpm—k,n—j)] Am,n <0.
i=1 j=1

Hence, we have

aAm+l,n+l + bAm+1,n + CAm,n+1

i -1
- (d_Pm,nbkCZI: SuP 1_[ d UPm—in 1_[ (d_.”pmk,nj):|
m= j=1

n=M j—1

which implies that

k I -1
bkcl[ sup 1_[ (d — upm-in 1_[ d—‘upm_k,n_j)] € S(A).
j=1

m=M,n=N ;—1
We are ready to state the following theorem.

Theorem 2.17. In addition to (i) of Theorem 2.15, further, assume that
(ii) there exist M, N € Nj such that

k I
sup A 1_[ (d = Apm—in) 1_[ (d = Apm-kn-j) < bl
i=1

A€eE,m>=M,n>=N =1
Then every solution of (2.65) oscillates.
Since

dk+l+1(k + l)k+l
k+l _
d/maX AMd - AP) T P(1 + kD)1t

and (2.98), we have the following result.
Corollary 2.18. In addition to (i) of Theorem 2.15, assume that

d1+k+l(k + l)k+l
bRcl(1 + k + I)L+k+l”

liminf py,, = P >
m,n— oo

Then every solution of (2.65) is oscillatory.

(2.95)

)Am,n <0,

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)
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Example 2.19. Consider the partial difference equation

Apsintt T eApiin + Apnst — A + (1 + 3)54Am—2,n—2 = 0. (2.101)
It is easy to see that (2.101) satisfies the conditions of Corollary 2.18, so every
solution of this equation is oscillatory. In fact, A, = (—e)™*" is such a solution.

Remark 2.20. Results in Section 2.5.1 are true for a = 0 in (2.65).

In the following we present the techniques to improve the results in Section
2.5.1.

2.5.2. Oscillation of PDEs with variable coefficients (Il)

To obtain main results in this section, we need the following technical lemmas.
The first lemma is obvious.

Lemma 2.21. Assume that for positive integers m, i, and r = 1, (2.65) has a solution
{Amnt suchthat Ay, >0 form e {m—k,m—k+1,...,m+r}andn € {n—L, -1+
L,...,n+r}, and pymy = 0 form € {m,m+1,..., m+r}andn € {n,n+1,...,n+r}.
Then

d"Amn = a" Amirme d"Amn = b Amirs d" Az = " Amgmir. (2.102)

Lemma 2.22. Let r = 1, m and 7 be positive integers so that m = 2k and i = 2I.
Assume that {A,,} is a solution of (2.65) with Ay, > 0 for m € {m — 2k, m —
2k+1,....m+ryandn € {n—-2l,n—-21+1,....,An+r} and pun, = q = 0 for
me{m—-km-k+1,....,m+riandne{n-Ln—-1+1,...,n+r}. Then

r—1 j
i P
d Az =a) d171 > bl "¢ CiAmitjr1-igiei+i

=0 i=0

r=2 j
. i o
+aq Z(] +1)d™=/ Z b’ ICIC;‘Am+j+1—i—k,ﬁ+1+i—l

j=0 i=0

(2.103)

;
+ Z b CL A i
i=0

r—1
i
+rq > b EC A1 ikl
i=0
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Proof. Inview of (2.65),forie {m—k,m—k+1,...,m+r}andje {n—-Ln-
I+ 1,...,n+r}, we have

dA;j = aAir1ji1 + DA+ cAjja + pijAi ki
(2.104)

%

aAjji1 + A+ A+ qA k1

Hence from (2.104), we obtain

dAmz = aAmiin + bAmia + CAmgn + paalm—kn-1

\%

A + VAm g + CAmpn + QAm—ka-1>

dAwms = aAmsrae + DAmom + CAms el + Pt aAme—ka-1

\%

aAmirnn + VAmog + CAmi e + QA —ka-D

dAmzn = @A + bAmvian + CAmiva + P Ami—kyie1-1

[\

A2 T VAmgn + Ama + QAm—kae1-1

dAm k-1 = aAmii k-1 + bAmi k-1 + CAm_kmi-1 + Pr-ka-1Am-2km-2

= aAmii-kari-1 + bAm ka1 + CAm—kmri-1 T qAm- k-2l
(2.105)
Thus, from (2.105), we obtain
d’ A = adAmiiin + abAmiomn + acAmii e
+ b? Asag + 2bcAmnin + Az
(2.106)
+ apmaAmi-kar1-1 + b(Pmr1s + Pmg) Amei -kl
+ c(pmar1 + pmg) Am-kar1-1 + PraPm—ki-1Am-2ki-2l-
Then we obtain
1 . .
d* Ay = adAmir a0 +a Z b 7 A iaeivi + AqAme1 k-l
i=0
(2.107)

2 1
2—j it 1-j joi
+ Z b7 CzAm+2—j,ﬁ+j +2q Z b JC]C1AW+1—j—k,ﬁ+j—l-
j=0 j=0
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In view of the following equality, for any positive integers m, n, and r,

e
Z br_lclci (bAm+r+1—i,n+i + CAm+r—i,n+1+i)
i=0

r
_ Jrtl r+l—i i
=b Am+r+1,n + Z b 'c C;Am+r+l—i,n+i
i=1
r—1
—i i+l i +1
+ z b C;Am+r—i,n+l+i +c’ Am,n+r+1
i=0 (2.108)

_ 1+l r+1
= b Am+r+1,n +c Am,n+r+1

r
+ z br+lilcl(ci + Crl)Am+r+l—i,n+i

i=1

r+1

— r+l—i i
= Z b 4 Cr+1Am+r+1—i,n+i)
i=0

and (2.105), we can obtain

2 J
5 o S
d Am,ﬁ >a Z d J Z b] ZCIC}Am+j+1—i,ﬁ+1+i
j=0

i=0

1 J
t+aq Z(] +1)d' Z b/ Ci A je1— -k 4i-1 (2.109)
j=0 i=0

3 2
N i
+ > B C A v + 39 O 0P Ch A i keiel-
i=0 i=0

By induction, (2.103) follows. The proof is completed. O

From Lemma 2.22, we can obtain the following corollaries.

Corollary 2.23. Assume thatk > 0 and ] > 0, and, form = 3k and 71 > 31, {A,n} is
a solution of (2.65) such that Ay, >0 form € {m —3k,m —3k+1,..., m+1+1}
andne {n—-3Ln-31+1,...,n+k+1} and ppmy, = q = 0 form € {m — 2k, m —
2k+1,....m+1}andne {n-2Ln—-2l+1,...,n+k}. Then

(aclbk’lcl’ICf;rL2 + bkch,l(”)Am,ﬁ

< {dk” — gbk it (a(k +1-1)CH) + WC}‘”) }Am_k,ﬁ_l.

(2.110)
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Proof. From Lemma 2.22, we have

k+1-1 j
e+l ktl-1- i i i
A A gz a Y AT b ' Ci Akt jr1—ii-l+14i

=0 i=0

k+1-2 j
) Lo o
+aq Yy (j+1)d*2T S b "¢ Cl ARkt j+1—ikFi- L 1+i-]

i=0 i=0

k+1

ketl—i i i
+ > BFTICCE A ket 11—
i=0

k+1-1
+(k+Dg > BFVIECE A1 ikt

i=0
> adb* ' Gl Am +aq(k +1— DB TG Ak

+ bkClC]lﬁ_lAm’ﬁ + (k + l)qbkC171C]l(:_%ilAm_k‘ﬁ_[_l

+ (k+Dgb* ' 'CL,  Amk 1t
(2.111)

From Lemma 2.21 and the above inequality, we obtain (2.110). The proof is com-
pleted. O

Corollary 2.24. Assume that for integers m = 2k +1landn = 21+ k, {Ann} is a
solution of (2.65) such that Ay, >0 form € {m—2k—1,m—2k,..., m+k+I1+2}
andne {n—-2l-1,n-2...,n+1+k+2} and pp, = q=0forme {m-k-
Lm—k,...m+k+landne{n—-1-1u—-1...,5a+1+k}.Ifk >0andl >0,
then

(d* —adg(k+1— DB 1ICH) , — (k+1+1)gbrc!CL,) A1 im

> (k+1+1)gb*"'d=1CL A,
(2.112)

(d*H —adg(k+1— )bkl

+[-2

— (k+1+1)gb*c'CL, ) Ami11

> (k+ 1+ 1)qb* ' CH A,
(2.113)

Proof. From (2.65), we have

dAmz = qAm-ka-1 (2.114)
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forme{m-k—-1,m—k,....m+k+Il}andne{n-1-1,n-1,...,n+k+1}.
From Lemma 2.22 and (2.114), we obtain

k+1-1
dk+l+1Am La+l = aq Z (]+ 1)dk+l - ]Zb] IClC Am 1+j+1—i—ka+1+1+i-1
j=0 i=0

k+l1
+(k+1+ 1)q Z kaiiCiC;iﬁlAm—1+k+lfi7k,ﬁ+1+ifl
i=0
> adq(k +1- 10" CLL LA 1
+q(k+ 1+ 1)V A + gk + 1+ 1)VRCCL A 1.
(2.115)
Hence (2.112) holds. Similarly, (2.113) holds. The proof is completed. O
Corollary 2.25. Assume that for integers m > 2k +landn = 21+ k, {Am,} isa
solution of (2.65) such that Ay, >0 form € {m—2k,m—2k+1,...,m+k+1+2}
andne {n—-2Ln—-21+1,...,n+1+k+2} and ppn = q = 0 form € {m—k,m—

k+1,....m+k+Il+1}andne{n-Ln—-1+1,...,n+1+k+1}. Fork >0 and
>0, then

(dkH - QQ(k + l)bk_lcl_]Cll;%fz)Amﬂ,ml
> (qd'bFCL,, + q(k + DYFIICEY ) Aia (2.116)

+ (qd BRI CE + g(k + DOFIECL, ) A

Proof. From Lemma 2.22 and (2.114), we have

k+1-1
1-
k! Asiiv = a Z dk= ]Zb] ICCAm+1+]+1 P11+
j=0 i=0
k+1-2
k+1-2—
+aq Z (]+ l)d * ]ij ICIC Am+1+]+1 i—ka+1+1+i—1
j=0 i=0
k+1

tlei i i
+ Z b G A ekt i 14
i=0
k+l-1

ketl-1-i i i
+ (k+ l)q Z b** 1C1C11<+171Am+1+k+l—l—i—k,ﬁﬂﬂ‘—l
i=0
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> aqb* ' ICEY L A
+aq(k+1- 1) CEL L Avn
+ qd’lhkch;lﬁlAmﬂ,ﬁ + qdﬁlbkilClHCﬁllAmﬁﬂ

+q(k+ DBEIICEY Ay + q(k + DVF'ACL,,  Amar.
(2.117)

Hence (2.116) holds. The proof is completed. ]

Lemma 2.26. Assume that the conditions of Lemma 2.22 hold and q = 0. Then

r—1

1
d"Apz = azdr - Zb] lCCAm+]+1 i+ 1+i
j=0 i=0

r=2 u u—j j
—u—2 s
t+a Z a z b* ]C]{ Z Z Pri+s n+t} X Am+u+1—j—k,ﬁ+1+j—l
u=0 j=0 =0 t=0

r—1 r=1-j
S B A+ S b1 JCJ{

i=0 j=0

Z meﬂnﬂ\%’ m+r—1—j—kna+j—I-

s=0 t=0
(2.118)

Proof. As in the proof of Lemma 2.22, we know that inequality (2.106) holds.
Then (2.118) holds for r = 2. By induction, we obtain (2.118). The proof is com-
pleted. |

Corollary 2.27. Assume that k > 0 and ] > 0, and form = 3k +1land7n > 31+ k,
{An} is a solution of (2.65) such that A,,, >0 form € {m—-2k—1,m—2k,...,m+
k+1+2andn € (n—-21-1,n—-2,....0+k+1+2}, pmn = 0 form €
{m — k—lm—k,...,m+k+l+1}andne{ﬁ—l—l,ﬁ—l,...,ﬁ+k+l+1},
and Y71 ;:;Llpi,j >g=>0forme {mm+1,..m+k+1}andn €
{m,n+1,....,n+1+1}. Then

{d T gbk 1 (ad + o)} Ay = @6 A, (2.119)

{dk+l+l — qbk_lcl_l(ad + bC)}Am.H’ﬁfl = qbk_ICHlAm)ﬁ. (2120)
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Proof. From Lemma 2.26, we have

k+l-1 u u=j j
Az a S dkﬂluzbw{ >3 pn }

u=0 j=0

X Afi-14ut1—j—kitl+14j-1

K+l ktl=j j
k+1—j .j
+ Z b** ]C]{ Z Z pm+s,n+t}Am1+k+ljk,n+1+jl

j=0 s=0 t=0
k-1 1-1
> adbk_lcl_l{ Z Z pm+s,n+t}Aml,n+l (2.121)
s=0 t=0

k=1 1-1
1.0-1
+ b { > pm+s,n+t}Am,n

s=0 t=0

+ bkcl{ ﬁ: ZI: Pmi+s n+t} 1,741
> gb* ' (ad + be) Am 1 + G0F ¢ A,
Hence (2.119) holds. Similarly, (2.120) holds. The proof is completed. ]
Corollary 2.28. Assume that the conditions of Corollary 2.27 hold. Then
(! — agb* ') A en = GBF T A + G0 A (2.122)

Proof. From Lemma 2.26, we have

k+1-2 u=j j

k+l k+1-2—

A" Amianza Z d " Z b* ]C]{ Z Z m+s,n+t}Am+l+u+1jk,n+1+1+jl
u=0 j=0 t=0

k+1-1 k+l-1-j j
k+l-1—j j
+ Z bt ]CJ{ Z ZPm+s,n+t}Am+1+k+l1jk,n+1+jl
j=0

s=0 =0

k-1 1-1 k 1-1
k—1 1-1 k 1-1
zab" ¢ { Z Z pm+s,n+t}Am+l,n+l+b c { Z Z pm+s,n+t}Am+l,n

s=0 t=0 s=0 t=0

k-1 1
-1
+ bk Cl{ Z Z pm+s,n+t}Am,n+1
=

> aqbkfllelAml,ml + qbkclilAWH,ﬁ + qbk*lClAm,ml-
(2.123)

Hence (2.122) holds. The proof is completed. ]
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Define the set E of real numbers as follows:

={1>0|d—Apmy, >0 eventually}. (2.124)

Lemma 2.29. Assume that p,,, = 0 eventually and there exists a constant M > 0
such that

m—-1 n-1 ¢
sup A( [T T1 (d—)tpi,j)) <M (2.125)

A€E,m=8,n=T i=m—k j=n—I

for all sufficiently large positive integers S and T, where & is a positive constant. Then
the set E defined in (2.124) is bounded.

Proof. The lemma holds obviously if limsup,, , .., pmn > 0. If

limsup py, =0 (2.126)

m,n— oo

and the set E is unbounded, then there exist 1y € E and 1o > C = 2M/d**! such
that for any sufficiently large positive integers S and T,

m—1 n-1 ¢
sup /10< I1 ]_[ (d- Aopl,) <M. (2.127)

m=§,n=T i=m—k j=n—

Since limsup,, , ., Pm,n = 0, then there exist S and T such that

m—1 n—1 4 d‘fkl
( [T T1 (d—/\opi,j)> >— Vm=Sn=T. (2.128)
i=m—k j=n-I 2
Hence
m—1 n-1 3 ZMdgkl
sup /\0( [T (d-2opij) ) > =M, (2.129)
m=S,n=T i=m—k j=n—I 2d

which contradicts (2.127). Thus the set E is bounded. The proofis completed. [

For every eventually positive solution A = {A,,,} of (2.65), we define the set
S of the positive reals as follows:

S(A)={A >0 aApmi1n1 + bAmsrn + Ampir — (d = Apmn) Ampn < 0 eventually}.
(2.130)
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In view of (2.65) and Lemma 2.21, we have

bkc!
aAm+1nt1 + bAmirn + CAmpnrr — dAmn + Pmn ﬁAm,n
(2.131)
= aAm+l,n+1 + bAm+1,n + CAm,n+1 - dAm,n + pm,nAm—k,n—l = 0)
which implies that

bkl

0 < aAmrint1 + bAmsin + CAmpnr1 < (d dk”Pmn

) mn eventually. (2.132)

Hence bkcl/d**! € S(A), that is, S(A) is nonempty. It is easy to see that for any
A € S(A), we have eventually

At + DA + CAppn < (d - /\Pm,n)Am,ny (2.133)
that is, (d — Apmn)Amy > 0 eventually, and then A € E, which leads to S(A) C E.
Theorem 2.30. Assume that there exists a positive constant q > 0 such that
(M)

Z_ i ij = q eventually; (2.134)

(ii) there exist S, T € Ny such that

m—1  n—1 17k
sup )L(]_[ n(d—/\pi,j)) <ﬁ’(§) forO<k=<l  (2.135)
RENNSS

A€E,m=S,n=T

or

m—-1 n-1 /1 1
sup A( H(d/\pi,j)) <d(S) k=150, (136)

AEE,m=8,n>T =m—k j=n-I
where
bdk” qdkﬂbkﬂ cl
o= dk+l — aqbk‘lcl‘l + (dk+l _ aqbk—lcl—l) (dk+l+1 _ qbk—lcl—l(ad + bc)) ’
ﬁ Cdk+l qdk+lbk Cl+1
dk+l — agbk-1cl-1 (dk+l — agbk-1cl-1) (dkL — gbk-1cl-1(ad + be))”

(2.137)

Then every solution of (2.65) oscillates.
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Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(2.65). From Lemma 2.29, the sets E and S(A) are bounded. Let y € S(A). B
Corollaries 2.27-2.28, we have
(d - ﬂpm,n)Am,n = aAm+1,n+1 + bAm+1,n + CAm,n+1 = aAm+1,m (2138)
(d - .“Pm,n)Am,n = aAm+1,n+1 + bAm+1,n + CAm,rH—l = ﬁAm,n-H. (2139)

From (2.138), for all large m and n,

“Am,n < (d - ,upm—l,n)Am—l,m
“Am—l,n = (d - .“pm—Z,n)Am—Z,n)

(2.140)
OCAm—a+1,n < (d - #pm—o,n)Amfo,m
Hence, we have
m—1
A <[] (d=ppin)Amin- (2.141)
i=m—k
Similarly, from (2.139), we obtain
/—’)lAm—k,n =< 1_[ d UPm- k] m—k,n—I- (2142)
j=n-—
From (2.141), we have
m—1
oAy < ( I (d—ypi,n_]-))Am_k,,,_j, j=0,1,...,L (2.143)
i=m—k
Hence by Lemma 2.21, we obtain
2 1(1-1)/
c I c
(E) (‘XkAm,n) < (a) (xklAm,n—lAm,n—Z " 'Am,n—l
(2.144)

m—1 n-1
Sll—[ 1_[ (d Aup’J) m—k,n—1I"

j=n-l1
Similarly, from (2.142), we obtain
b m—1 n—1

kZ
(E) Bamn) = TT TT (d=wpij) Ak, (2.145)

i=m—k j=n-I
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Therefore, we have

k m—1  n—1 1/k
(3) ﬁ’Amms( 1 11 (d—ypi,j)) Amint fork<l  (2.146)

I m-1  n-1 /1
(2) akAm,ns( 1 11 (d—ypi,j)) Apint forksl  (2.147)

If k < [, then in view of (2.146) and (2.65), we obtain

b k m—1 n-1 —1/k
ﬁl(ﬁ) sup (1_[ [ (d—MPi,j)> € S(A). (2.148)

m=M,n=N i=m—k j:n—l
On the other hand, (2.135) implies that there exists 6 € (0, 1) such that
m—1 n—1 1/k b k b k
sup A( [1 11 @-ap) ) <op(7) <B(2). i)
A€E,m>=M,n=N i—m—

Hence, we have

m—-1 n-1 1/k b X
sup M( l_[ (d —upij ) < 6/31<3> . (2.150)
m=M,n=N P

In view of (2.148) and (2.150), we obtain y/0 € S(A). Repeating the above proce-
dure, we obtain

‘u(%) €S@), r=12..., (2.151)

which contradicts the boundedness of S(A).
The second result can be proved similarly. The proof is completed. 0

Corollary 2.31. Assume that for all large m and n,

m—1 -
ki z Z 12420 (2.152)
and fork <1,
R b k gy
#(3) > gy (2.153)
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or fork > 1,

1 k+17.k
~ k E d k
qo (d) > (k+ 1)k (2.154)

where « and [ are defined in Theorem 2.30. Then every solution of (2.65) oscillates.

Proof. If k < I, then we see that

m-1 n-1 m-1 n-1 m-1 n-1 1/kl
Kd=X > 2 pij= 2 2 (d—Api,j)zkl(ﬂ [T - Ap,,) :

i=m—k j=n-I i=m—k j=n-I
Hence that for all large m and n,
( A
kl
i=

It is easy to see that maxo<y<4/c A(d—cA)! = d"*'I'/c(1+1)'*! for a positive constant c.
Hence, we have

m—1

n—1 I m-1  n-1 1/k
Z pi,j) z( [T [] @- Ap,J) . (2.156)
j=n-l

i=m—k j=n-I

bk iy )y ool

= -+ _ = .

#(a) > e I?i“(”l s lp“f)
(2.157)

Taking the supremum on both sides of (2.157), we obtain (2.135). By Theorem
2.30, every solution of (2.65) oscillates.
The second result can be obtained similarly. The proof is completed. |

Theorem 2.32. Assume that there exists a positive constant q > 0 such that
(i) pij = q eventually;
(ii) there exist S, T € Ny such that

m—1 n—1
sup )L( H (d—)tpi,n))( 1_[ (d = Apm-kj ) <Rkﬁl, (2.158)

A€E,m=S,n=T i=m—k j=n-1
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where
0 = b aqd b c'CL,, + (k + Dagb*c-1Cl
‘ A& — agbk-1c-1CEY ) — ag(k +1— DbE1d-1CEL
6 - aqd b+ l+1cl+1+(k+1)aqbk det,,
dk”—aqbk L-1Ch) , —aq(k +1 - 1)bk-1d-1cl) )’
20+ (k+1+1)gbk'c-1C )
PETR gkl adg(k+1 - bk-1c-1C) , — (k+1+1)gbkclCL,)
k=1 .1+1 l+1
B=0,+6 - (k+1+1)gb" 1 Gl

dkl — adq(k +1— 1)bk=1d-1CHL — (k+ 1+ 1)gbkdCL,
(2.159)

Then every solution of (2.65) oscillates.

Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(2.65). Due to condition (i), the sets E and S(A) are bounded. Let y € S(A). By
Corollaries 2.24-2.25, we have

(d - ﬂpm,n)Am,n = aAm+1,n+1 + bAm+l,n + CAm,n+1 = aAm+1,n: (2160)

(d - ,upm,n)Am,n = aAm+1,n+l + bAm+l,n + CAm,n+l = BAm,nJrl- (2161)

Hence, from (2.160), we have

m—1
Ay < (d = ppin)Am—kn- (2.162)
i=m—k
Similarly, from (2.161), we obtain
— —
BAnin < l_[ (d = tpm-ic) Am—kn-t. (2.163)
j=n—

From (2.162) and (2.163), we have

-1

n—1
=l
‘xkﬁ Am,n =< 1_[ (d - //‘ptn 1_[ d UPm- k] m—k,n—I- (2164)
i=m—k j=n-1
Substituting (2.164) into (2.65), we obtain

m—1 - -1
ockﬁl< sup 1_[ (d — upin) 1_[ (d — upm- k]> € S(A). (2.165)

m=8,n=T j_ .k



40 Oscillations of linear PDEs

On the other hand, (2.158) implies that there exists 8 € (0, 1) such that

m—1 n—1
sup A [] (d=2Apin) [] (d=Apmr,) < 0@B <@B.  (2.166)
A€E,m=8,n=T j—y_k j=n-1
Hence
m—1 n—1 eakﬁl
sup || (d—ppin) [] (d—ppm-i;) < : (2.167)
m28,n=2T j—py j=n-1 H

In view of (2.165) and (2.167), we obtain (4/0) € S(A). Repeating the above pro-
cedure, we obtain

y(%) eS(A), r=1,2,..., (2.168)
which contradicts the boundedness of S(A). The proof is complete. O

Corollary 2.33. Assume that for all large m and n, py, = q >0 and

7k*l dk+l+1(k + l)k+l

Then every solution of (2.65) oscillates.
Proof. In view of the inequality
dk+l+1(k + l)k+l
k+l _
8B A = o @
we can see that
m—1 n—1
sup ( [T (d=Apin) )( [ (dlpmk,j))
A€E,m=S,n=T i=m—k j=n-1
<supMd - Aq)*" < sup A(d - Ag)¥*! (2.171)
A€E A€(0,d/q)
dk+l+1(k + l)k+l 4l

T gk + [+ Dk

By Theorem 2.32, every solution of (2.65) oscillates. The proof is complete. O
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Theorem 2.34. Assume that for all large m and n, pp,, = 0 and

dk+l+1

lim sup pmn > (2.172)

myn—co bkcICL, + adbk—1c-1CL
Then every solution of (2.65) oscillates.

In fact, the conclusion of Theorem 2.34 is straightforward from (2.65) and
Corollary 2.23.

Remark 2.35. To compare results here with results in Section 2.5.1, we consider
the equation

Am+1,n+l + Am+1,n + Am,n+l - Am,n + pm,nAm—k,n—l =0. (2173)
By Corollary 2.18, if

Pmn = q (k+1+ 1)k+l+1 >

(2.174)
then every solution of (2.173) oscillates. By Corollary 2.33, if

(k + D)
dkBl(k +1+ 1)k+l+1 >

DPmn = q > (2.175)

then every solution of (2.173) oscillates.

By the definitions of & and 8 in Theorem 2.30, it is easy to see that

a>1, B>1 (2.176)
Thus, condition (2.175) improves condition (2.174) in Section 2.5.1.

2.5.3. Oscillation of PDEs with continuous arguments

In this section, we consider the partial difference equation with continuous vari-
ables

P1A(x+a,y+b) + prA(x+a,y) + psA(x, y + b) — psAlx, y)
2.177
+P(x, y)A(x — 1,y —0) = 0. ( )

Throughout this section we will assume that
(i) pi € R, p1 =0, ps, p3 = ps >0, P € C(R" X R",R" — {0});
(ii) a,b,7,0 € Rand ar >0, bo > 0;
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(ili) 7 = ka+ 0, 0 = Ib+ 1y, where k, [ are nonnegative integers, 8 € [0, a) for
a>0,and 0 € (4,0] fora <0,y € [0,b) for b > 0, and € (b,0] for
b < 0;

(iv)

min {P(u,v) [ x <u<x+a, y<v<y+b}, a>0,b>0,

min{P(u,v) [ x+a<u<x, y<v<y+b}, a<0,b>0,

Qx,y) =7 .
min {P(u,v) | x <u<x+a, y+b<v<y}l, a>0,b<0,
min {P(u,v) | x+a<u<x, y+b<v<y}, a<0,b<0,
lim sup Q(x, y) > 0.
X,y— 00
(2.178)
Define the set E by
E={1>0] ps — AQ(x, y) > 0 eventually}. (2.179)

Lemma 2.36. Assume that (2.177) has an eventually positive solution. Then the dif-
ference inequality

piw(x+a,y+b)+ paw(x+a,y)+ psw(x, y+ b) — paw(x, y)
2.180
+Qx, y)w(x —ka,y —Ib) <0 ( )

has an eventually positive solution.

Proof. Let A(x, y) be an eventually positive solution of (2.177). From (2.177), we
have eventually

pa(A(x+a,y) +A(x, y+b) — A(x, »))

<prA(x+a,y+b)+ pAlx+a,y) + p3A(x, y + b) — paA(x, y) <O0.
(2.181)

We consider the following four cases.
Casel. a>0,b>0.

Let

x+a

+b
w(x, y) = L Ly A(u,v)dudv. (2.182)
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Then

(A(x+a,v) — A(x,v))dv < 0,

ow(x,y) J’“h
ox

y
(2.183)

winy) J

Jy (A, y +b) — A(u, y))du < 0.

X
Integrating (2.177), we have

X+a

x+a ;y+b y+b
plj A(u+a,v+b)dudv+pzj J A(u+a,v)dudv
x Jy x Jy

x+a ;y+b xta y+b
+p3j J A(u,v+b)dudv—p4j J A(u,v)dudv (2.184)
x y x y

x+a y+b
+ J P(u,v)A(u — 7,v — 0)dudv = 0.
x Jy

By (2.178), (2.182), and the above equality, we obtain

piw(x+a,y+b)+ paw(x+a,y) + psw(x, y +b) — paw(x, y)
(2.185)
+Qx, y)w(x -1,y —0) < 0.

Since dw/0x < 0 and dw/dy < 0, we have
wx—1,y—0)=w(x—(ka+0),y—(b+n)) =w(x—ka,y—1b). (2.186)
Therefore,

piw(x+a,y+b)+ pw(x +a,y) + psw(x, y + b)
2.187
— paw(x, ¥) + Q(x, y)w(x — ka, y — Ib) < 0. ( )

Case2. a<0,b>0.

Let

X

+b
w(x, y) = J Jj A(u,v)dudv. (2.188)

x+ta
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Then ow/dx > 0 and ow/dy < 0. Integrating (2.177), by (2.178) and (2.188) we
have

piw(x+a,y+b)+ paw(x+a,y)+ psw(x,y+b) — paw(x, y)

(2.189)
+Qx, y)w(x -1,y —0) <0.
Since dw/0x > 0 and dw/dy < 0, we have
wx-1,y—0)=w(x—(ka+0),y—(lb+n))
(2.190)
>w(x—ka,y—(Ib+1n)) = w(x — ka,y — Ib).
Therefore,
piw(x+a,y+b)+ pow(x+a,y) + psw(x, y+b) — paw(x, y)
2.191
+ Q(x, y)w(x — ka, y — Ib) < 0. ( )
Case3. a>0,b<0.
Let
xta ry
w(x, y) = J J A(u,v)dudv. (2.192)
x y+b

Then ow/0dx < 0 and ow/dy > 0. Similarly, we can prove that the conclusion of
Lemma 2.36 holds.

Case4. a<0,b<0.

Let

x oy
w(x, y) = LM ﬁbA(u, v)dudv. (2.193)

Then ow/dx > 0 and ow/dy > 0. Similarly, we can prove that the conclusion of
Lemma 2.36 holds. 0

Theorem 2.37. Assume that there exist x; = Xo, 1 = Yo either ifk > 1> 0 and

1
sup [m (ps —AQx — iay y — ib))
A€E, xzx1, y=y1 i=1
k-1

XH<P4-AQ<x—la—ja,y—lb>>} <( p2p3)pz ,
j=1 p

(2.194)
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orifl >k >0 and

k
sup [)L 1_[ (ps — AQ(x —ia, y — ib))

AEE, x=x1, y=y1 i=1

I-k

) k
x [ ] (pa —)LQ(x—ka,y—kb—jb))] < (pl + %) pik.
j=1

(2.195)

Then every solution of (2.177) oscillates.
Proof. Suppose to the contrary, let A(x, y) be an eventually positive solution. Let

w(x, y) be defined as in Lemma 2.36. We define the subset S(w) of the positive
numbers as follows:

S(w)={1>0| piw(x+a,y+b)+ paw(x+a,y) + psw(x,y +b)

(2.196)
— (pa — AQ(x, y))w(x, y) < 0 eventually}.
From (2.180) we have
piw(x+a,y+b)+ paw(x+a,y)+ psw(x,y+b)
(2.197)

— (pa— Q(x, y))w(x, y) <0,

which implies 1 € S(w). Hence, S(w) is nonempty. For A € S(w), we have eventu-
ally

ps—AQ(x, y) >0, (2.198)

which implies that S(w) C E. Due to the condition (i), the set E is bounded, and
hence S(w) is bounded. From (2.180), we have

piw(x+a,y+b)+ paw(x+a,y)+ psw(x,y+b) < paw(x, y), (2.199)
and so

w(x+a,y+b) < %W(X,y'" b),
2

(2.200)

w(x+a,y+b) < %W(x-i—a,y).
3
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Let y € S(w). Then

(p + pp )w(x+a,y+b)

< plw(x+a,y+b)+p2w(x+a,y)+p3w(x,y+b) (2.201)
< (pa — pQ(x, y)) w(x, y).

By using the similar method as in the proof of Theorem 2.15, we obtain

piw(x+a,y+b)+ pw(x+a,y)+ psw(x,y+b)

{p4 - Q(%y)(p + png) Ps

!
X sup |:(1_[ (ps — pQ(x — ia, y — ib))

X=X1, Y=y i=1

k=1 -1
x[ | (ps—uQ(x—la—ja, y—lb))) } }w(x, y)<0 fork>I,
=1

piw(x+a,y+b)+ paw(x+a,y)+ psw(x,y+b)

{p4—Q(x,y)<p + ‘ijm) Pyt

k
X sup [(H (pa — pQ(x — ia, y — ib))

X=X1, Y= Y1 i=1

-k -1
x[ | (pa—uQ(x—ka, y—kb—jh))) ] }w(x,y) <0 forl>k.

j:

—_

(2.202)

From (2.202) we obtain

(5 22) 1 ap

X>X1,y2y1

I
X [(ﬂ (ps — uQ(x —ia, y — ib))
i=1

k-1 -1
Xn(p4—yQ(x—la—ja,y—lb))> ] € S(w) fork>1,
=1
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(Pl 2p2ps ) p3 sup

p X=X, Y= )1

k
X [(]_[ (ps — uQ(x — ia, y — ib))

Ik -1
X 1_[ (pa — uQ(x — ka,y — kb — jb))) } € S(w) forl>k.

j=1
(2.203)

On the other hand, (2.194) implies that there exists ; € (0, 1) such that for k > [,
we have

I
sup A [ (ps —AQ(x —ia, y — ib))

AEE,x=x1,y=y1 =1

k-1
x [ ] (ps —AQ(x — la — ja,y — b)) (2.204)
j-1

socl(p1+ Izm)pz ,

and (2.195) implies that there exists a; € (0, 1) such that for [ > k, we have

k
sup A ] (ps—AQ(x —ia, y — ib))

A€E, x=x1,y=y1 =1
1=k (2.205)
* [T (ps = 2Qx ~ ka,y — kb — jb)) '
j:
= (P Pzpa) Pt

In particular, (2.204) and (2.205) lead to (when A = p), respectively,

(P + P2P3> p5 sup

p XZX1, Y= )1

I
x [(H (pa — uQ(x — ia, y — ib))
i=1

k-1 -1
Xn(p4—yQ(x—la—ja,y—lb))> ]ZM fork > 1,
=1

(241
(2.206)
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k
<P1 + 721)21)3) pé‘k sup

P4 XZX1, Y= )1

k
X [(H(p4—yQ(x—ia,y—ib))
i=1
-k -1
X (m—yQ(x—ka,y—kb—jb))) }25 forl > k.
j=1 1
(2.207)

Since yu* € S(w) and y' < p* imply that y’ € S(w), it follows from (2.204) and
(2.206) for k > I, (2.205) and (2.207) for | > k that y/a; € S(w). Repeating the
above argument with u replaced by y/a, we get p/aya; € S(w) where a; € (0, 1).
Continuing in this way, we obtain

¢
£ e S(w), 2.208
o (w) ( )
where «; € (0,1). This contradicts the boundedness of S. The proof is complete.
|
Corollary 2.38. Assume that either for k > 1> 0,
.. 2p2ps o Kk
— k+1 -k
lig/ljglcfQ(x,y) =q>p; (p1 + Pa ) 2 *1 DF (2.209)
orforl >k >0,
liminf Q(x, ) = q > pl“(pl + 2P2p3)_kpk’l L (2.210)
X,y — 00 > 4 p4 3 (l + 1)l+1
Then every solution of (2.177) oscillates.
Proof. We see that
k+171.k
Nk Pik
P4r/rql§1}>tc>o/1(174 Aq)" = 7q(k+ e (2.211)

Hence (2.209) and (2.210) imply that (2.194) and (2.195) hold. By Theorem 2.37,
every solution of (2.177) oscillates. The proof is complete. ]
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Theorem 2.39. Assume that there exist x; = Xo, 1 = Yo eitherifk >1>0,

k=1 1 (k1)
sup A[Hn(p4—AQ(x—ia—ja,y—ib))}
=1 i=1

AEE, x>x1, y=y;
) ” (2.212)
I (1/2)(k=1+1)
(o))
2 j 2
orifl >k >0,
-k k 1/(1-k)
sup /\[ [T(ps —AQ(x —ia,y - 1b—jb))]
AEE, x>x1, y=y; i—1 i=
S b (2.213)

2p2p3) <p3>(l/2) (I- k+l)'
P4

Then every solution of (2.177) oscillates.

Proof. If k > I, we have

-1
w(x, y) < ( pzpa) [T (ps — uQ(x — ia, y — ib)) w(x — la, y — Ib).
i=1
(2.214)

By (2.200) and (2.214), we have

m)‘l

w(x — ja,y) < <p1 + >

I
x [ (ps — pQ(x —ia — ja,y — ib))w(x — la — ja,y — Ib)
i=1

-1 1
s[( PzPs) np4—yQ(x—ia—ja,y—ib))]w(x—ka,y—lb)
o (2.215)

for j =1,2,...,k — . In view of

k-
whl(x, y) y) < n( ) w(x — ja, y) (2.216)
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and (2.215), we obtain

whl(x, y) = ( 1;21)3) Ik~ l)<§i)(1/2)(k—l+1)(k_1)

k-1 1
X [ [](ps — uQ(x —ia — ja,y — ib))]wkl(x—ka,y— Ib).

j=1i=1

(2.217)

That is,

2p2p3>—l<&>(1/2)(k—l+1)

w(x, y) < (p1 + 3 »

k-1 1 (k=D
><[1—[n(p4—yQ(x—ia—ja,y—ib))} w(x — ka, y — Ib).

j=1 i=1

J (2.218)

Similarly, if [ > k, we have

M) * (&) (1/2)(1-k+1)

w(x, y) < (pl + 3 s

I~k & /(1-k)
X [ n(p4—yQ(x—ia,y—ib—jb))] w(x — ka, y — Ib).

j=1i=1

—_

(2.219)

The rest of the proof is similar to that of Theorem 2.37, and thus, is omitted. [J

Corollary 2.40. Assume that either fork > 1> 0,

k=11
1

lgcr?jgf k-1l Zl ,ZIQ(X ia — ja,y —ib)

(2.220)

>

. (1/2)(k=1+1)
il 50) ()
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orforl >k >0,

I~k k
.. 1
lkr?jgf (I—k)k = l; Q(x —ia,y —ib — jb)
(2.221)
kel gk —k (1/2)(1-k+1)
. _pik (p]+2pzps> <&> '
(k + 1)k+1 Da s
Then every solution of (2.177) oscillates.
Proof. Since
I+171
IR
p41/1;liij(>0/1(P4 AC) = C(l—‘rl)lﬂ (2_222)
let
L=
€= G 2 2 Qx—ia—jay—ib) (2.223)
j=1i=1
Then
k-l 1 V(k-1)
)L[ l_[ (ps —AQ(x —ia — ja, y — zb))]
j=1i=1
k=1 1 ;
(k—l)l|: Z(P4—/\Q(x—ia—ja,y—ib))}
j=1i=1
-1 1
< A[m Z z Q(x —ia — ja,y — zb)] (2.224)

+ ll - l o
_pil(l+1)l+l[(k—l) g; Q(x —ia — ja,y — 1b)]

< <P1 n 21;24173)1(1;)<1/2)<k—z+1)'

Similarly, we have

-k k 1/(1=k) k (1/2)(I-k+1)

2

/1[ [1(ps —/\Q(x—ia,y—ib—jb))] < (p1 +7P2P3) (E) .
j=1i=1 b4 b4

(2.225)

By Theorem 2.39, every solution of (2.177) oscillates. The proof is complete. [
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Theorem 2.41. Assume that there exist x; = Xo, 1 = Yo such that ifk =1>0,

k ) k
sup A ] (ps—2Q(x —ia,y —ib)) < <p1+%> : (2.226)

A€E,x=x1,y=y1 =1

Then every solution of (2.177) oscillates.

Proof. Let y € S(w). Then from (2.200), we have

5 &k

w(x, y) < <p1 + %) 1_[ (pa — pQ(x — ia, y — ib))w(x — ka, y — kb).
i=1

(2.227)

The rest of the proof is similar to that of Theorem 2.39, and thus, is omitted. [

Since

x picﬂkk
pf};fﬁo’\(p‘* -Aq)" = Ak FET (2.228)
we have the following result.
Corollary 2.42. Assume that k = 1 > 0 and that
k+1pk —k
. _ pik ( 2P2P3)
lkrj/ljgf Qlx,y) =q> 7(]( PETE p1t 1 . (2.229)

Then every solution of (2.177) oscillates.

Theorem 2.43. Assume that there exist x| = xo, y1 = yo such that ifk,1 > 0 and

k 1
sup  A[[(ps—AQ(x—ia, y)) [ [ (pa — AQ(x — ka, y — jb)) < phpl,

AEE, x=x1, y=x1 =1 j=1

(2.230)

then every solution of (2.177) oscillates.
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Proof. Let y € S(w). Then

w(x,y) < —(psa — uQ(x — a, y))w(x — a, y)

1T
( ) p4 — uQ(x —ia, y))w(x — ka, y)
< (5

k
) () 116 Q0 — 00 01 - 2~ iy )
i=1

() )T

X w(x — ka, y — Ib).

X w(x — ka,y — b)
k !
[1(ps — uQx —ia,y) [ | (ps — uQ(x — ia, y — jb))
j=1

(2.231)

The rest of the proof is similar to that of Theorem 2.15, and thus, is omitted. [J

Since

+l+1 (k + l)k+l

_ k+l _
max Mps = A = T (2.232)
and (2.230), we have the following result.
Corollary 2.44. Assume that k,1 > 0 and that
k+1+1 k+1
liminf Q(x, ) = g > (k+D (2233)

PEPA(k + 1+ ket

Then every solution of (2.177) oscillates.

Theorem 2.45. Assume that there exist x| = xo, y1 = yo such that ifk,1 > 0 and

k 11 3 (1/2)(1+1)
sup [l_[ [ p4—)tQ(x—ia,y—jb))} <p’2‘<a) ,

A€E, x=x1, y=y1 j=1i=1
(2.234)
or
ko1 1/k » (1/2)(k+1)
sup /\|:1_[ H(p;;—)tQ(x—ia,}/—j@)} <P13<*) ’
A€E, x=x1, y=y1 i=1 j=1 pa
(2.235)

then every solution of (2.177) oscillates.
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Proof. Let yu € S(w). Then, we have eventually

paw(x+a,y) < (ps — uQ(x, y))w(x, y), (2.236)
paw(x, y+b) < (ps — uQ(x, y))w(x, y). (2.237)

By (2.236), we get

w(x,y) < é(m —pQ(x —a,y))w(x —a,y)

LAk (2.238)

<--0 = (*) [T (ps — uQ(x — ia, y)) w(x — ka, y).
P2/ iy

Hence
|k

w(x,y - jb) < < 1_[ (pa — uQ(x —ia, y — jb))w(x — ka, y — jb)
2

1 k
S[ngl_[(ﬂ uQ(x—ia, y = Jb))}w(x—ka,y—lb), j=1L2...1
(2.239)

1 [ pa (V21ED Ik l
:F(7> [HH(P‘l —uQ(x—ia, y— ]b))}w(x—ka,y—lb),

k ;
(2.240)

that is,

pa\ D2 Lk i
w(x, y) < [<P) n(p4—yQ(x—ia,y—jb))} w(x — ka, y — Ib).

Py j=1i=1
(2.241)



Linear PDEs with variable coefficients 55

Similarly, we have

1
Wwix, y) < (i) [T (ps — uQ(xs y — j0)) wix, y — Ib),
D3 j=1

wk(x, y) < (E) w(x — ia, y)
i=1 “F2
1 (pa (1/2)k(kt1) !
< 7(*) [n H(p4—‘uQ(x—ia,y—jb))}wk(x—ka,y—lb),
p3 \p2 i=1 j=1
(2.242)
that is,
1 ( ps k(k+h/2 k1 1/k
wix, y) < [lk() 111 (p4—yQ(x—ia,y—jb))} w(x—ka, y—Ib),
p3 \P2 i=1 j=1
(2.243)

The rest of the proof is similar to that of Theorem 2.37, and thus, is omitted. [J

Corollary 2.46. Assume that

Lk . . (P D2 gk
lkr,%gf i ]:zi i:ZIQ(x —ia,y — ib) > p; <E) W, (2.244)
or
o 1 ko1 . . (P (k+1)/2 Il
lif}’l?ofﬁz ZQ(x—za,y—zb) > p; (E> I+ i (2.245)

Then every solution of (2.177) oscillates.

Example 2.47. Consider the partial difference equation with continuous variables
of the form

A(x+ l,y - 1) + lA(x—l— l,y) +e*A(x,y — 1)
2 e 2 (2.246)
—Al,y)+(e+1Ax-1,y+2) =0.

It is easy to see that (2.246) satisfies the conditions of Corollary 2.42, so every so-
lution of this equation is oscillatory. In fact, A(x, y) = (—e)**” is such a solution.
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2.6. Linear PDEs with several delays
2.6.1. Equations with nonnegative coefficients

Consider the partial difference equation with several delays

u
Am+1,n + Am,nﬂ - Am,n + Z P%),nAm—k,-,n—l,- =0, m,n € Ny, (2-247)
i=1

where { pif,),n} is a double real sequence with p%),n > 0 for all large m, n, ki, l; € Ny,
i=1,2,...,u,and

p > pi€[0,), liminfpl) =p;, i=12,..,u (2.248)
m,n— oo

Then the corresponding limiting equation of (2.247) is

u
Am+1,n + Am,n+1 - Am,n + Z piAmfk,‘,n—l,v =0, m,n&€ Ny (2249)

i=1

The characteristic equation of (2.249) is
Atu—1+ Z pidKiuTh = 0. (2.250)

i=1

First we define a sequence {A;};2, by
M=1,  Ap=1- ipi/\fk"_l‘, 1=1,2,..., (2.251)

i=1

where p; =2 0,i=1,2,...,u.
The following lemma will be used to prove our main results.

Lemma 2.48. Assume that the sequence {A;} is defined by (2.251). Then Ay < A <1
and lim;_.. A; = Ay, where A is the largest root of the equation

A=1-> pA (2.252)

i=1
on (0,1].

The proof is simple and thus omitted.
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In the following, we consider the linear partial difference inequalities

u
Aptin + Ampt1 — A + Z Pﬁyi,),nAm—k,-,n—l,- <0, m,n € No, (2.253)
i=1
ad -
Apiin Y Ampnsr — A + Zp;?,nAm—k,-,n—l,- >0, m,n €N (2.254)
i=1
Assume that p;, i = 1,2,...,u are sufficiently small such that the equation
u
-1+ > pAhhi=0 (2.255)

i=1

has positive roots on (0, 1/2). Hence (2.250) has positive roots, which implies that
(2.249) has nonoscillatory solutions. We will show sufficient conditions for the
oscillation of (2.247) in this case.

Theorem 2.49. Assume that (2.248) holds. Further, assume that

u
limsup > (A5 4+ A5 (Pl + pln)) > 1, (2.256)

M=o =]

where A is the largest root of (2.252) on (0,1]. Then
(i) equation (2.253) has no eventually positive solutions;
(ii) equation (2.254) has no eventually negative solutions;
(iii) every solution of (2.247) oscillates.

Proof. It is sufficient to prove that (i), (ii), and (iii) follow from (i). Assume, for
the sake of contradiction, that {A,,,} is an eventually positive solution of (2.253).
Then, there exist m; and n; such that A,,, > 0and A,—,n—1, > 0,i = 1,2,...,u
for m > my, n = ny. Therefore, from (2.253), we have

Apiin <Ampns  Ampi1 <App, m=my, n=ny, (2.257)
which gives

Amton =M Apn  form=mi+kiy, n> ny. (2.258)

Hence, we have

Am—kin—1;, = /lfk"fl"Am,,, form=my +kj, n>n; +1,. (2.259)

Using now (2.259) and (2.247), we have

u
A+ At = A+ > piA{ A, < 0. (2.260)

i=1
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Hence, we have

u
Amrin < Ampn (1 - Zpi/\fk"_l’> =LA, form=my+k,n=n+I,
i=1

u
Am,n+1 < Am,n (1 - Zp,'/hkxI') = )LZAm,n form > m; + ki, n=n +1.

i=1

(2.261)
Hence
Amont, 2 A Ay form = my +2ki, n = ny + 21, (2.262)
Repeating the above procedure, we get
- ki1
Am+1,n = Am,n (1 - Z Pz/llif i> = AlAm,n (2263)
i=1
form>=m;+ (- 1Dkj,n=n+(—1)I;,and
: ki—1
Am,nﬂ = Am,n (1 - Z plAL{7 i> = AlAm,n (2-264)
i=1
form > m; + (I — 1)k, n = n1 + (I — 1)I;. Hence,
Aptomt, 2 A Ay form = my + 1k, n = ny +11, (2.265)
where
S ki-1
M=1->pA (2.266)
i=1
Since limj—w A = Ay, for a sequence {g} with & > 0, and ¢ — 0 as [ — oo,

by (2.263), (2.264), and (2.265) there exists a double sequence {my, n;} such that
mp,n; — o0 asl — oo and

Apiin < (A +&)Ap, form=my, n=n, (2.267)
Apni1 < (As +&)Ap, form=my, n=n, (2.268)
Appont = As+&) Ay, form=m+k,n=m+l. (2.269)
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From (2.247) and (2.269), we have

u
Am,n = Z P%zn (A* + Sl)l_ki_l[Am—l,m
i=1
(2.270)
u
] —k,—l,‘
Apn = Pﬁyll))n (A* + 81)1 Ampn-1.
i=1
Dividing (2.247) by A,,,», we have
Am+1 nt Am n+1 : (i Amfk- n—I;
| = S S e e L 2.271
Ao 2P~y " 2271)
From (2.269)—(2.271), we have
u
—ki=li (i —ki=li o (i i
12> (e +e) 7 p0,+ M+ e) ™ (St pit)). (2272)
i=1
Letting | — co, the above inequality implies
S k=l (i ki—li (i i
limsup > (A5 0, + A5 (Pl + pis)) < 1, (2.273)
mn—co ;T
which contradicts (2.256) and completes the proof. g
Theorem 2.50. Assume that (2.248) holds and (2.256) does not hold. If
1'4_ Al k'—li i
lim sup (Z}L ki lp(t) + - Zi:i_? (l)pﬂ’H’l N 5
mn=00 \j=1 1- Zi:l /‘* x (pm+2n+pm+l n+1)
(2.274)
—ki—L; (i
Z:‘Ll A}k pgrll),nJrl
PR ) @ > 1
1- Zizl /1* (Pm+l,n+l + pm,n+2)
then the conclusions of Theorem 2.49 remain.
Proof. In fact, from (2.270), we have
—ki—l;
Amitn = Zpﬁ,ill ZOste) AL, form=my, n= o,
(2.275)

1-ki—I;

u
Apni1 = Zpi,?)nﬂ As + &) Apn form=my, n=n.

i=1
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Hence
u .
Am,n = Am+1,n + Am,nH + Z P%),nAm—k,v,n—l,-
i=1
S (i) 1=k
= Z pm+1 nt Pni ae1) A &) A (2.276)
i=1
1 ki—1;
+ Zp(l) (As + 1) Apmin
and hence
1-ki—1; (i)
Zl»‘: Ay + £l
Apn = _ i) (Ax 1 k)l (I)Pmn T Am-1n (2.277)
1= (A* +5) (Pm+1n+pmn+1)
Similarly,

147 /\ + 1-ki—1; (i)
Apn = Zizg (et &) 7 pn P (2.278)

1- Z:Ll ()L* té& )1 A (Pm+1 n +Pnla)n+l)

Substituting the above inequalities into (2.271) and letting I — oo, we obtain a
contradiction with (2.274). The proof is complete. O

Since

S A = A S A = A (1 - L), (2.279)

i=1 i=1

from (2.274), we can obtain a simpler condition.

Corollary 2.51. If (2.274) is replaced by

1
limsup > A" D> 2 (2.280)
mnmplzl 2+ (1-1,)°

then the conclusions of Theorem 2.49 remain.

In fact, (2.280) implies (2.274).
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Theorem 2.52. Assume that (2.248) holds. Further, assume that

m,n— oo

where A is the largest root of (2.252) on (0,1] and

1-ki—1; i
PP p£rll)+ln+1
1=ki=li ¢, (i) (i)
1- 305 A (Pmsznst + Prsine2

Q(m: n’A*) =

1-ki—1; (i)
% z, 1 A pﬂfl+1 n
1—ki—1I; i) .
1- Zirl A* (pm+2,n + pm+1,n+1)

Then
(i) equation (2.253) has no eventually positive solutions;
(ii) equation (2.254) has no eventually negative solutions;
(iii) every solution of (2.247) oscillates.

61

limsup ((11/1)2 Zpgl),n/l;k"*l‘ (1 l+1)( Aljfﬂ) + Q(H’l, I’l,/l*)> >1
— M i=1
(2.281)

(2.282)

Proof. It is sufficient to prove that (i), (ii), and (iii) follow from (i). Assume, for
the sake of contradiction, that {A,,,} is an eventually positive solution of (2.253).

Summing (2.253) in n from n(= n;) to o, we have

) u [
ZAm+l,v_Am,n+Z mev m—ki,v—1; <0.
v=n

i=1 v=n

We rewrite the above inequality in the form

00 ()
Z Am+1,v+Am+1,n_ m,n Z mv m ki,v—1; <0.

v=n+1

u[\/_|=

Summing it in m from m(= m;) to o, we obtain

HMg
M=
M

Z s+1v7A nt

v=n+ i

i
3

1s v=n

From (2.277) and (2.278), we have

Am+1,n+1 = Q(m) ”)A* + sl)Am,n

ng’v skvl<0-

(2.283)

(2.284)

(2.285)

(2.286)
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By (2.285), we get

[Me
M:
Me
Me

pgl)/AS*ki;V*li

n =

(o]
Z s+1, vt
=n+

s=m y i=1 s=m v=n

u m+k; n+l;

> Ayt t+ z z Z Pg,i.)/As—k,v,v—l,-

i=1 s=m v=n

u ki L
= Am+1,n+l + Z P5+m v+n m+s—k,,n+v—li (2-287)
i=1 s=0 v=0
u ki (k) +(v—1)
—ki)+(v=li
= Am+1,n+1 +Am,n Z Z s+m v+n A* + €] ) : Y
i=1 s=0 v=0
u m+k; n+l; L |
= Aprinit +Am,nZ( Z Z (1) (s + &) (s=m—ki)+(v—n— i)>.
i=1 \ s=m v=n
Letting | — oo, the above two inequalities imply
li (i) ki l Li+1 ki+1
im sup a ZZp A 1-A)(1=A7) +Q(mymAy) | <1,
m,n— oo —
(2.288)
which contradicts (2.281) and completes the proof. ]
Since
Ae(1=2As) )2
s Ay ) = (7) , 2.289
QmmA) = 750 o0 (2.289)
we can derive a simpler condition from (2.281).
Corollary 2.53. If (2.281) is replaced by
. . Ae(1=24) \2
li (z/\kl _Al,Jrl I_Akﬁl >1_<¥),
l,il}i‘ip( - ZZP (=25 TR
(2.290)

then the conclusions of Theorem 2.52 remain.
Example 2.54. Consider the partial difference equation

Apitn + Apntl — Amn + pm,nAmfl,n—l =0, m=0,nx=0, (2.291)
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where
L m=neN
27) m=n 0>
Pmn = (2.292)
1 .
=,  otherwise.
5
For (2.291), (2.255) is
M1+ 22— (2.293)
277 7 ’
which has a positive root A = 1/3. The limiting equation of (2.291) is
1
Am+1,n +Am,n+l - Am,n + 7Am—1,n—1 = Oa m = 0) n= 0, (2294)

27
which has a positive solution {A,,,} = {37}, m, n € Ny. Equation (2.252) is
A-l+2a2-0 (2.295)
277 7 '

which has a positive root Ax = (2/3) cos(¢/3), where cos ¢ = 1/2. Thus, ¢ = /3
and Ay = 0.63. Since lim SUP,, e P = 1/5, we have

1
lim su > A2 (2 - ) ~ 0.05. (2.296)
v S PR TR YT

By Corollary 2.51, every solution of (2.291) is oscillatory.

2.6.2. Equations with oscillatory coefficients

Consider the linear partial difference equation

u
Am+1,n + Am,n+1 - Am,n + Z p;(yi,),nAm—ki,n—li = 0) (2297)
i=1
where ki, [; € N, ki ko > -+ >k, >0, 1, >L >--->1, >0,p£7’;),narereal
double sequences and may change sign in m, nfori = 1,2,...,u.

Lemma 2.55. Assume that there exist sufficiently large M and N such that

m,n mn =

u
p =0, p+p2 >0,...,> pP >0 form>=M, n=N.  (2.298)
i=1
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Further assume that for any given positive integers M and N, there exist M = M,
N; > N such that

D >0 forme[My, Mi+ki], n€ [N,N +L],i=1,2,...,u.  (2.299)

m,n —

Let {A,.n} be an eventually positive solution of (2.297). Then A, , is eventually
nonincreasing in m, n, and

u
grlt),nAm—ki,n—l; > Am—kyn-I, Z PS,IL))H (2.300)
1 i=1

M=

Proof. Let Ap_k, n-1, >0 for m = M, n > N. By condition (2.299),

PP, >0, i=1,2...,u, me [M,M +k], ne[N,Ni+L]. (2.301)

u
Am+l,n +Am,n+1 - Am,n == ZP%),nAm—ki,n—l, <0 (2302)
i=1
form e [M,M; +ki],n € [N, N +1].

We will show that A,,, is nonincreasing for m € [M; + ki, M, + ki + k],
ne [N1+11,N1+l1+lu].1n fact, m—k,‘ S [Ml,M1+k1] form e [M1+k1,M1+k1+ku]
and n —[; € [N,N; + ;] forn € [N; +[;,Ny + 1 + [,,]. From (2.302), we have
Am—kl,n—ll = Am—kz,n—lz - Amfku,n—lu form e [Ml)M1+k1]) ne [N11N1+ll]-
Therefore

u
Am+1,n + Am,n+l - Am,n = - Z ps;,),nAm—ki,n—l,'
i=1

u
_( ir{,)n + pg,)n)Am*kz,n*lz - z pi(”rlt),nAm*ki,ﬂ*lz
i=3

u
= ( ZP%),n)Amkmnlu <0
i=1

IA

IA

(2.303)

form e [M1 +k1,M1 +k1 +ku], ne [N] +11,N1 +ll +lu].
Repeating the above method, it follows that A,, , is nonincreasing for m > Mj,
n > Njp, and (2.300) holds. O

Theorem 2.56. Suppose that the assumptions of Lemma 2.55 hold. Further, assume
that

M=

p,if]? _— (2.304)

e

-

e

1

s

Then every nonoscillatory solution of (2.297) tends to zero as m,n — oo.
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Proof. Let {Ay,,,} be an eventually positive solution of (2.297). By Lemma 2.55,
A, s eventually nonincreasing and hence lim, 0 Apm,n = L = 0 and

u
Am+1,n + Am,n+1 - Am,n + Am—k,,,n—lu Z Pﬁ:l),n <0. (2305)
i=1

Summing (2.305) in # from 7 to oo, we obtain

(o) (o) u
> Amiri = Amn + > D PoiAmokoic, < 0, (2.306)
i=n i=n s=1
that is,
00 (o) u
At = Amp+ D> A+ > > P A kit <0, (2.307)
i=n+1 i=n s=1

Summing (2.307) in m from m to oo, we obtain

[ee] (9] (9] 0 u
~Ampt > > Ajrit > > > PUAj ki, <0, (2.308)
j=m i=n+l j=m i=n s=1
Thus
) 00 u
Amn = > > S PYIA kot (2.309)
j=m i=n s=1
If L >0, (2.309) contradicts (2.304). The proof is complete. O

Define the subset of positive reals as follows:
ad -
E= {A >0]1-1> piP >0 eventually 75 (2.310)
i=1

Given an eventually positive solution {A,, .} of (2.297), we define the subset
S(A) of the positive reals as follows:

S(A) = {)L >0 Apsin + Amnt1 — Amn (1 -2 Zpﬁ,’,h) < 0 eventually }

i=1

(2.311)
IfA € S(A),then1 -A> 1", pﬁr?,n > 0 eventually. Therefore S(A) C E.
It is easy to see that condition
ad o
limsup > p¥), >0 (2.312)

implies that the set E is bounded.
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Theorem 2.57. Assume that conditions of Lemma 2.55 and (2.312) hold. Further,
assume that

n

-1 u /5
)
[ (1—/\2117,-,;)} <1 (2.313)

i=m—k, j=n-I,

m—1
sup )L{ H

A€E,m>M,n>=N

for some positive integers M and N, where = min{k,,l,}. Then every solution of
(2.297) oscillates.

Proof. Let {Am,} be an eventually positive solution of (2.297). Then by
Lemma 2.55, A, is nonincreasing in m, n eventually and

u
Am+1,n + Am,n+1 - Am,n + Amfk,,,nflu Z qulq),n <0, (2-314)
i=1
thus we have
ad -
Am+l,n +Am,n+1 - Am,n + Z p;(yll),nAm,n < 03 (2315)
i=1
SO
d -
0 < Amiin+Ampin < (1 -> pﬁ,?,n)Am,n, (2.316)
i=1

which implies that S(A) is nonempty.
Let 4 € S(A), then

u
Apiin < (1 —u Zpﬁ;’,{n>Am,n (2.317)
i=1
and so
m—1 u )
Amn =[] (1 - yZpﬁj;>Amku,n. (2.318)
r=m-k, i=1
Similarly, we have
u -
Apni1 < (1 —p> pf,;{n>Am,n (2.319)
i=1

and so

n—

u
App < (1 —p> pﬁg),s)Am,n_lu. (2.320)
s=n—1I,

i=1
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Hence

- m—1
AinnSAmnl"' m,n—1, 1_[ l_[ (1_#21)1’5) mknl' (2321)
s=n—1, r=m—k,

i=1

Similarly, we have

m—1 n—1
Ak < AmanAmian= [ 1 (1—y2p(’>) N (2.322)

r=m—k, s=n—l, i=1

Hence, we obtain

m—1 n-1 u 1/n
S{ [T 11 (1HZP5T'Z)} Am—kyn-1,- (2.323)
r I i=1

=m—ky, s=n—I,

Substituting the above inequality into (2.314), we obtain
m—1 n—1 =1/n
Am+1,n +Am,n+1 mn{l - ZP(I) I: 1_[ 1_[ ( [JZP(’)):| } < O:
r=m—k, s=n—I,
(2.324)

which implies that

m-1  n-1 Un~ -1
{ sup [1_[ ﬂ( ,MZP“)” } € S(A). (2.325)

m=M,n=N | y—yp—k, s=n—I,

From condition (2.313), there exists y € (0,1) such that

u 1/
sup { l_[ 1_[ < AZpﬁlz)} <y<lLl (2.326)

AEE, m=M,n=N r=m—k, s=n—I, i=1

-1 u 1/~ -1
Lo 1T (-030)]
m=M,n=N | p—p_k, s=n—I, i=1

so that u/y € S(A). By induction, u/y/ € S(A),j = 1,2,.... This contradicts the
boundedness of S(A). The proof is complete. ]

Hence

I\

¢ (2.327)
y

Remark 2.58. The nonnegativity of all coefficients of (2.297) is not required in
Theorem 2.57.
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Remark 2.59. From (2.300), (2.314) implies that if every solution of

Am+1,n +Am,n+1 - Amn +Am- kun—1, ZP(I) =0 (2328)

i=1

oscillates, then every solution of (2.297) oscillates.
From Theorem 2.57, we can derive an explicit oscillation criterion.

Corollary 2.60. Assume that conditions of Lemma 2.55 hold. Further assume that

O'

I}HIT’%ll;lof k l Z Z Zpl m (2329)

Ui=m—k, j=n-1, s=1

where 0 = max{ky, l,}. Then every solution of (2.297) oscillates.

Proof. Let g(A) = A(1 — cA)? for A > 0, ¢ > 0. Then

0-(7

W. (2330)

n;j;)xg(l) =

Set ¢ = (1/kyly) SISl S pl). Since

1 m—1 n—1 o m—1 n—1 u 1/
b2 S Sl 1 T (aSm)) . e
HH r=m i-1

—ky s=n—I, r=m—k, s=n—1,
we obtain
o° 1 m—1 n—1 u -1
bt 2 3 Yl
(1 + O-)H—U k”l” r=m-k, s=n—1, i=1
1 m—1 n—1 u o
> /\(1 oy > Zpifﬁ) (2.332)
WU -k, s=n—1, i=1
m—1 n—1 1/n
=af 1111 (=322
r=m—k, s=n—I,
Then the conclusion follows from Theorem 2.57. O

Example 2.61. Consider the equation

Am+l,n +Am,n+1 - Am,n + (3 + sin gm>Am_3,y,_5 + sin gmAm_l,,,_z =0.
(2.333)
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We can see that this equation satisfies Corollary 2.60, so every solution is oscilla-
tory. In fact, (—1)"™"*! is an oscillatory solution.

2.6.3. Equations with positive coefficients and p € (0, 1]

Consider the equation

u
Am+1,n +Am,n+1 - pAm,n + Z p;(yi,),nAmfk,-,n—l,v = 0) (2334)

i1
where p € (0,1] andpgf,),n >0,i=1,2,...,u, Zf’zlpﬁ,?,n >0form = N,n=N.

Lemma 2.62. Let {A,,} be an eventually positive solution of (2.334). Then {Amn}
is eventually decreasing in m and n and for all sufficiently large m and n,

Am+1,n < PAm,m Am,nﬂ < PAm,n- (2-335)
From (2.335), for positive integers k and /,
Attt < P A, (2.336)

Now consider (2.334) together with difference inequalities

u
Am+1,n +Am,n+l - PAm,n + Z pfq?,nAm—k,,n—l, = 0, (2-337)

i=1

Am+l,n +Am,n+1 pAm nt Z P ) Am —kisn—1; > 0. (2338)
i=1

Theorem 2.63. Assume that k; and I; are positive integers and
(i) liminf,, ;o p%)n =¢>0,i=1,2,...,1;
(i) >, p~ R (limsup,, n_,oop(l) +2¢;) > 1.

Then
(a) equation (2.337) has no eventually positive solutions;
(b) equation (2.338) has no eventually negative solutions;
(c) every solution of (2.334) oscillates.

Proof. Since (2.334) is linear. To prove Theorem 2.63, it is sufficient to prove (a).
Suppose to the contrary, let {A,,,} be an eventually positive solutlon of (2.337).
Then there exist positive integers M and N such that A, , > 0 and pm n=c—€>0
form = M, n = N, where € € (0, min;¢;) is arbitrarily small. From (2.337), we
have

A > (ci = €) Am—kin-iy- (2.339)

i=1
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By Lemma 2.62, we obtain

PAmn > Am-10-1 Z PRl (¢ —€). (2.340)
i=1
Hence,
Amern > Ay IZpl Rl c—€)>Angp h(ci—€). (2.341)
i=1 i=1
Similarly, we have
(2.342)

Am,n+1 > Am,n Z piklili (Ci - 6)'

i=1

Hence, from (2.337), (2.341), and (2.342), we obtain

u
0= Am+l,n +Am,n+1 - pAm,n + Z Pg,?,nAm—k,-,n—l,-
o (2.343)

(Z kb (pth +z<ci—e>>—p).

Hence
U -
SpRh(pd), +2(ci—€)) < p, (2.344)
i=1
which contradicts condition (ii). The proof is complete. ]
Example 2.64. Consider the partial difference equation
(2.345)

1
Am+1,n +Am,n+1 - Am,n + (1 + Z)Am—l,n—l + pm,nAmfl,n—l = 07

where pp, = (2n* + 702 +5n+2)/(n(n+1)(n+2)),m > 3,n > 3.
It is easy to see that all assumptions of Theorem 2.63 hold. Therefore every

olution of (2.345) oscillates. In fact, {A;,,} = {(=1)"(1/(n+ 1))} is such a solu-
tion.
Theorem 2.65. Assume that (i) of Theorem 2.63 holds and
ri+1
(ri+1) (2.346)

u
Z r,Jrrﬁrlr"1 > 1.
7 = maxtk;, [},

Then every solution of (2.334) oscillates, where r; = min{k;,1;}, 7;

i=1,2,...,u,and 0° = 1.
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Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(2.334). Set

Amn 1
Uy = ——0 5 — (2.347)
r Am+l,n+l P2

by Lemma 2.62. From (2.334), we have

u

Am+1,n + Am,n+1 _ P _ _ zp%),nAm—k,-,n—li ) (2348)
Am,n Am,n

i=1
Hence, by Lemma 2.62 and (2.348), we have

A1 _P2 < 2Am 1,041 _ e p(Am+l,n + Amnl _p)

Am," Am,n Am,n
(2.349)
=—pr(’> mknl< pr(’) %.
m,n
We note that
Am-—rin-r; _ Am—rin-ri Am—ri,n—rin o Am—l,n—l. (2.350)
Am,” Am—r,vﬂ,n—r,-“ Amfmz,n—r,urz Am,n
Then (2.349) becomes
u ri
— P <=p 2P0 T [ tmoonse (2.351)
i=1 -1

We claim that 3%, #? # 0 under condition (2.346). Otherwise, from (2.346), we
obtain >/, ¢;p~ "' > 1. On the other hand, from (2.351), we have

u

u
PP <, =P <=2 pp T < = Y ep T (2.352)

i=1

Hence

u

1> > p ™l (2.353)

i=1

This contradiction shows that >, r? # 0. Since ¢; > 0, (2.351) implies that &,
is bounded above. Set

I =liminf oy . (2.354)

m,n— oo
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Then I € (1/p?, ). From (2.351), we obtain

u

limsup (a,},) = % <p’ =2 p" " liminf <P££?,n [ rxm_s,n_s>
? =1

m,n— oo i1
. (2.355)
< PZ _ Zpr,‘—fﬂrlcilﬁ.
i=1
Hence
u lr,+1 ri—ri+1
<1 2.356
1:21 o1 ( )
We note that
r,'—Fi+llr,'+l - +1 ri+l
liminf (22— ") = pricd u (2.357)
Ip2>1 lp2 -1 ri’i
Combining (2.356) and (2.357), we obtain
u i+ l)r,+1
Z r,+r,+1r ti =1 (2358)
which contradicts (2.346). The proof is complete. ]
Example 2.66. Consider the partial difference equation
2n+n -3
Am+1,n +Am,n+l - Am,n + I’I(I’l T 1) Am,n—l +Am—1,n = 0> (2359)

wherem > 1,n > 1.
It is easy to see that (2.346) holds. By Theorem 2.65, every solution of (2.359)
is oscillatory. In fact, Ay, = (—1)"(1/n) is such a solution of (2.359).

2.6.4. Equations with continuous arguments

Consider the partial difference equation with continuous arguments of the form

diAx+a,y+b)+dAlx+a,y) + dsA(x, y + b) — dsA(x, y)
u (2.360)
+> pile, PA(x =11y —0;) =0,

i=1

where p; € C(R* X R*,R"),a,b, t;and 0;,i = 1,2,...,u are positive, d;, i = 1,2,3
are nonnegative and dy is positive.
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Throughout this section, we assume that
(i) 7 = kia+06;, 0; = lib+n;, where k;, [; are nonnegative integers, 0; € [0, a),
;i € [0,b);
(ii)
Qi(x,y) =min {p;(u,v) | x <u<x+a, y<v<y+b} (2.361)

and liminfy, y .« Qi(x,y) = q; = 0,i = 1,2,...,u.
The following result is obvious.

Lemma 2.67. Let A(x, y) be an eventually positive solution of (2.360). Set

x+a

+b
w(x,y) = er Ly A(u,v)dudv. (2.362)

Then w(x, y) is an eventually positive solution of the difference inequality

diwx+a,y+b)+drw(x+a,y)+dsw(x,y+b) — diw(x, y)

“ 2.363
+ Z Qi(x, y)w(x — kia, y — I;b) <0, ( )
i=1
and dw/dx < 0, dw/dy < 0.
From (2.363), dyw(x +a, y) < dsw(x, y). Let A; = 0. We have
) dz
wx—a,y)=e™ <Z>w(x,y),
4
L (2.364)
—ki) d2 '
w(x —kia,y) = e ‘(—) w(x, ).
d,
From dsw(x, y + b) < dyw(x, y), we have
ds
d—4w(x,y +b) < w(x, ). (2.365)
Hence,
- d3
wx,y—b)=e™ (*)w(x,y),
dy
ds\"
w(x,y—1b) = e M (di) w(x, ),
4
(2.366)

ki
w(x - kia, y — b) = e7kh (%) w(x,y —1;b)

A\ dy\ b
—(ki+l)Ay [ “2 @3
=¢ (d4) (d4) w%)
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From (2.363) and (ii), we have

dw(x+a,y+b)+dw(x+a,y)+dsw(x, y+b) — diw(x, y)
“ 2.367
+ > giw(x — kia, y — Iib) < 0. ( )
i=1
Hence

k

iw(x-i—a 9 < wix, y)< Z ~ketd (Zi) ,@)h). (2.368)

Let
d\" (ds\"
M- —(ki+l)A, [ G2 as
! Z aie (d4) (m) ' (2.369)
Then
dz Az
djw(x +a,y) < e?w(x,y), (2.370)
or
wlx—a,y) = e fw(x,y) (2.371)
Similarly,

b ey +b) < 0(x, y) l—ii -e’(k‘*””‘(@)ki(@)h = w(x,y)
d4 ’y - ’y d4 iZIql d4 d4 ’y .

(2.372)
Hence
,A d3
Wy =b) = e wlxy). (2.373)
4
By induction,
s
wix—a,y) = e —w(xy),
dy
(2.374)

w(x,y —b) = e’*”%w(x,y),

where

i 11
M = qu (kitli)An- 1(22) (Zi) . (2.375)

i=1
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Obviously, {1} is decreasing and bounded. So lim, .. A,, = A* exists and

. 1< (da\Nrds\"
A R (—2> (—3) : 2.376
e & ,; qie ds d, ( )
Hence, we have
—(kiHA* d; ki ds h
w(x — kia, y — I;b) > e~ \*h (;4) (dj) w(x, y). (2.377)

From (2.363),

dyw(x,y) =z diw(x+a,y+b) +drw(x+a,y) +dsw(x,y+b)

- (2.378)
+ > Qilx, y)w(x — kia, y — I;b).
i=1
Since
k- (2T (45 b
w(x —kia,y —lib) = e ( ) (*) w(x —a,y), (2.379)
dy dy
we have

I
wx,y) =+ ZQI(X y)e~ kitli=DA* (ZZ> (Z*j) wix—a,y). (2.380)

Hence

u k-1 I
wix+a,y) = iZQi(x+a,y)e‘(k“rll‘”)‘*(é) (@> w(x,y).  (2.381)
d4 i=1 d4 d4

Similarly, we have

1 Gertone (A2 ) ()"
wlx,y+b) = i ;Q(x .y +b)e (d4> (d4> w(x, ). (2.382)
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Substituting the above inequalities into (2.378), we obtain

u

Ii-1
dyw(x, y) = Z (X +a,y + b)e kith=24 (d2> (ﬁ) w(x, )
2. i) \4,

! S (kitli—1)A dZ) (i)
d Z;‘ i(x + a, y)e (d4 4, w(x,y)

(2.383)

73 i i(x, y + b)e” RtV (@)ki (ﬁy_lw(x )
d = y d4 d4 ))/
u ki—1 I;

+ > Qix, y)e Kith=DV* (ﬁ) (d3> w(x —a,y).
i1 d, ds

Set
u ki-1 -1
U(x’y) = d4 — %ZQi(x+a’y+b)e*(ki+lﬁ2))\*(%) (%)
4 4 4

- é u | e <@)kﬁl <§)L

di ; Qi(x +a, y)e i, i (2.384)

u

ki Ii—
S e () (4)”

4 =1 dy

Then (2.383) leads to

w(x,y) =

( ZQ(X y)e (kith=DA (Zi)k 1(Zz>lxw(x—a,y). (2.385)

Similarly, we have

-1

w(x,y) = U(x’ ZQ(x,y)e (ki lw(i)k’(ji) wx, y - b),

( )>#iQ'( )-<k1+h—zw(é)kﬁl(@)lﬁl (x—a,y—b)
w(x,y = Uloy) & i(x, y)e di 4, w(x —a,y .

(2.386)
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From (2.363), we have

> dlw(x+ay+b)+@w(x+a,y)+§w(x,y+b)
“d wxy) dy w(xy) di w(xy)

—kia, y — I;b)

ZQ(x, w(x’y)
dl a1 iQ~(x+a y +b)e” Kitl=2"
d4U(x+ay+b) = ! ’

d ki—1 d -1
(@) (2) 2387)

d, 1 et W(d )"**Y@)’f

+ di U(x +a, y)ZQl(x+ay)e dy dy

+d3720(x + b)e~ kit 1>A*(i)k"<é)”’”
A Ulx,y+b) =0 dy) \d,

+ 1 iQ}(x Yo~ (kithA* (@)ki(é)h £ H(x,y)
d4 P 1 )y d4 d4 - ))/ .

From (2.387), we obtain the main result in this section.

Theorem 2.68. Assume that

limsup H(x, y) > 1. (2.388)

X,y — 00

Then every solution of (2.360) is oscillatory.

From (2.376), we have

u k,‘ I,'
di(1-¢"") = qu*(k*lf“*(%) (Z—z). (2.389)

By (2.389), we can obtain a simpler oscillation condition from (2.388).
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In view of (2.384), we have

di < (da\ T s\
Ulx,y) <ds— deqfe*“‘*”f*“ ((i) (i)

i=1

_dy —<ki+li—1)x*<@)kﬁl(é>l"
ds i:Zlq,e 4) \4,

R —<kf+l,-—1>A*(é)k'(ﬁ)H
d ;q’e d.) \d,

—d, - Zfﬂh(l B e**)eﬁ*% (2.390)
- Z—ic&(l - e“)e“j—; - Z—zd4(l - e’”)@“j—:
= d4[1 —(1-¢e")eM (Z;—Z:e)‘* +2>].
Therefore,
H(x,y) = S ;
da[1— (1 —er)er ((dida/drds)er +2)]
x {%@(1 —W)eﬂt*%i3
+ Z—icﬂ;(l — e )et Z—; + Z—zd4(1 —eM)et Z—:}
+dl4§Qi(x’y)e(ki+,iw(ji>"f<gz>lf (2.391)

_ (1 - e“)e)‘* ((d1d4/d2d3)€A* + 2)
T 1= (= e)e (dida/dods)e +2)

LIRS AT
x , (ki+as (92 ds
a2 Qo ye (Z) (Z)

Then we have the following simpler result.
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Corollary 2.69. Assume that

. 1 “ —(ki+1)A* d2 ki d3 b
limsup 2 3 @i e () (32
i=1

X,y — 00

(2.392)
S 1- 2(1 - e“)e“ ((d1d4/d2d3)el* + 2)
1-(1-eV)er ((dids/dyds)er +2)

Then every solution of (2.360) oscillates.

From (2.391), we have

(l - e)‘*)e“ ((d1d4/d2d3)e“ + 2)

_ A
— (1 —er)er ((dida/dads)er +2) +(1-eh). (2.393)

H(x,y) = .

Corollary 2.70. If

(1 - e“)e“ ((d1d4/d2d3)e"* + 2)
1- (1 — e**)e“ ((d1d4/d2d3)€’1* +2)

+(1-¢")>1, (2.394)

then every solution of (2.360) oscillates.

Example 2.71. Consider the partial difference equation

Ax+2m,y+2m) + A(x + 21, y) + A(x, y + 2m) — A(x, y)
(2.395)
+ p(x, y)A(x —m,y = 3m) =0,

where p(x, y) = 11/5 +sinx + sin y. Then

. 1
Q(x,y) = min_ p(u,v) =, (2.396)
X<u<x+2m 5
y<v=y+2m

that is, ¢ = 1/5. By (2.376), e = 1 — (1/5)e™*". Hence & = (1 — V/1/5)/2 =~
0.276393, and

(1 =er")er" (et +2)

+(1-¢") =1.5594133 > 1. 2.397
ey U (2.397)

By Corollary 2.70, every solution of (2.395) oscillates.
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2.7. Frequent oscillations

In this section, we will consider the difference equation

,
aAmiin + bAmpit — dAmn + DO P Apgn-r =0, mn=0,1,2,...,
i=1

(2.398)

where a, b, and d are three positive real constants, 0;, 7;, and r are positive integers,
and { pi,?,n}f,,",nzo are real double sequences, i = 1,2,...,7.

Since the above usual concept of oscillation does not catch all the fine details
of an oscillatory sequence, a strengthened oscillation called frequent oscillation
has been posed.

First, we introduce the related definitions and lemmas.

LetZ=1{...,-1,0,1,...}, Nt = {k,k+ 1,k +2,... } and

Z? = {(m,n) | myn € Z}, N} = {(m,n) | m,n € Ni}. (2.399)

An element of Z? is called a lattice point. The union, intersection, and difference
of two sets A and B of lattice points will be denoted by A + B (or AU B), A - B (or
A N B) and A — B (or A\B), respectively. Let Q be a set of lattice points. The size
of Q is denoted by [Q]. Given integers m and #, the translation operators X™ and
Y" are defined by

X"Q={(i+mj)eZ*|(,j)eQ}, Y'Q={Gj+n) e€Z|(Gj) e},
(2.400)

respectively, and Q" = {(i,j) | (i,j) € Q, i < m, j < n}. Leta, B, and 6, §
be integers such that @ < ff and 8 < §. The union Zf;:a 2;?:9 X'YiQ) is called a
derived set of Q. Hence

B s
LHEZ\D D XYIQe=(i-kj-1)eZ’\Q, (2.401)
i=a j=0

fora <k <pfandf <l<39.

Definition 2.72. Let Q) be a set of integers. If lim SUP, o (1Q"™" | /mn) exists, then
the limit, denoted by y*(Q), will be called the upper frequency measure of Q). Sim-
ilarly, if lim inf e (| QU |/mn) exists, then the limit, denoted by p«(Q), will
be called the lower frequency measure of Q. If y*(Q) = s (Q), then the common
limit, denoted by u(Q), will be called the frequency measure of Q.
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Definition 2.73. Let A = {Amn | m = —u, n = —v} be a real double sequence
and let A € [0,1] be a constant. If y* (A < 0) < A, then A is said to be frequently
positive of upper degree A, and if y*(A = 0) < A, then A is said to be frequently
negative of upper degree A. The sequence A is said to be frequently oscillatory of
upper degree A if it is neither frequently positive nor frequently negative of the
same upper degree A. The concept of frequently positive of lower degree, and so
forth, is similarly defined by means of y. If a sequence A is frequently oscillatory
of upper degree 0, it is said to be frequently oscillatory.

Obviously, if a double sequence is eventually positive (or eventually negative),
then it is frequently positive (or frequently negative). Thus, if the sequence is fre-
quently oscillatory, then it is oscillatory.

We will adopt the usual notation for level sets of a double sequence, that is,
let A : Q — R Dbe a double sequence, then the set {(m,n) € Q | Ap,y < c} will
be denoted by (A < ¢) or (A < ¢), where ¢ is a real constant. The notations
(A = ¢), (Amn < ¢), and so forth, will have similar meanings.

Lemma 2.74. Let Q) and T be subsets ofN,f, where k € Z. Then
p (Q+TD) < p*(Q) +p*(D). (2.402)
Furthermore, if QO and T are disjoint, then

s (Q) + ps(T) < ps (Q+T) < pse (Q) +p*(T) < ™ (Q+T) < p*(Q) +u*(I),

(2.403)
so that
Ue(Q) +p* (N Q) = 1. (2.404)
Proof. If Q and T are disjoint, then (Q + ') = Q(m® 4 [0mn) 5o that
) |Q(m,n) + T(myn) [
*(Q+T) =1 L
W@ D) =limsup =
(2.405)
R L e TR [ ) :
> lim sup + lﬁqn}l%f = ps (Q) + u*(T).

The other cases are similarly proved. As an immediate consequence, we have

1= pse (NF) < s (Q) +p*(NF\ Q) < p*(NP) = L. (2.406)
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Hence

Ui (Q) +p* (N} Q) = 1. (2.407)
O

Lemma 2.75. Let Q and T be subsets of N{. If ps (Q) + u*(T) > 1, then Q n T is an
infinite set.

Proof. If O NI is finite, then y* (2 NT) = 0 and in view of Q < (N,f \D)+QnT,
we have

p*(Q) < p*(NE\T) +u*(QNT) = p*(NF\T). (2.408)
Thus by Lemma 2.74,
1< u*(Q) +ps (D) < p* (NF\T) +ps(D) = 1, (2.409)

which is a contradiction. (|

Similarly, from Lemma 2.74, we have the following.

Lemma 2.76. Let O C N, a, B, 0, and § be integers such that o < B and 6 < 4.
Then

M=

y*( X"YJ'Q) <(B-a+1)(8 -0+ 1) (Q),

P‘*(

Lemma 2.77. Let k, m, and n be three positive integers, and let {A; ;} be a sequence
such that A;j; > 0 fori € {mym+1,...,m+k}andj € {n,n+1,...,n+k}. If
dAjj = aAip1j+bA;j forie {mym+1,...,m+klandje {n,n+1,...,n+k},
then

>

-

(2.410)

M=
M=

XinQ> <(B-a+1)(0 -0+ 1ux(Q).
0

4

-.
I

dkAmﬂ = akiibiC]icAm+k—i,n+i- (241 1)

M-

Il
(=]
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Proof. Obviously, (2.411) holds for k = 1. Assume that (2.411) holds for an inte-
gers € {1,2,...,k — 1}. Then in view of the following inequality:

s
Z as_lblcé (aAm+s+1—i,n+i + bAm+s—i,n+i+1)
i=0

s

" i
>a' Am+s+1,n + Z a’ lblC;Am+s+17i,n+i

i=1
s—1
—ip 1t i +1
+ Z a'b IC;Am+s—i,n+i+1 +b° Am>ﬂ+5+1
i=0 (2.412)

s
s+1 stl—igi( i i—1
=>a Am+s+1,n + Z a b (CS + Cs )Am+s+17i,n+i
i=1

+ bS+1Am,n+s+l

s+1

— stl—ipici
- Z a b Cs+1Am+s+1—i,n+i;

i=0

(2.411) holds for s + 1. By induction, (2.411) holds. The proof is completed. [

Lemma 2.78. Let k, m, and n be three positive integers such that m > 2u and n > 2v.
Assume that (2.398) has a solution {A;;} such that A;; > 0 fori € {m — 2u,m —
2u+1,...,m+kland j € {n—-2v,n—-2v+1,...,n+k}, ps(i,j) = g; = 0 for
iefm—-um—u+l,...,m+klandje {in—v,n—v+1,...,n+k}, whereq; are
real constants, s = 1,2,...,r. Then

k+1
korlAm,n = Z ak+lilblc}i+1Am+k+l—i,n+i
i=0
+ (k + 1)(] Z akilblcjchm-*—k—iﬂx,n-%—i—ﬁ (2413)
i=0

i—1

k
2N gk—i i~1-jpj )
+q* > id Y a T ID CLy Apric1— jo2ant j-2ps

i=1 j=0
where @ = min{oy, 0,...,0,} and § = min{1,,72,..., 7, }, and

gsa% b= P cr P

o;—a+1—f
a=>. p o : (2.414)

s=1
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Proof. In view of (2.398), forany i € {m —u,m —u+1,...,m+k} and j €
{in—v,n—v+1,...,n+k}, we have

dA;j = aAiprj + bAijr + . ps(iy ))Ai—g,j-r, = @Aij + bA; ji1. (2.415)

s=1

Then from Lemma 2.77, foranyi € {m,m+1,...,m+k}and j € {n,n+1,...,n+
k}, we get

A5 PBA 2 a b BCE A g s= 1,2, (2416)

O+ T —a—p

and so that
N i
dA;j = aAi1j + bA; ji + ZPS(Z’J)CJS+TS—a—ﬂW Ai—aj-p
s=1 (2.417)
= aAiH,j + bAi,jH + qi,in_,x,j_ﬁ,

where

rqoabnPChh

6= 2 grap £ palis ). (2.418)

s=1

Obviously, gij = qforie {m —u,m—-u+1,...,m+ktandje {n-v,n—v+
1,...,n+k}. Hence, from (2.417), we obtain

dAm,n = aAm+1,n + bAm,rH—l + Qm,nAm—oc,nffb
dAm+1,n = aAerZ,n + bAm+1,n+l + Qm+1,nAm+l—a,n—ﬂa
(2.419)
dAm,n+1 = aAm+1,n+1 + bAm,n+2 + an,n+1Amftx,n+l—‘B)

dAm—a,n—ﬂ = aAerl—tx,n—[i + bAm—a,nJrl—ﬂ + qm—a,n—ﬂAm—Za,n—Zﬁ-
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Thus, from the above in equalities, we have

d Am,n = azAm+2,n + 2abAm+1,n+1 + bzAm n+2

+ a(Qm,n + ‘Zerl,n)AmH—a n-p

Hence

2 1
dzAm,n = Z a27ibiCéAm+2 in+i T 2q

i=0
i—1
1- 1-
+q Zld lzal ]b]C1 1Am+1 1-j—2an+j—2pB:
i=1 j=0

Assume that (2.413) holds for a positive integer s € {1,2
(2.412), (2.417), and the assumptions, we have

=2.d

=~

dk+1

k-1
+kq Z ak=1=ipict |

i=0

k-1 i—1

2 - gk—i i—1-j1j )

+q Zld ! Z(Jll ]bJC,;lAeri 1—j—2an+j-28
i=1 j=0

k+1 k
1 . K—itii

= Z * lblC}i+1Am+k+1—i,n+i+an 'b'C; m+k—i—a,n+i—f

i=0 i=0

k

k-1

+ b(qm nt Qm,n+1)Am—a,n+17[3 + qmngm—a,n ,BAm 2a,n—2f
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(2.420)

Z aliibiCiAerl—i a,n+i—f

(2.421)

.,k}. Then from

lblck aAm+k+1 in+i + bAm+k in+1+i + qu+k i—a,n+i— ﬁ)

(aAm+k i—a,n+i ﬁ+bAm+k—1—i—tx,n+l+i—ﬁ+qu+k 1-i—2a,n+i Zﬁ)

. ) v
+quak lblC;CAerk—i—a,nH—ﬁ"'kq Zak lblC;c 1Am+k—1-i-2a,n+i-2p
i=0

i=0
k-1 i—1

o 11
+q2 Zldk ! Za’ ! ]b'lci_lAm+i 1-j—2an+j-28
i=1

j=0
k+1 k
_ Z k+1 lblck+1Am+k+1—i,n+i+(k+ l)qzakfibicl; m+k—i—a,n+i—f
i=0 i=0
i—1
+q szk ' Za’ . ]b]CI 1Amtic1-j-20ntj-2p-
i=1 j=0

Hence (2.413) holds. The proof is completed

(2.422)

]
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From Lemma 2.78, we can obtain the following corollaries.

Corollary 2.79. Assume that &« > 0 and 3 > 0. Further, assume that for integers
m = 3u and n = 3v, (2.398) has a solution {A;;} such that A;; > 0 fori € {m —
3u,m—3u+l,...,m+viandj€ {n—-3v,n-3v+1,...,n+u}, p;(i,j) = g; =0
forie {m—-2um-2u+1l,....m+v},je{n-2v,n—-2v+1,....,n+u} and
s=1,2,...,r, where q is defined in (2.414). Then

aph
(d“’fﬁ —gla+ ﬁ)Cngﬁ(%))Am,a,n,ﬁ > atbECE 4 A (2.423)

Proof. From (2.398), fori € {m —2u,m—2u+1,...,m+v}andj € {n—-2v,n—
2v+1,...,n+ u}, we have

dAl;l)j > aA,-,j, dA,',jfl > bAi,j. (2.424)

In view of Lemma 2.78 and the equality C. + C; ' = Ci,,, we have

atf
d‘HﬁAm—a,nﬂB = Z anrﬁiibiCéﬁ/gAmHSfi,nﬁBH

i=0

at+f-1

+ q((x + ﬁ) Z a‘Hﬁ_l_ibic‘l;‘+ﬁ,1Am+ﬁ—1—iftx,n+i72,5
i=0

(2.425)
> a"VPCl p A + (@t B)ga™ WP Chy Ao
+ (o + ﬁ)qa“b/s’lCf;ﬁlflAm_a,n_ﬁ_l
apf b a“bf\
> a*b C‘XJrﬁAm’n + ((X+ﬁ)q 7 C(erﬁAm—tx,nfﬁ'
Hence (2.423) holds. The proof is completed. O

Corollary 2.80. Assume that « > 0 and 3 > 0. Further assume that for integers
m = 2u and n = 2v, (2.398) has a solution {A;;} such that A;; > 0 fori € {m —
2u,m—2u+1,....m+u+v+1liandj e {n—-2v,n-2v+1,...,n+tu+v+1},
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and ps(i,j) =z qs = 0forie im—um—-u+1,....m+u+vl,je{n—v,n—v+
L...,n+u+v}ands=1,2,...,r. Let q be defined in (2.414). Then

(dF — gd ™ a*bP (1 + B)CE, ) Amern = (a+ f)ga 0P Chp (A (2.426)

(d*F — qd ™" a"bP (1 + 0)CL ) Ayt = (a+ B)ga™bF ' Clg A (2.427)

Proof. From (2.398), we have dA,410-1 = bAu41,n. From (2.417), for any i €
{mym+1,...,m+u+viandj € {n,n+1,...,n+u+ v}, weobtain

dAij > qAi—ajp. (2.428)
In view of Lemma 2.78, we get

at+p
d“+BAm+1,n > Z a“+ﬁ7ibiCé+ﬂAm+1+(x+ﬁ—i,n+i

i=0

at+p-1

+q(06+[3) Z (Hﬁ 1-ipi tx+ﬁ 1Am+zx+ﬁ—i—¢x,n+i7ﬁ

= aabﬂC£+ﬁAm+l+a’n+ﬁ + (0( +ﬁ)qaa lbﬁcﬂ+ﬁ 1

(2.429)
+ (a+ B)ga*bP- 1Cﬁ+ﬁ 1Am+1n-1
> qd " a"bPCl, gApirn + (@ + f)ga ' 0PCh, , A
+qd (ot B)abPCls A
= qd " a" VP (1 + B)Ch pAmrrn + (at f)ga® bFCE o A
Hence (2.426) holds. Similarly, (2.427) holds. The proof is completed. O

Corollary 2.81. Assume that & > 0 and 3 > 0. Further, assume that for integers
m = 2u+vand n = 2v+ u, (2.398) has a solution {A;;} such that A;; > 0 for
ie{fm-2u—v,m—-2u—-v+1,....m+2u+v+1liandje {n—2v—un—2v-
u+l,...,n+u+2v+1},and ps(i,j) =g = 0forie im—-—u—-v,m—-—u—v+
L....om+2u+vhje{in—v—-—un—v—-—u+l,...,n+u+2viands=12,...,r
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Then
AP Ay i = (a+ B+ 1)qa™ b CEf A, (2.430)
where q is defined in (2.414) and —a < h < 5.
Proof. Forany —a < h < f3, from Lemma 2.78, we get
atp

da+ﬁ+1Am7h,n+h = (a+p+1)g Z aa+ﬁ7ihiC:;chﬁAmfhﬂxﬂ?*i*tx,n+h+i7B
i=0 (2.431)

= (a+p+ l)qa“*hbﬁ’hCﬁhAm,n.

Hence (2.430) holds. The proof is completed. |

Theorem 2.82. Assume that o > 0 and § > 0. Further assume that there exist non-
negative constants q; = 0, 0; = 0, and w € [0, 1] such that u* {pffq),n <qit =0; =0,
i=12,...,1,

doerprl < q2 {Dd—lazxﬂbﬁcgﬂsﬂ + Bd—la“bﬁﬂcgiéﬂ

+ (ot B+ 1P EabF Crh L+ d 7 (a+ p)Ba"bCh 4,

(4u+2v+ 1)Qu+ 4v+ 1) (614 Ot - - -+ 6,) + (5u+ 2v+ 2)Qu+ 5v+ 2)w < 1,

(2.432)
where q is defined in (2.414) and
- a"‘bﬁcgﬂg
(d=8 — (q/d)(a+ B)abPCL, 5)
1
E = W,
(2.433)

(a+P)as'bECh, 5,
{de+f — qd-1avbP (1 + B)Ch, 1}

(a+P)abb1Chy

D= po
{d+f — qd-1avbP(1 + @) Cpypt

Then every solution of (2.398) is frequently oscillatory of lower degree w.
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Proof. Suppose to the contrary, let A = {A,,,} be a frequently positive solution
of (2.398) such that y«{A < 0} < w. In view of Lemmas 2.74 and 2.76, we have

r 2utv u+2v
#*{Né\z > 2 Xin(Ps(m,n)ws)}

s=1 i==2u—v j=—u-2v

3utv u+3v
+y*{N02\A > > Xin(Aso)}

i==2u-v—1 j=—u-2v-1

r 2utv u+2v
=2- M*{ > 2 2 XYi(pd(mn) < qs)} (2.434)
s=1i==2u-v j=—u-2v

3utv u+3v
_#*{ > > X"Yf(Aso)}

i==2u-v-1 j=—u-2v-1
>2— (4u+2v+1)Qu+4v+1)(61+---+86,)

—Bu+2v+2)Qu+5v+2)w > 1.

Hence by Lemma 2.75, the intersection

r 2utv u+2v o
{Ng\z Z z XlY](Ps(m’”)<qs)}

s=1 i==2u—v j=—u-2v

(2.435)

N {N&\A EV MZSV X'YI(A < 0)}

i=—2u-v—1 j=—u-2v-1

is an infinite subset of N3, which together with (2.401) implies that there exists a
lattice point (1, 1) such that A; ; > 0 forie {m-3u—vm—-3u—-v+1,....,m+
2utv+ltandje {n—-3v—un—-3v—u+l,...,n+u+2v+1},and p;(i, j) = g;
forie {m—-2u—v,m—-2u—-v+1,....m+2u+viandje {n-2v—un—2v-—
u+l,...,n+u+2vi,s=12,...,r. lff a = f, then from (2.417) and Corollaries
2.79-2.81, we get

Apnpen = E(a+ S+ l)qa”hbﬁ_th;;;Am,n for —a<h<p,
dAm+a+1,n+ﬁ = qu+1,7l) dAm+zx,n+ﬂ+l = qu,ﬂ+1)
- (2.436)
Am+1,n = Dqu,m Am,n+1 = Dqu,m

Am—a—l,n—ﬁ = BAmfl,n) dAm—l,n = aAm,m dAm,n—l = bAm,n-
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Hence, from Lemma 2.78,

at+B+1
+B+1 +B+1-
da« B Amn = Z otp bt Ca+ﬁ+1 mtat+f+1-in+i
i=0

at+p

+ (e + /3 + 1)q Z aa+'87ibicé+/;Am+a+ﬁ—i—tx,n+i—[3

i=0

atp i1 )
S g i
+q* > id P @ D L Apric 1 jo2antj-28
izl j=0

> aa+lbﬁcg+ﬁ+1Am+a+1,n+ﬁ + alxbﬁ+lcgi;3+1Am+a,n+ﬁ+l

2
+qla+B+1) > aFIbCl g Amipinei-p (2.437)
i=0

+q*(a+p)a* 1bﬁCﬁﬂ; Am—a—1n-p
+q (a-l—ﬁ)a"‘bﬁ 1Ca+ﬂ 1Am—an—p-1

> (¢?Dd '™ CL 4, + D @b Chr ) A

+(a+ B+ 1)’ Ea* v ( > ClsCois )Am,n

+q2d "' Bla+ B)abPCh, A
In view of the equality Z?EO ot Ciliﬁi = C§£+zﬁ, we have

drx+ﬁ+l >q {Dd 1a"‘“bﬁCﬁ+ﬁH +Dd laocbﬁﬂcfiﬁﬂ

(2.438)
+(a+ B+ 1PEVFCh Ly +d ' Bla+ pabiCh, ],
which is contrary to (2.432).
If @ < f3, similar to the above proof, we have
da+[)’+1Am)n ( 2Dd- 1a0‘”b/3Cﬁ+5+1 + qud 1aabﬁ+1C€:};+1) -
at+B
+ ((X +ﬁ + 1)2‘12Ea2“b2ﬁ( Z szJrﬁ oc+ﬂ ) (2439)

i=p—a

+q*d 'Bla+ [S)a“bﬁC£+BAm,n.
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In view of the equality

atf

i 2B +p— (a+p—i) i 2B
2 Coc+ﬁca+ﬁl = Z CZ+ﬁ l ociﬂ ‘ Z iiﬁ = §Z+2ﬁ = C2a+2ﬁ’
i=f—a i=f—«a
(2.440)
we also obtain a contradiction to (2.432). The proof is completed. O

Corollary 2.83. Assume that « > 0 and 8 > 0. Further assume that there exist positive
constants q; = 0 such thaty{p,(fl),n <gi} =0,i=12,...,r,and
doc+[§+1
q= . (2.441)
(a+p+1)axbb CZ(erZﬂ

Then every solution of (2.398) is frequently oscillatory of lower degree w (and hence
oscillatory), where w € [0, [(5u+2v +2)(2u+5v+2)]71).

In fact, in view of d¥tF+1 = Eq2(@B+1) from (2.441), then
AP < @ (a+ B+ 1)2EabPCh o (2.442)

Hence (2.432) holds. By Theorem 2.82, Corollary 2.83 follows.
Similarly, from Theorem 2.82, it is easy to obtain the following corollaries.

Corollary 2.84. Assume that o >0 and 1 > 0, and
#lpmn >0} =1, (2.443)
where

T T T T+ T /
= {(0 + T)[CU+T IC +re1 T CU-Hl' IC +r41 T (CO'+T) ] (0 tT+ 1) C20+2‘r} v

(2.444)
Then every solution of equation
Am+1,n + Am,n+1 - Am,n + pm,nAm—a,n—r =0 (2445)

is frequently oscillatory of lower degree w (and hence oscillatory), where w € [0, [(5u+
2v+2)Qu+5v+2)]7h).

Corollary 2.85. Assume that ¢ > 0 and T > 0, and
liminf p,,, > O, (2.446)
m,n— oo

where © is defined above. Then every solution of (2.445) is frequently oscillatory (and
hence oscillatory).



92 Oscillations of linear PDEs
In the sequel, we give two examples to illustrate the above results.

Example 2.86. Consider the partial difference equation with two delays of the form

Apitn + Apntl — Amn + PmnAm-1n-2 + GmunAm—21-1 = 0, (2.447)
where pp, = —1 and g, = —1 for (m,n) € S = {(5,j) | i =25 j =2, st =
0,1,2,...},and p,, = 0.05and g, = 0.07 for any (m,n) ¢ S.Leta=b=d =1,

r=2,00=1,1=2ando, =2and 1, = 1, then « = 1 and 8 = 1. It is obvious
that y{pmn = 0.05 =g} = 1 and p{gmyu = 0.07 = q2} = 1, E = 1,and

aUs*“st*B Cfs_ﬁ

d s o—a+1,—f
9= Z dos—a+t—p =qtq= 0.12,
s=1
B a”‘bﬁCﬁ+ﬁ ,
- 2,
(d**F — g(a + B)d-1asbBCY, )
(2.448)
D= (“+/3)aa71bﬁC£+/5—l >2
(do+h — qd-'asbb(1+ B)Chy)
5. +Rab Gy >2
(d+F — gd-1ab(1 + @)Clg)
Obviously,
1 PR U
\/D><C§+5><C§+9><C§+2><B><c% 6+6+54+8 74 ©
(2.449)

Hence (2.432) holds with u = v = 2 and 6, = 6, = 0. By Theorem 2.82, every
solution of (2.447) is frequently oscillatory of lower degree w € [0,1/256] and
hence oscillatory.

Example 2.87. Consider the partial difference equation of the form
Am+1,n + Am,rH—l - Am,n + Pm,nAmenfz = O, (2450)

where p,,,, = 1/16 for any m,n = 0,1,2,.... Let 0 = 1 and 7 = 2. It is easy to see
that py., = 1/16 = 0.0625,
(0 +71)7%7 33 1
————— = — = 0.1055, 0 = — = 0.0569. 2.451
(c+ T+ 1)o7+l 44 V309 ( )
Hence from Corollary 2.85, every solution of (2.450) is frequently oscillatory and
hence oscillatory. This conclusion cannot be obtained from Corollary 2.18.
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2.8. Linear PDEs with unbounded delays

In this section, we will consider the partial difference equation

Am+l,n + am,nAm,n+l - bm,nAm,n + pm,nAa(m),T(n) =0, (2452)

where {amn}, {bmyn}, and {pm,} are three real double sequences, m,n € Ny. For
(2.452), we always assume that the following hypotheses, designated by (H), hold:
(i) oand 7: N — Z are nondecreasing;

(i) o(n) <nand v(n) <nforalln € N;

(iii) lim,—e o(n) = lim, ., 7(n) = oo;

(iv) amn =z aand by, < b, pyy = 0 for all large m and n, where a and b are

two positive constants.

For example, we see that o(m) = [m/2] and 7(n) = [n/2] satisfy condition (H),
where [-] denotes the greatest integer. Hence, (2.452) includes partial difference
equations with unbounded delay.

Lemma 2.88. For m = M and n = N, the following formal identity holds:

1

J

L

n
(Aig1,j + aAiji — bA;j)
-N

=(I+a-b) > > A+ D Apatla-b) > A,

i=M+1 j=N+1 j=N+1 j=N+1

m m
+a> A+ (1-b) D Ajn+Aman — bAuy
i=M i=M+1

=(l+a=b) > > Ay+a X Apat(a-b) 3 Ay,

i=M+1 j=N+1 i=M+1 j=N+1

n m
+ D Apprj+(1=b) > Ay +ahyun — bAy.
j=N i=M+1
(2.453)

Lemma 2.89. Assume that (H) holds and {A;} is an eventually positive solution of
(2.452) such that A;; > 0 and p;; > 0 for i = 0(M) and j = ©(N), where M and N
are two sufficiently large integers. Then for any integer k > 0 and m > M andn > N,

k+1
b Ay = D a'Chy Akt i (2.454)
i=0
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Proof. In view of (2.452) and (H), for m = M and n = N, we have
bAmn = Amsin + GAmpnt1s (2.455)
and thus,
bApiin = Amion + AA s nets bApni1 = Amrip + aApnia. (2.456)

Hence, from (2.455), we have

2
bzAm,n = Ao T 2aA 41041 + a2Am,}’l+2 = z aicéAmﬂ—i,nH- (2.457)
i=0

Assume that for any positive integer k > 1,
k . .
B Amn = D a' CiAmikipsi (2.458)
i=0

Then for 0 < i < k, from (2.455) we have
Amiki1-in+i T @Amik—in1+i < DAmik—inti. (2.459)

Combining the last two inequalities, we obtain

k

k+1 i i

bt Am,n = Z atcllc (Am+k+17i,n+i + aAm+k7i,n+l+i)~ (2.460)
i=0
Since

k

Z a'Cy (Amskrr-inti + AAmik—int1+i)

i=0

k

= Amtksin t Z ﬂiC}iAm+k+1—i,n+i
i=1
k-1
i+1 i k+1
+ D M ClApkimi + @ Ak (2.461)
i=0
k
o i1
= Amikrin t Z al(C]lc + Cllc )Am+k+1—i,n+i
i=1
k+1
k+1 i i
+a*t Am,n+k+1 = Z alC]l(+1Am+k+l—i,n+i>
i=0
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then we have

k+1
kaAm,n = Z aiC]i+1Am+k+l—i,Vl+i‘ (2462)
i=0
The proof is completed by induction. O

Corollary 2.90. Assume that (H) holds and {A, .} is an eventually positive solution
of (2.452) anda = b, b < 1. Then A, tends to zero as m,n — .

Proof. Assume that A, >0 and py,, = 0 for m = 0(M) and n = 7(N), where M

and N are two positive integers. By means of Lemma 2.89, for all positive integers
kand [,

karlAM,N = alC}l(+lAM+k,N+l. (2.463)
Thus,
kA 1
Anpeionat < 2 g (é) —0 ask,]— oo (2.464)
k+1 a
The proof is completed. |

By Lemma 2.89, it is easy to obtain the following corollary.

Corollary 2.91. Assume that (H) holds and { A} is an eventually positive solution
of (2.452) so that Ay, > 0 and pyy = 0 for m > 02(M) and n > t2(N). Then

bm—cr(m)-%—nfT(n)Aa(m))T(n) > an*T(ﬂ)C:’n’_T(”) Am,n (2465)

o(m)+n—1(n)
form = M and n = N, where M and N are two positive integers.

Lemma 2.92. Assume that (H) holds, a > b, b < 1, and {Am,} is an eventually
positive solution of (2.452). If there exists B > 0 such that for sufficiently large M and
N,

- 1 a\" ™7 e
ZN Pij potm—o) (g) Cotm)-oliyretn)—=(j) = B> (2.466)
i

v

1

then

bAM,N = Am+1,N + BAa(m),T(n)a (2467)
bAM,N = aAM,rH—l + BAo(m),T(n)- (2468)
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Proof. In view of (2.452), (2.453), and Corollary 2.91, for sufficiently large M and
N, we obtain

0= (Air1j +aAiji1 — bAij + pijAsiie())

v

-

-

PijAstie() + Amrin — bAMN

\%
Livis
IM-

J
(2.469)

>

n a 7(n)-7(j) .
a =10 A
Z Pii T ot pot m) a0 \ b o(m)—a(i)+r(n)—1(j) o (m),7(n)
j=N

ng

i
+ApiN — bAunN
> BAo(m),z(n) + Amrin — bAMN

and hence, inequality (2.467) holds. On the other hand, from (2.452) and (2.453)
we find

m n
0= > > pijAsiye) + aAmni — bAmN. (2.470)
i=M j=N
By a similar argument as above, we obtain (2.468). The proof is completed. O

Lemma 2.93. Assume that (H) holds, a = b, b < 1, and {A .} is an eventually
positive solution of (2.452), and for all large m and n, then

a T(n)—7(j) (m)-1(j)
Z Z Piiystm—at) po(m) U(z) (b) Ca(m) a(i)+r(n)-7(j) = > B >0. (2.471)
i=o(m) j=1(n)

Then for all large m and n, then

Ay o 4
A m)r) <&) , (2.472)

Aa(m),n B

where 6°(m) = m and 6*(m) = o(6* ' (m)), k = 1,2,....

Proof. In view of (2.471), for large m and n, there exists an integer 7 such that
m e {o(m),o(m)+1,...,m} and

mon a T(n)—T(]')CT(n)—T(j) . B
> 2 Pub(,(m) a0\ p a(m)-a(i)+t(n-7(j) = 3>
i=o(m) j=1(n)

(2.473)

[\

)T(n)*f(j)

§'M§‘

q a Crm=r) B
Z Piiystm—at) bo(m) U(z) b (m)— E
j=1(n)

o(i)+t(n)—7(j)
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By Lemma 2.92, we have

B
bAsmyr(n) = Amrem) + EAo(m),r(n)»
(2.474)

B
bAyr(n) = Amsre(n) + EAU(W),T(n)~

Hence, Ayr(ny = (B/2b)*Ag(myc(n) for large m and n. Similarly, Ag(m),, = (B/
2b)*Ag(m),r(n) for large m and n. Thus, for all large m and n, we have

Agzmen _ Acmirn)  Agmatn _ (&)4 (2.475)
Aa(m),n Aa(m),r(n) Aa(m),n ~\B ' '
The proof is completed. |
Theorem 2.94. Assume that (H) holds and
li L (ay" >1 (2.476)
1M SUpP Pim,n pm—a(m)+1 \ p m—o(m)+n—1(n) : .
m,n— 0o

Then every solution of (2.452) is oscillatory.

Proof. Suppose to the contrary, there is an eventually positive solution {A,,,} of
(2.452) such that A,,, > 0 and p,,, > 0 for m > 0>(M) and n > 2(N), where M
and N are two positive integers. By means of Corollary 2.91, we have for m > M
andn > N,

1 n—1(n) B
Aprin + A — bAm,n + pm,nW (E) C:ln_‘:;((ny,)q)Jrn_T(n)Am,n <0,

(2.477)
that is,
1 g\
pm,nm (E) Co—otmytn—r(m <1 form>=M, n>N, (2.478)
which is a contradiction to (2.476). The proof is completed. ]

The following two corollaries can be easily derived from Theorem 2.94, and
their proofs are thus omitted.

Corollary 2.95. Assume that (H) holds, a > b, and b < 1. If either lim,—.(m —
o(m)) = o0 orlim,.«(n — 7(n)) = o holds, and limsup,, , .., pmn > 0, then every
solution of (2.452) is oscillatory.
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Corollary 2.96. Assume that (H) holds, 6(m) = m — 0, and t1(n) = n — 7, where ¢
and T are two positive integers. If

o+1 T
lim sup pm, > bT <g> R (2.479)

m,n— oo CU+T

then every solution of (2.452) is oscillatory.
If (2.476) does not hold, then we have the following result.

Theorem 2.97. Assume that (H) holds and

a\"" ()
hmsup d Z Z Piji o potm—o(i (b) Cg(m)fo(i)+r(n)f‘r(j) > 1.
M=o BN i G(m) j=1(n)
(2.480)
Then every solution of (2.452) is oscillatory, where
(b, azb bs<l,
bm—a(m)ﬂ) a= b, b > 1,
b n—1(n)
b(ﬁ) , a<b bz,
b\" 7(n)
dm,n=‘b[(;> —1+b’”‘"<’”)], a<bb=1l,b-—a<]l,
b n—1(n)
b[(;) —1+bm*”<m)] ~(1+a-b)

n n pi—a(m) by~
x > Y ———(2)] . asbb=lb-az1
C] 7(n) a
L i=o(m)+1 j=t(n)+1 “i-g(m)+j-1(n)

(2.481)

Proof. Assume that there exists an eventually positive solution {A,, ,} of (2.452)
such that A,,, > 0 and p,,, > 0 for m > 0*(M) and n > 72(N), where M and N
are two sufficiently large positive integers. Then in view of (2.452), Lemmas 2.88
and 2.89, for m = M and n > N, we have

Am+1,n + aAm,n+1 - bAm,n + pm,nAo(m),T(n) < 0) (2482)
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and thus,

m n
> > > (Aunj+aAija — bAij + pijAsiiye))
i=o(m) j=t(n)

Z Z P:] a(i),7(j

i=o(m) j=1(n)

+ (1 ta-— b) z Z Az] + Z Am+1] (2483)

i=o(m)+1 j=1(n)+ j=1(n)+1

m n
+a > Ainnt+(@a=-b) > Agm

i=o(m) j=t(n)+1

m
+ (1 - b) Z Ai,‘r(n) +Am+l,r(n) - bAo(m) T(n)

i=o(m)+1

Case A (a = b, b < 1). Inequality (2.483) provides
= > Z PijAci)r(j) — bAo(m),c(n)- (2.484)
i=o(m) j=1(n)

By Lemma 2.89, we have for o(m) <i<mand1(n) < j <n,

prm =0T 4y ) = @D Avmiatn: (2:485)

It follows that
a T(n)—7(j) (m)-1(j)
{ z Z P’] po(m) g(;) (b) Ca(m)fo(i)+r(n)—‘r(j) -b AU('")J’(”)’
i=o(m) j=1(n)
(2.486)

or equivalently,

m n T(n)—7(j)

1 a 7(n)—1(j)
Z Z Pi’j ho(m)—a(i) (E) Ca(m) o(i)+1(n)—1(j) = b (2487)

i=a(m) j=t(n)

which is a contradiction to (2.480).
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Case B (a = b, b > 1). It follows from (2.483) and Lemma 2.89 that

m n m
0= Z Z Pi,jAo(i),T(j) + (1 - b) Z Ai,‘r(n) - bAo(m),r(n)

i=o(m) j=1(n) i=o(m)+1
m n T(n)—=7(j) .
1 a (n)-1(j)
= { 2 2 P bo(m—a(i) (E) Cotm)~atiy+r(m)-=(j) (2.488)
i=o(m) j=1(n)
m .
+(1-0) Z pi-otm) _ b}Ag(m),T(n).
i=o(m)+1

A similar contradiction as in Case A is thus obtained.

Case C(a < b, b < 1). Since b < 1, we have 1 + a — b > 0. Consequently, from
(2.483) and Lemma 2.89, we find

m n n
0= > > pijAciney+@—=b) D Agim,j — bAsimrn)

i=o(m) j=1(n) j=1(n)+1
m n 7(n)-1(j) .
1 a 7(n)-7(j)
2{ > 2 b ba(m)-a(i)(g> Cotm)-atiye(m—1(j) (2.489)
i=o(m) j=t(n)

n b j—1(n)
+ (a - b) Z (;) - b}AO'(m),T(H))

j=1(n)+1
which contradicts to (2.480).

CaseD(a<b,b>1,b—a<1). Sinceb—a < 1,thenl+a—b > 0. Hence, it
follows from (2.483) that

n m
+@=0) > Asmjt 1= D Aim — bAgimrn)

j=t(n)+1 i=o(m)+1
m n T(n)—7(f) .
1 a 7(n)=7(j)
z{ > > Pi,jW(E) Catm)—otiy+r(m)—(j)
i=o(m) j=1(n)
n b j—t(n) m .
+(@-b) (E) +(1-b) > b - b}Aa<m>,r<n>~
j=t(n)+1 i=o(m)+1

(2.490)

The rest of the proof is similar to that of Cases A—C.
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CaseE(a<b,b>1,b—a=>=1). Sinceb—a > 1,then1+a— b < 0. Therefore,
from (2.483) and Lemma 2.89, we find

m n m n
0= > D pijAsay t(1+a—b) > D Ay
i i=o(

=o(m)+1 j=1(n)+1

n m
+ ((1 - b) Z Ao(m),j + (1 - b) Z Ai,r(n) - bAo(m) 7(n)

j=1(n)+1 i=o(m)+1

m I A\
=3 > Z Pij patm—ot 0(1)<b> Cotm)=oli)+r(m)—=(j)

i=o(m) j=1(n)

fa-b) Y (g)ﬁw

j=1(n)+1
n i ] —
pi—o(m) b\’ 7(n)
+(1+a- b) Z > 7@ e (;)
m)+1 j=t(n)+1 (m)+j—1(n)
n .
+ (1 — b) Z b;—a(m) - b}Aa(m),r(n))
i=o(m)+1
(2.491)
which leads to the required contradiction. The proof is completed. |

Noting that if 0(m) = m — 0 and 7(n) = n — 7, then d,,(= d) is a constant.
Thus, from Theorem 2.97, we can obtain the following corollary.

Corollary 2.98. Assume that (H) holds, c(m) = m — 0, and ©(n) = n — 1, where 0
and T are two positive integers. If

n—j .
lim sup Z Z p’]bri 1(%) C::m,,j >d, (2.492)

mn= j—m—g¢ j=n-t
then every solution of (2.452) oscillates.

In view of (H), a > b, and b < 1, we have

1 a\" " )
W (E) Ca(m)fa(i)+‘r(n)7T(j) >1 fori< m, J <n. (2493)

Hence, from Theorem 2.97, it is easy to obtain the next corollary.
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Corollary 2.99. Assume that (H) holds, a = b, and b < 1. If

lim sup Z Z pij > b, (2.494)

M= i (m) j=1(n)

then every solution of (2.452) oscillates.
If (2.476) and (2.480) do not hold, then we have the following results.

Theorem 2.100. Assume that (H) holds, a = b, and b < 1. If

a n—t(n) )
n—t(n
(E) Cm—a(m)+n—r(n) = o, (2495)

. 1
lim sup b —atm)

m,n— oo

(n)—1(

(m)—o

7(n)—7(j) .
) @

7
()+r(m-=(j) > 0> (2.496)

m,n— oo

m-1  n-1 1 a
liminf Z Z Pi,jm (E
i=a(m) j=t(n)

then every solution of (2.452) oscillates.

Proof. In view of (2.495) and Corollary 2.91, we obtain

— 00 asm — 00, 1 —> 00,

Acr(m),r(n) o 1 (a)nir(n)cn—r(n)

Apn  bmam \p m—a(m)+n—1(n)
(2.497)
On the other hand, from (2.496) and Lemma 2.93, we have that
A
lim sup —o(m).r(n) (2.498)
m,n— oo Am,n
exists, which is a contradiction. The proof is completed. |

Corollary 2.101. Assume that (H) holds, a = b, and b < 1. If either lim,—.(m —
o(m)) = o0 orlim,_..(n — 7(n)) = o holds, and

m—1 n—1
liminf > > pii>0, (2.499)

m,n— oo
i=o(m) j=1(n)

then every solution of (2.452) oscillates.
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Noting that if @ = b and b < 1 and either lim,,—.o(m — 0(m)) = oo or
lim, .o (n — 7(n)) = oo, then (2.495) holds, and it is easy to see that (2.496) holds.
Therefore, Corollary 2.101 holds.

As a matter of convenience, let

N ~ 2(m—0(m))(n—1(n))
A= Amn = m—o(m)+n—1(n) "’ (2.500)

j=7(j)
i)
0 =0y = z z Pii ety (f) c ‘f(/w G (2.501)

i=o(m) j=1(n)

K=k, = — M= o(m))’ (2.502)
T m—o(m) +n—1(n)’ )
T U w(n)’ (2.503)
" m—o(m) +n—1(n)’ ’

A 1+ A
=S = 2% (14 Amn) (2.504)

i (m = a(m)) (n — 7(m)

Theorem 2.102. Assume that (H) holds. If iminf,, —.co (bynn/ pmn) < 0, and

1 a n—t(n) net(n)
lbn%llgofm(E) Cm—a(m)Jrn—f(n) >0, (2.505)
lim inf 0 1 a i _i Fso L 1 a )
ML S Omn i, \ = 1m1n O\ 3 >1, (2.506)

then every solution of (2.452) oscillates.

Proof. Suppose to the contrary, there exists an eventually positive solution {A,,,}
of (2.452) such that A, , > 0 and p,,, > 0 for m > ¢3(M) and n > 73(N), where
M and N are two positive integers. From (2.452), we have form = M and n = N,

172
2./a (Am+1,nAm,n+l) Apiin + A npn As(m),z(n)

—. < <1— Pmn A
mn

2.
b A DA (2:507)
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Hence, by means of Corollary 2.91 and the well-known inequality between the
arithmetic and geometric means, we obtain

_ , 12
(2\/5>(m om)n=t(n)) h‘ ﬁ AinjAij)
b Aij

i=o(m) j=1(n)

Ag(i)r(j)
=, (1-rs7525")

. el g o)
1-— ; own.ty)
b(m —o(m))(n—1(n)) 2 2 Py Aij )

i=o(m) j=1(n)

1
b(m —o(m))(n - 1(n))

j-1(j) (m—o(m))(n—7(n))
X z Z a C]_T(])
Piipizaty (7(1) i—oi)+j-1(j)

i=o(m) j=1(n)

O (m—a(m))(n—1(n))
) <1_b(”1—0(m))(”—f(n))) :

(2.508)
Since
- - 12
T ] Weun)
i=o(m) j=1(n) Ai’]'
m—1 (A )1/2 ﬁ (Arn] )1/2
= b _my
i=0(m) Ai’T(") j=1(n) A‘T('”)vj
(m—o(m)+n—1(n))/2 m-1
= (M) [ — (2.509)
Ao(m),z(n) Ly b bt
n-l n-j j=(n)
a
<11 (3) - (5)
j=t(n)

>

B a(nfr(n))z ( Am,n )(mfo(m)+n7-r(n))/2
A

 pm—o(m2+n=r(m)> \ Aj ) 1)
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then from (2.508) and the inequality x(1 — x)* < AY/(1 + 1) for x € (0,1), we
have

A ! B
Ai\mT),:w = (ZTQ) %<%)2 (1  [b(m - U(M?)(”— T(”))])
A ! .
(5 ) s R oo

— 50 1 a 1 a n—T(n)CniT(n)
=S bk+1 E pm—a(m) E m—a(m)+n—1(n)>

where A, 0, [, k, and s are defined by (2.500)—(2.504). In view of (2.506), there is a
constant r > 1 such that

I

sGﬁ(%) >r VYV large m,n. (2.511)

Hence from (2.510), we have

r a n=(n) n—t(n
Aa(m),r(n) = W(@) Cm—a(m)+n—r(n)Am,”' (2512)

Substituting (2.512) into (2.452), we get for all large m and n,

1/2
)

a(m),7(n)

bAn

2\/5 i (Am+1,nAm,n+1 Am+1,n + aAm,n+1

< <1-
b A bAn Pmn

r 1 n—1(n) nt(n)
=1- Epm,n pm—a(m) (5) Cm—a(m)+n—r(n)'

(2.513)
Hence, for all large m and n,
(m=o(m)(n=7(n)) m-1  n-1 A )2
(2\/5) 1—[ 1—[ (A1+1,]A1,]+1)
b - - Ajj
i=a(m) j=1(n) ]
(2.514)

m—1 -1

r 1 a\/ ™ n—(n)
= 1—[ (1 ~ pPiigie (E) Ciotiy+j-r(j) |-
i )

=

i=o(m) j=1(n
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Thus, as in the above proof, for all large m and n we can obtain

AUXHT):;W = (%)Aﬁ(%)ﬂO - [b(m — o(mr)e)(n —1(n))] )7)L

I n—1(n)
> rsf— (E)W(ﬂ) cr (2.515)

bk+1 b b m—ao(m)+n—1(n)
- 1’2 g n—(n) Cn—‘r(n)
= pm-am) \ p m—oa(m)+n—1(n)*

By induction, we get for any positive integer N,

Ag(myr(n) . N <E>n—r(n)cn,r(n) (2.516)

Am " = pm-o(m) \ p m—a(m)+n—1(n)>
for all large m and n. In view of (2.505), we get

A
lim 2o _ (2.517)

m,n—oco Am,n
On the other hand, in view of (2.452), we have, for all large m and n,

Azf(m),‘r(n) bm,n

< . (2.518)
Am,n pm,n
Since iminf ;- o (byn/ Pmyn) < 0, then
A
liminf =20 ¢ oo, (2.519)
n,n— o mn
which is a contradiction to (2.517). The proof is completed. g

Corollary 2.103. Assume that (H) holds, 0(m) = m — o, and t(n) = n — 1, where ¢
and T are two positive integers. If a = b, b < 1, and

o 1 Mmool Wpltkto a\ 7
mint 3 X puyiahnm (3) 0 @50

i=m-0 j=n-t1

then every solution of (2.452) is oscillatory, where A = 201/(0 + 1), and k, | are
defined by (2.502) and (2.503).

Example 2.104. Consider the partial difference equation

Am+1,n + Am,n+1 - Am,n + pm,nA[m/Z],[n/Z] = 0) (2521)
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where py, = 1/(m+1)(n+1), myn =0,1,2,.... We can see that if m = 2k, n = 21,
k,1=1,2,...,then

2%k-121-1 et

S S me gt SR
) j=1(n) =k j=I J s ( |
2.522

and in the same method, if m = 2kandn =2l —1lorm =2k —1andn = 2l or
m=2k—1landn=2l-1,kI1=1,2,...,then

1
> Pij =g (2.523)
i=o(m) j=t(n)
Hence,
l}nnr}lrolof Z Z pij =~ (2.524)
i=o(m) j=1(n)

Thus, by means of Corollary 2.101, every solution of (2.521) oscillates.

2.9. Linear PDEs with positive and negative coefficients

In this section, we consider the delay partial difference equations with positive and
negative coefficients of the form

Am+1,n + Am,n+1 - Am,n + Pm,nAmfk,n—l - an,nAmfk’,n—l’ = O) (2525)

where m,n € Ny, and k, k',1',1 € No, pmn> Gmn € [NZ,(0,00)],k = k'+1,1 = I'+1.
The following lemma is a special case of Lemma 2.88.

Lemma 2.105.

m n
Z z (Air,j + Aijs1 — Aij)

i=m—k j=n-I

m+1 n m (2526)
= Z Z Ai,j + Z Ai,n+1 - Amfk,n—l +Am+1,n—l-
i=m+l—k j=n+1-1 i=m—k
Assume that there exist positive integers s, t such thats = m, t = n, and
m+k’ n+l’
Cs,t = As,t - (3)s+tmn< Z q:’,nAi—k’,n—l' + Z Qm,jAmk’,jl’>
: it
(2.527)

1 m+k’ n+l’
( Z qi+k' —k,n+l' lAl kyn— l+zqm+k —k,j+I lAm k,j—1

i=s j=t
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Let
A = Pmn — Gk ki1 >0 form=k—k',n>=1-1. (2.528)
From (2.527), we obtain the following results.
Lemma 2.106. Assume that {A,,,} is an eventually positive solution of (2.525), that
is, there exist positive integers M, N such that Ay, >0asm = M, n = N. Then
(1) Cu,n is monotone decreasing in m, n, that is,

Cm+1,n < Cm,m Cm,n+l < Cm,n; (2529)

(11) Cm,n < Am,n»'
(111) Cm+1,n + Cm,n+1 - Cm,n = 7‘xm,nAm—k,n—l - ﬁm,n(A)>
where

1
ﬁm,n(A) = 3qm,nAm7k’,n—l’ +560, + 562)

m+k’ n+l’
‘ ; (2.530)
i=m+1 j=n+1
m+k’ n+l’
02 = 2. Gisk -kt —1Aickn-t + D Gk —kjsl —1Am—k,j-1-
i=m j=n

Proof. (i) From (2.527), we obtain

1 1
Cm+1,n = Am+1,n - 361 - 562 - 3Qm,nAm7k’,n—l’ + EQm+k’—k,n+l’flAm7k,nfl>

>

1
Cm,n = Amn - 01 - 502 - 2Qm,nAm—k’,n—l'-

(2.531)
We note that A, > 0, thus we have
Cm+l,n - Cm,n < Am+1,n + Am,n+1 - Am,n - 261 - qm,nAmfk’,n—l’
1
+ 5Qm+k’—k,n+l’—1Am—k,n—l
< _Pm,nAm—k,n—l + Qm,nAm—k’,n—l’ - 20, (2.532)

= qmunAm—k -+ Gk —kntl —1Am—kn—1

= _am,nAm—k,n—l - 2'91 < _(Xm,nAm—k,n—l < 0;

that is, Cyr1,n — Cmyn < 0. Similarly, we have also Cyy 1 — Cpyp < 0.
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(ii) From (2.531), we immediately obtain (ii).
(ii1) From (2.527), we have

1 1
Cm,n+1 = Am,nH —-30, - 562 - 3Qm,nAm7k’,nfl’ + Eq;'nJrk’fk,nH’flAmfk,nfL
(2.533)

By the above equality and (2.531), we obtain

1
Cm+1,n + Cm,n+1 - Cm,n = —QmunAm—kn-1 — 3qm,nAm—k’,n—l’ —-50, - 592
_(xm,nAmfk,n—l - ﬁm,n(A)-

(2.534)

Hence, Cm+l,n + Cm,n+1 - Cm,n = _am,nAm—k,n—l - ﬁm,n (A) Note that ﬁm,n (A) > 0>
thus we also have

Cm+1,n + Cm,n+l - Cm,n < _‘xm,nAm—k,n—l <0. (2535)
O

Lemma 2.107. Assume that (2.528) holds. Further, assume that for m = k — k',
n>I1-1,

m+k’ n+l’
( D ik ki -1+ . qm+k'—k,j+1'—l) <1l = (2.536)

i=m j=n

DO | —

m+k’ n+l’
( Z Qin + Z qm,j> +
i=m j=n

Let {A,.n} be an eventually positive solution of (2.525). Then {Cy,,} defined by
(2.527) is decreasing and eventually positive in m, n.

Proof. By Lemma 2.106, {Cy,,} is decreasing in m, n. Next, we will show that
{Cmn} 1s eventually positive in m, n. Because {C,,,} is monotone decreasing in
m, n, thus the limit lim,, ,—.c Cy,, exists. If limy, ,—.co Cypy = —oo, then {A,,,}
must be unbounded. Hence, there exists a double sequence {(my, 1)} such that
liInkaoo my = 09, limkaoo ng = oo’Amk,nk = MAXN <n<m+l, M<sm<my+k {Am—k,nfl} and

}Eim A, = . (2.537)
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On the other hand, we have

my+k ng+l
Coneme = A, — ( z Qi Ai-t -1 + Z qu,jArnkk’,jl’)

i=mg Jj=nk
1 my+k ni+l’
- 2( > Qivk kst —1 i1 T D ka+k'k,j+l’lAmkk,jl>
i=my j=nk

mk+k nk+l
= mk,nk[ < Z Qi + Z qmw)

i=my j=nk
1 mk+k' nk+l'
- 2( D Qi k-1t . ka+k’—k,j+l’—l)} > 0,
i=myg j=nk

(2.538)

a contradiction. Hence lim;, o Cun = f exists, where § is finite. As before,
if {Ay,} is unbounded, then f = 0. Now we consider the case that {A,,,} is
bounded. Let B = limsup,, , ., Amn = limyy o Apy . Then

m'+k' n'+I'
Am’,n’ - Cm’,n’ = ( Z Qi,n'Ai—k’,n’—l’ + Z Qm’,jAm’k’,jl'>

P— j=n'

l\)\»—t

m' +k’ n'+Il
( Z Qirk' — kg +1 —1Ai—kw -1 + Z Qm’+k’k,j+l’lAm'k,jl>
=m

i 7 j:n’

m'+k’ n'+I'
Em:r]n |:( Z ql”/+ Z qm’ J)

1 m'+k’ n'+l’
2( Z Qivk' —kn+1 =1 T Z Am’+k' —k, j+1' - 1)]
i=m’' j=n'

= A(fma T’In)a
(2.539)

where A(&,, ;) = max{A; j |i=m',m'+1,...,m'+k', j=n',n"+1,...,n" +
I'}. Taking superior limit on both sides of the above inequality, we have f — 8 < f3,
therefore § = 0. Hence C,,, > 0 form = M, n = N. O

Theorem 2.108. Assume that (2.528) and (2.536) hold. Further, assume that either

1 m—1 n—1 W
lbr}%ll(}of (k ,:% > I(Pi,j - Qik+k’,jl+l')) > (@t 1) (2.540)
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where w = max(k, [), or for all large m and n

(k + k!

W. (2.541)

(pm,n - Qm—k+k’,n—l+l’) = { >

Then every solution of (2.525) oscillates.
Proof. Suppose to the contrary, assume that (2.525) has an eventually positive

solution {A,,,}. By Lemmas 2.106 and 2.107, it follows that the sequence {Cj,,,}
is eventually decreasing and positive and

Cm+l,n + Cm,n+1 - Cm,n + (pm,n - Qm—k+k',n—l+l’)Am7k,n—l <0. (2542)
Hence, we have
Cm+l,n + Cm,n+l - Cm,n + (pm,n - Qm—k+k’,n—l+l’)cm—k,n—l <0. (2543)

In view of (2.540) and (2.541), by Corollaries 2.18 and 2.60, difference inequality
(2.543) cannot have an eventually positive solution. The proof is complete. ]

Example 2.109. Consider the partial difference equation

3 1

1
Am+1,n +Am,n+1 - Am,n + (7 - *)Amflnfl - 7Am71,n =0, (2-544)
4 2n n

where m = 2, n = 4, pyun = 3/4—1/2n, guu = U/n, k =2,k =1=1,I' = 0. Since
k=2>1=k',I>1and form > 2, n > 4, we have

Pmpn — Qm—k+k' n—1+1 = Z - ﬂ -

m,n— oo

o 1 m—1 n-1
lim inf [kl > > (pij- Qik+k’,jl+l’):|
i=m—k j=n-1

=m—k j=n
| X (2.545)
| 1 1
—hmmf[ Z Z ——,)]
e 2 i=m-2 j=n— 1 ZJ ] -1
hmlnf(é _r ! ) —§>i— w?
T mn—ceo \ 4 (n-— n -2 4 27 (w+ 1)0tl

Hence, all the hypotheses of Theorem 2.108 are satisfied. Therefore, all solu-
tions of (2.544) are oscillatory. In fact, (2.544) has an oscillatory solution {A,,} =
{(=1)m(1/2")} form = 2, n > 4.
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2.10. Nonexistence of monotone solutions of neutral PDEs

We consider the partial difference equation of the form

T(Am: An) (Am,n - Pm,nAmfr,nfh) + Qm,nAmfk,nfl = 0’ (2-546)

where T(Awm, Ay) = aAmAy + bA, + cAy +dI, a, b, ¢, d are nonnegative constants,
AmAmp = Amirn — Amps DnAmpn = Ampns1 — Amn, and IA,,, = A, The delays
1, h, k, | are positive integers, 0 < p,, < 1 and gy, = 0 on N2
By a solution of (2.546), we mean a nontrivial double sequence {A,,,} satis-
fying (2.546) for m = my, n = ny. A sequence {A,,,} is nondecreasing (nonin-
creasing) if Ay Apy = (=)0 and ApAs, = (<)0. A solution {A,,,} is called to be
a monotone solution, if it is either nondecreasing or nonincreasing.
Throughout this section, we assume that
(i) a=0,d=0,b,c>a,b+c>a+d;
(i) 0 < pmy < 1 and gy = 0 on N§ and

lim sup gm,n > 0. (2.547)
myn— oo
For the sake of convenience, we set p; = a, p, = b—a, ps = c—a, ps =

b+ ¢ — a — d. Furthermore, we define the set E by
E={1>0]| ps — A, > 0 eventually}. (2.548)

Theorem 2.110. Assume that there exist integers M = mg, N = ng such that one of
the following conditions holds:
(i) fork >landr > h,

1 2}7 p 1 p k-1 k-1 1 —1/(k-1)
: 2P3 2
)LeE,rnHz]J\f/I,nzN {A (Pl + 7) <7> X [n 1_[ (P4 - AQmij,ni)]

P4 P4 j=1i=1
2 h r—h
(54 222 (2)

r—h h —1/(r—h)
X [ n (ps— AQmij,ni):| } >1;
-1

j=1i=1
(2.549)
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(ii) fork >landr < h,

i (P‘ * M)l(&)m x [ﬁ ﬁ (pa - Aqm_,._].m_i)]l/(k”

inf
AEE,m>M,n>N A

pa pa j=1i=1
2p2p3)r<ﬁ)h—r
+pm—k,n—l<Pl + P4 s

h—r r —1/(h-r)
X [H n(p4_AQmi,nij):| } > 1;
j=1i=1

(iii) fork <landr >h,

- - —1/(I1-k)
. 1 m)k<&)l k I-k k B -
A€E, muzll\f/I,nzN {)L (Pl * P4 X I 1_[ (P4 AQm—t,n—t—])

+pm7k,nfl(pl N 2;;,@3)11(1,2),,1

r—h h —1/(r—h)
X [ [1(pa— AQmij,ni):| } > 1;

j=1i=1
(2.551)

(iv) fork <landr < h,

1 2P p k p I-k -k k -1/(1-k)
: 2P3 3
it (022 (2) o [ TTTT M)

+Pm7k,n,z(p1 ¥ 211{)241’3)’(3>h_r

4

h—r r —1/(h-r)
X [1_[ n (ps - AQm—i,n—i—j):| } > 1.

j=1i=1
(2.552)

Then, (2.546) has no eventually positive (negative) and nondecreasing (nonincreas-

ing) solution.
Proof. Let {An,,} be an eventually positive and nondecreasing solution of (2.546).
Then

Amn Z Am-in Z -+ - Z Apern Z Amern—1 Z -+ - Z Apern-h Z PmnAm—rn—h-

(2.553)
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Let
Wmn = Amn = PmnAm-rn—h- (2.554)
Then,
0 < wmn < Amns (2.555)
T (A An) Omn = —GmnAm—tn—1 < 0, (2.556)
which implies
AW+t + (b — @) Wmi1n + (€ — A)Wmpnr1 < (b+c—a—d)wpy,  (2.557)
that is,
P1@Omtine1 + P2@Wmiin + P3Wmpt1 < Pamp. (2.558)

Define the set S(A) as follows:
S(A) = {A>01 T(Am, Aw) Wmpn + AGmn@mn < 0 eventually}. (2.559)

From (2.558), we have
4 4
Wmtlntl = %wm,n+l) Wmtl,nrl = %wmﬂ,n- (2.560)

Hence, we obtain

k

Pa )z

Wmpn < ;wm—l,n <:--= ; Wm—k,n
2 2

k k I
(2 (o5 () (2 e

From (2.555) and (2.556), we have

(2.561)

p2\*(ps'
T(Am: An)wm,n = _qm,nAm—k,n—l = —gmnWm—k,n—1 = _<72) (73) qm,nWOm,n>
P4 P4
(2.562)

which implies (po/p4)*(ps/ps)' € S(A). Hence, S(A) is nonempty. For A € S(1), we
have eventually

plwm+1,n+1 + pzwm+1,n + p3wm,n+1 - (P4 - Aqm,n)wm,n <0. (2563)
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Hence,
Pa = Aqmpn >0, (2.564)

which implies that S(1) C E. Due to the condition (2.547), the set E is bounded,
and hence S(1) is bounded.

We consider the following cases.

(i) k >Iand r > h. Let u € S(A). By (2.560), we have

2p2ps
p1+ » Om+1n+l = P1Wm+ln+l T PoWOmtin T P3Wmn+1 = (P4 - HCIm,n)wm,n,
4

(2.565)
and hence
P2P3 e
Wmn < (P ) l_[ DPa— ,uqm—i,nfi)wmfl,nfl- (2566)
i=1
For j =1,2,...,k — I, we have
Wm—jn < (p1 + p2p3> 1_[ Pa— ﬂQm—i—j,nfi)wm—l—j,n—l
-1 1 k—1-j
=< [(P p2p3) 1_[ P4 - ,Manij,ni):| (%) W—k,n—1-
i=1
(2.567)

Now, from (2.560) and (2.567), it follows that
k-1 j
wfn’),i < 1_[ (E) Wm—jn
j=1 P2

j_ﬂj {(ij)] [( p2p3)_l ﬁ (pa - .”qmij,ni):|

IA

i=1

k—1-j
X (%) wmk,nl}

= (p P2p3> l)<p4)(kl)2 . ﬁ__[

1
P4 2 1_[ (pa— HQmij,ni)} wﬁf—lk,nfl’

(2.568)
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that is,

2 I k-1 k-1 1 ~1/(k=1)
Wm—kn—1 = (pl + M) (&) X [ ]_[ (pa quij)ni)} O

pa P4 j=1i=1
(2.569)

Similarly,

2 h r—h r—=h h —1/(r—h)
o= (p 222) (2)7 [ [T - Mm_,._j,n_i)} o
p4 p4 j=l i=1

(2.570)

From (2.549), there exists a constant a; > 1 such that

1 2p p 1 p k-1 k-1 1 —1/(k-1)
: 2/3 2
)LeE,rrglj\f/I,nzN {)L (Pl * 7) (7) x |:1_[ 1_[ (P4 - Aqm—i—j,n—i)]

Pa P4 [
+p’”*k)”*l(Pl + 21;24})3)h<§z)rh

r=h h —1/(r—h)
X [ 1_[ (ps - Aqm—i—j,n—i)j| } > a.

j=1i=1

(2.571)
We will show that a;p € S(A). In fact, y € S(A) implies that
T (A M) Wi + HGmn@mp < O. (2.572)
From (2.556), we have
0= T(Am, An) @pn + UGmpn @i
(2.573)

= _Qm,nAm—k,nfl T UGmn@mn = Gmn (#wm,n — Amfk,n—l))



Nonexistence of monotone solutions of neutral PDEs 117

and hence pw,, < Ap—in-1. By (2.554), (2.556), (2.569), and (2.570), we see that

T(Ama An)wm,n = _Qm,nAm—k,n—l = —qm,n (wm—k,n—l +pm—k,n—lAm—k—r,n—l—h)

< _Qm,n(wmfk,nfl + mek,nfl,”wmfr,nfh)

g 2722 (2]

k-1 1 ~1/(k-1)
X [ (psa — HQmij,ni)]
j=1i=1

+ Pm—in—1ph <P1 + 2};24}73)’1 (Z)r_h

r—=h h —1/(r—h)
X [n 1_[ (P4 - ,“q:ﬂij,ni):| }

j=1i=1
(2.574)

Combining (2.571) and (2.574), we have
T(Am) An)wm,n =< _OCIFQm,nwm,m (2575)

that is, ajp € S(A). Repeating the above argument with y replaced by au, we
obtain (x?‘u e S(A), 0 = 1,2,..., where a7 > 1. This contradicts the boundedness
of S(A). The proof of (i) is complete.

(i) k > I and r < h. From (2.565), we have

2 -r r
Wmn = (pl + %) l—[ (P4 - [/lCIm—i,n—i)wm—r,n—r- (2576)
i=1

For j =1,2,...,h —r, we have

2 —r r
Wmn—j = (Pl + I;Zf3> X 1_[ (P4 - ﬂqm*i,ﬂ*i*j)wmfr,nfr—j
i=1
2 -r T
= [(Pl + M) [1(ps— HQm—i,n—i—j)j| (2.577)
P4 i=1

herei

pa\"

X ; Wm—r,n—h-
3
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Now, from (2.560) and (2.577), it follows that

=

—-r

j
h—r P4
Wiy = 1_[ (E) Win,n—j

j:

—

= jlj {(gi)J [(Pl + %)" llj (ps— .uqndi,nij):|
x (;;‘*)hrjwmr,nh} (2.578)
3

(h=r)?
() ()

h—r r
|: 1_[ Pa— P‘qmi,nij)j| wi:{—rr,nfh’

j=1i=1

that is,

her ~1/(h=r) (2.579)
X |: 1—[ (P4 _,”Qm in—i— ])j| Wyn,n-

The rest of the proof is similar to that of (i), and thus is omitted.
(iii) k < Iand r > h. We only need to note that (2.569) now changes to

Wm—ln-1 = <p1 +%>k<&)z_k

Pa P4
[ [
j

The rest of the proof is similar to that of (i), and thus is omitted.

(iv) k < land r < h. We only need to note that (2.569) and (2.570) now change
to (2.580) and (2.579), respectively. The rest of the proof is similar to that of (i),
and thus is omitted. The proof of Theorem 2.110 is complete. O

(2.580)

=

k -1/(I-k)
1_[ P4 - M‘Jmi,nij):| Wm,n.

1 i=1

From Theorem 2.110, we can derive some explicit sufficient conditions for the
nonexistence of monotone solutions of (2.546).
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Corollary 2.111. Assume thatk > 1, v > h, pyun = po, and

2paps\' (2" g+ D! 2paps\" (p2\ " qlh + 1)
22 (0 R 22 ()
21 P4 pil P4 D4 pitth

(2.581)
where
linng ugof Qmn = G- (2.582)
Then the conclusion of Theorem 2.110 holds.
2.11. Existence of positive solutions of linear PDEs
2.11.1. Equation with delay type
Consider the linear partial difference equation
aAm+1,n+1 + bAm,nH + CAmH,n - dAm,n + Pm,nAmfk,nfl =0, (2-583)

where P,,, > 0 on N§, k,I € Ny. Throughout this paper, we assume that a, b, ¢, d
are positive constants. The oscillation of (2.583) has been studied in Section 2.5.
In the following, we mainly consider the existence of positive solutions of (2.583).

Theorem 2.112. Assume thata > d, b > d, ¢ = d, and one of the following three
conditions holds:
(i) there exists a positive double sequence {Ay,,} such that for all sufficiently
large m, n,

1 (o) [ee]
dr { Z Z(a = A Amrrvineivivj + Z Z bAptiniitivj

j=0i=0 j=0 i=1
+ Z Z CAm+1+1 it j + Z(b d)Am ntl+j (2584)
j=0i=0 j=0

[ (o)
+ Z ZPm+i,n+i+j/\mk+i,nl+i+j} <1



120 Oscillations of linear PDEs

(ii) there exists a positive double sequence {Ay,,} such that for all sufficiently
large m, n,

1 o0 0 0
dl { Z Z(a - d)Am+l+i+j,n+l+i + Z Z bAm+i+j,n+1+i
min j=0i=0

j=0i=0
S
+ Z Z C/\m+l+z+] nti Z(C d)Am+1+] n (2585)
j=0i=1 j=0
0 oo
+ Z sz+i+j,n+i/1mk+i+j,nl+i} <1
j=0i=0

(iii) there exists a positive double sequence {Am,,} such that for all sufficiently
large m, n,

1 ©  x © o
a\ { Z Z At 1vint1+j T Z Z(b = A Mmtiniie
min L= j=0

i=0 j=0

CAmit+intj + z(c = AAmi1+in (2.586)
i=0

32

HMS

00 0
+ Z Z Pm+i,n+j/1mk+i,nl+j} <L

i=0 j=0

Then (2.583) has an eventually positive solution {Am,,} which satisfies 0 < Ay, <
Amn-

Proof. We only give the proof of (i), and the other cases are similar.

Let X be the set of all real bounded double sequence y = {yuu} ) nen, With
the norm || y|l = SUP 15 1o, n [ Y| < c0. X is a Banach space. We define a subset
Q of X as follows:

Q={y={ymn} €EX10< ymn <1, m>my, n>ny} (2.587)

and define a partial order on X in the usual way, that is,

x,y € X, x <= ymeansthatx,, < ym, form=moy, n= no. (2.588)
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It is easy to see that for any subset S of Q, there exist inf § and sup S. We choose

my > my, ny > ng sufficiently large such that (i) holds.
Set

D = Ny, X Ny, Dy = Ny, X Ny,
D2= (NmOXNm)\Dla D3= (le XN?’I())\DI) (2.589)

D4:D\(D1UD2UD3).

Clearly, D = D, U D, U D3 U Dy. Define a mapping T : Q — X as follows:

AAmn

0 00
X{ Z Z(a = A1 vina 1) Yt Leint 14iej
=0 i=0

[Me

+2

J

blm+i,n+l+i+j Ymtin+1+itj

00

o
)

i=1

+
T
Me

-
Il

(=]
Il

(=]

CAm+1+i,n+i+j}’m+1+i,n+i+j

+ Z(b - d)/lm,n+l+jym,n+l+j
o~ = (2.590)

+

M
Me

Pm+i,n+i+jAm—k+i,n—l+i+j
0i

Il
(=]

J

Xymk+i,nl+i+j}: (m,n) € Dy,
lTyml,,, + (1 — ﬁ), (m,n) € Dy,
np n
ﬂTym,nl + (1 - ﬁ)) (m,n) € D3:
my my

mn mn
) T Yy ny + (1 - ), (m,n) € Dy.
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From (2.590) and noting that y,,, < 1, we have

1 [e9) [ee) [ee) (o]
0<Tymn < d)t{ Z Z(a = DAmrrvintivivj + Z Z bAmtint1+it
mn L j=0 i=0 j=0i=1

+ Z Z At tviprivj + Z(b = d)Amni1+j

j=0 i=0 j=0

[e9) (o)
+ Z Z m-+i, n+1+] m—k-+i,n— l+z+]} <1, for(m,n) € Dy

(2.591)

and 0 < Ty, < 1 for (m,n) € D, U D3 U Dy. Therefore, TQ C Q. Clearly, T is
nondecreasing. By Theorem 1.9, there is a y € Q such that Ty = y, that is,

1
dAmn
(o) o0
X{ Z Z(u = A1 i i) Yme it 14iej
=0 i=0
00 (o)
+ Z Z bAmtint1vit) Ymtint1tit)
j=0 i=1
+ Z Z CAmstintit] Ymilvintit]
=0 i=0
(9]
Z (b — d)Am 414 Ymnt1+j
j=0
Ymn = 7 © ® (2592)
+ Z Z PruviniviAm—kvin-ltit]
=0 i=0
Xym—k+i,n—l+i+j}’ (m,n) € Dy,
n n
7Tym1,n+ (1_ 7)) (m,l’l) EDZ)
n n
m m
—Tymm + <1 - *) (m,n) € D;,
my my
mn
Tyml n (1 - ): (m, 7’!) € Dy.
Lmyny min;

It is easy to see that y,, > 0 for (m,n) € D, U D3 U Dy and hence y,,,, > 0 for all
(m,n) € Dy. Set

Xmn = Am,n}’m,m (2593)
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then from (2.592) and (2.593), we have

e 1 00 0 00 o0
d{ Z Z(ﬂ = d)Xmi1+intivivj + Z Z bXptintivivj
j=0 i=0 j=0 i=1
0 0 o0
+ Z Z CXmt1+intitj T Z(b - d)xm,n+1+j
j=0 i=0 j=0
+> > Pm+i,n+i+jxmk+i,nl+i+j}> (m,n) € Dy,
_ j=0 i=0
S n
7Tym1»"+(1_7)’ (m,n) € D,
ny ny
m m
7TJ’m,n1 + (1 - 7)) (m,n) € D.’»
mi mi
mn mn
Tymlanl + <1 - )) (m,n) € Dy.
miny miny
(2.594)
And so
AXm+1,n+1 + bxm,n+1 + CXm+1n — dxm,n + Pm,nxm—k,nfl = 0) (m) 7’1) S Dl)
(2.595)

which implies x = {x,,,} is a positive solution of (2.583). The proof is complete.
O

Remark 2.113. Similar results for (2.583) have been obtained for the following
cases: ()a=>d,b>d,c<d;(ii)a=d,b<d,c>d;(il)a=d,b<dc<d;(iv)
a<d,b>d,c>d;(v)a<d,b>d,c<d;(vija<d,b<d,c=>d;(vil)a<d,
b<d,c<d.

2.11.2. Equation with neutral delay type

We consider the higher order partial difference equation of neutral type

u
AﬁA:n (Am,n + CAm—k,n—I) + z p;(«;?nAm—Ts,n—Us = fm,m (2596)

s=1

where h,r,u € Ny, k,I,75,0, € Ny, ¢ € R, and p(s), f i Npy X Nyy = R, s =
1,2,...,u.

The higher order partial differences for any positive integers r and h are de-
fined as AL Awn = Am(AZIAm,n)> A(r)nAm,n = Amns AﬁAm,n = An(AzilAm,n):
and A%A,,, = Apn. For t € R we define the usual factorial expression (£)™ =
t(t—=1)---(t—m+ 1) with (H© = 1.
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Let § = maxi<s<uik, 7}, # = maxj<<y{l,0:} and My = mg, No = ng be
fixed nonnegative integers. By a solution of (2.596), we mean a nontrivial double
sequence {A,,,} which is defined on Ny, 5 X Ny, and satisfies (2.596) on N, X
Ny, -

In this section, we consider the existence of positive solutions of (2.596) in the
case when {p,(ﬁ?n}, s=1,2,...,uand { fn,} can change sign.

Theorem 2.114. Assume that ¢ # —1 and that

(m) V()| pW | <o, s=1,2,...,u,
! (2.597)

(m)(ril)(n)(hil) |fm,n| < 0o,

0

e
L[Me

e
L[Me

Then (2.596) has a bounded positive solution.
Proof. The proof of this theorem will be divided into ﬁve cases in terms of c. Let X
be the set of all real double sequence A = {A,, 1}, 5=p, With the norm [[A|| =

SUD 15 o, nny [Amn| < 0. X is a Banach space.

Case 1. For the case —1 < ¢ < 0, choose m; > my, n; > ny sufficiently large such
that m; — max{9,r} = my, n; — max{n, h} = nyand

s 1
T S 0 S0 a5 1

i=m j=n
(2.598)
1+
r—1) (h—1)
T 0 0l =
Set

D = N, X Ny, Dy = N,;, XNy,

D2 = NmU X an \Db D3 = le X NnU\DI) (2599)

Dy = D\(D; U D, U Ds).

Clearly, D = D; U D, U D3 U Dy.
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We define a closed, bounded, and convex subset Q of X as follows:

Q= {A = {Amn} €X | @ < Amn < % (m,n) € D} (2.600)

Define a mapping T : QO — X as follows:

( " (- 1)r+h+1
l+c—cApipi+———o—

R IR

X Z(z—m+r— Db Z(] —n+h-1)h"D

i=m j=n
TApun = 1 <2P,S)Az T, j—0s fi,j)) (m,n) € Dy,

TAml,n) (m) n) € DZ)
TAm,nl) (m) ”) € D3)
MTAml,nlr (m,n) € Dy.

(2.601)

We will show that TQ € Q. In fact, for every A € Q and m = m;, n = ny, we get

1

TApn < 1+ ¢ — CApgpt + ——————
= AT Bkt T = 1)

X (i—m+r—1D D> (j—n+h-1)""D

i=m j=n

(11 Aol + 1)
s=1

(2.602)

< A, - (h-1)
<l+c 3c+( i = 1)'2(1) 1]%:](]) 1

x (;‘z 1+ 1)
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Furthermore, we have

1

TAmn = 1+¢— cApkpn-1 — r-DIh-1)!

X > (i—-m+r—1) D> (j-—n+h-1)""D

i=m j=n

v (z 1291 | Ao + |f,~,]~|)
s=1

(2.603)
1 00 0
Sltc—— S ()Y T ()Y
(r—l)!(h—l)!l.:zml() j:zm(])
4 u
< (331691 151
s=1
- 1+C_é1+c_ l+c  2(1+c¢)
- 3 8 6 3
Hence,
@ < TApy < % for (m,n) € D. (2.604)

Thus, we have TQ C Q.
Now, we claim that T is a contraction mapping on Q. In fact, for B,A € Q
and (m, n) € D1, we have

| TBun — TApn |

< —¢|Bm-kn-1 — Am—rn—1|

)

+mz(i_m+r_1)(r71)i(j—n+h—1)(hfl)

j=n

u
X Z |Pz(sj)| |Bifrs,jfas —Aj 1, j-0,
s=1

< —C | Bm—k,nfl - Am—k,nfl |

" m Z (i)rV Z (j)h=D

i=my j=m

u
X Z |pl(f])| |Bi*Ts>j"75 _Ai*Tsvjfas|
s=1
1-7c
< 1B — All

(2.605)
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This implies that

ITB - TA| < !

(2.606)

Since 0 < (1 — 7¢)/8 < 1, T is a contraction mapping on . Therefore, by the
Banach contraction mapping principle, T has a fixed point A® in Q, that is, TA? =
A®. Clearly, A = {AY, ,} is a bounded positive solution of (2.596). This completes
the proof in this case.

Case 2. For the case ¢ < —1, choose m; > my, n; > ng sufficiently large so that
my —max{d,r} = mg, n; —max{n, h} = ngand

1+¢
I (r—1) (h—1) _
(r_l)l(h 1)'1—%1(0 JZHI(J) Z |Pz] e
(2.607)
(r—1) (h—1) C(l +C)
(r— l)l(h ! A Z(Z) ]an(]) | fijl =
We define a closed, bounded, and convex subset Q of X as follows:
Q= {A = {Apn} €X | —% < Apn < —2¢, (myn) € D}. (2.608)
Define a mapping T': O — X as follows:
( 1 ( 1)r+h+l
c—1- CAm+kn+l+ ( —1)'(”1—1)'
X Z (i-m—k+r—1)r"b
i=m+k
x > (j-—n—l+h-1H"
TApn =1 = (2.609)
u
X ( Z PE,SJ‘)Ai—TS,j—US - ﬁ)» (m,n) € Dy,
s=1
TAWI],YI) (m) n) S DZ)
TAm,nla (m’ f’l) € D3a
LT Amy s (m,n) € Dy.
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We will show that TQ € Q. In fact, for every A € Q and (m, n) € D;, we get

1

1
TApp < —c—1--A S —
i = ¢kt G (- 1)

x > (i-m—k+r—=1D)"V > (j-n-Il+h-1)"D

i=m+k j=n+l

(S 11 Al 151
s=1

(2.610)
<—c-1+2-— z (i) v Z (j)=n
c(r - 1)'(]1 ! i=my+k j=m+l
(23 1pl 1+ Ifu()
< -—c+1- l(C(H—C) + c(1+c)) < —2c.
c 4 4
Furthermore, we have
TAp,>=—-c—1-— 1A + -
mn = m+k,n+l ( —1)'(]’1—1)'
X > (i-m—k+r—=1)"V > (j-n-Il+h-1)"!
i=m+k j=n+l
(S Al + 1]
= (2.611)
S (R [ -
- c 2 c(r—DWh-1)!
DO <j><“><— 2e) |pi | + Ifi,jl)
i=m+k j=mi+l s=1
. _C_1+1<c(1+c) +c(1+c)> __<
2 < 4 4 2
Hence,
—5 <TAu, < -2c for(m,n) €D. (2.612)

Thus we have proved that TQ C Q.
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Now, we will show that T is a contraction mapping on Q. In fact, for B,A € Q,
and (m, n) € D;, we have

| TBiun — TApn |

IA

1
- ; |Bm+k,n+l - Am+k,n+l |

1

S c(r=Di(h- 1) > (i—-m—k+r—1)0rY

i=m+k

[

X z (]_n_l+h_1)(h 1 Z !P ||Bz To,j— O'S_Ai*TS,j*O'S

j=n+l s=1

IA

1
- ; |Bm+k,n+l - Am+k,n+1 |

T, 2,0 2O

'z m+k j=m

u
X Z |pl(,5]) | |Bi—Ts’j_Us - Ai_Ts)j_US |
s=1

(2.613)

This implies that

(2.614)

Since 0 < (¢ — 7)/8¢c < 1, s0 T is a contraction mapping on Q. Therefore, by
the Banach contraction mapping principle, T has a fixed point A® in Q, that is,
TA® = A°. Clearly, A’ = {A} )} is a bounded positive solution of (2.596). This
completes the proof in this case.

Case 3. For the case 0 < ¢ < 1, choose m; > my, n; > ng sufficiently large such that
m; —max{6,r} = my, n; — max{y, h} = ny and

m Z(’)(” Z(J)]1 Y Z|P

j=m

(2.615)

e USRS

j=m
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We define a closed, bounded, and convex subset Q of X as follows:

Q={A={A,,} €X|2(1-¢c)<An, <4, (mn) €< D}. (2.616)

Define a mapping T : QO — X as follows:

(_1)r+h+1
3+c—CApfpn+ ————
€7 Bmkn= 1T T (- 1)
X>(i-m+r—1)"V>Y(j—n+h-1)"D
i=m j=n
u
TApn =7 X ( ZPE;AFTS,]‘*JS - fi,j)a (m,n) € Dy,
s=1
TAm n» (m,n) € Dy,
TAmn» (m,n) € Ds,
~TAm1,n1> (m,n) € Dy,.

(2.617)

We will show that TQ) € Q. In fact, for every A € Q and (m, n) € D;, we get

TApun <3+c—cAm—in-i

+mz(i—m+r—1)<m>

=m

[e) u
xS G-nth- 1><“>( S 109 | Arnoo
s=1

j=n

151
1 0 o (2.618)
<3+c+ CESSIE] i:zml(i)(r—w > ()

j=m
x (42 158 + <ﬁ,j|)
s=1

l1-¢ 1-c¢
+

<31c+4
¢ 2

=4
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Furthermore, we have

TApun =3+c—cAn—in-i

)

1
e P _ 1)(r=1)
CE TR A
o) u
xS 100 S Al + 1]
j=n s=1
1 0 o) 0 ) (2.619)
> —4c — A (r—1 . -1
=3+c—4c —(r—l)!(h—l)!izzml(l) j:Zn:l(])
< (12 1901+ 151
s=1
1-¢c 1-c
>3+c—4c—4 5 3 =2(1-c¢).
Hence,
2(l—¢) < TAp, <4 for(m,n) € D. (2.620)

Thus we have proved that TQ C Q.
Now, we will show that T is a contraction mapping on Q. In fact, for B,A € Q
and m > my, n > n;, we have

| TBn — TAmn |

<c } Bm—k,n—l - Am—k,n—l }

[

+m2(i—m+r_1)(r—n

=m

[ u
X Z(j —n+h—1)""D Z |PES,) | |Biryj-o, = Airjo |
s=1

j=n

2.621
=c ! B kn—1 — Am—kn-i ! ( )

: m PNOLSRIWEH

i=m, j=m

u
X Z |p1(5]) | |Bifrs,jfos - Aifrs,jfﬂs |
s=1

1+7¢c
<—5 1B — Al
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This implies that

ITB - TA| < 1+7C|IB Al (2.622)

Since 0 < (147¢)/8 < 1, T is a contraction mapping on Q. Therefore, by the Banach
contraction mapping principle, T has a fixed point A? in Q, that is, TA? = A°.
Clearly, A® = {ASM} is a bounded positive solution of (2.596). This completes the
proof in this case.

Case 4. For the case ¢ > 1, choose m; > my, n; > ng sufficiently large such that
m; —max{d,r} = my, n; — max{y, h} = ng and

I S (r-1) (h-1) ) c— 1
(r— 1)|(h ! 4 Z (1) ]an(l) Z | i
(2.623)
1 r—1) _
(r= DI 1)1 A Z O} ]ZmU
We define a closed, bounded, and convex subset Q of X as follows:
Q={A={A,,} €X|2(c-1) < Ap, < 4c, (myn) € D}. (2.624)
Define a mapping T : Q — X as follows:
3 1 ( 1)r+h+1
3c+1-— Am+kn+l+ ( —1)'(h—1)'
X > (i-m—k+r—1)rb
i=m+k
x > (j-n—l+h-1)H"
TApmp = 1 j=n+l (2.625)
<ZPIS)A1 T, j— O'S_f,j>) (m,f’l)ED],
TAWM,n: (mr 7’1) S DZ)
TAm,np (m) H) € D3>

\TAml,nl) (m, T’l) S D4.
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We will show that TQ € Q. In fact, for every A € Q and (m, n) € D;, we get

1
TApn <3c+1- ;Am+k,n+l

1

T S Gk

i=m+k

Y]

N R P A T

j=n+l

+15l)

s3c+l+% z (i) Z ("

C(T’ N 1)'(]1 Ci=my+k j=m+l

(42 1081+ 1)

1 c¢-1

<3c+1+ 4CCS_C
(2.626)

Furthermore, we have

1
TAm,n >3c+1- EAerk,nJrl

00

1
- - i—m — — 1)1
o, 2 (mmoker=D

S Gonteh 1) ”(Z|p Aol + 1fi |)

j=n+l

_ - (r-1) (h—1)
R . 1>'<h -l%k(l) J%H(])

(4c2 1+ 1)

1 c¢c—-1
2

>3c—3—4c5 —2(c—1).
8c

(2.627)
Hence,
2(c—1) < TA,, <4c for (m,n) € D. (2.628)

Thus we have proved that TQ C Q.
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Now, we will show that T is a contraction mapping on Q. In fact, for B,A € Q,
and (m, n) € D;, we can prove that

c+7

| TByy — TAmu| < 1B —Al. (2.629)

This implies that

+
ITB - TA||<Q||B Al (2.630)

Since 0 < (¢+7)/8¢ < 1, T'is a contraction mapping on Q. Therefore, by the Banach
contraction mapping principle, T has a fixed point A? in Q, that is, TA? = A°.
Clearly, A° = {AY, ,} is a bounded positive solution of (2.596). This completes the
proof in this case.

Case 5. Finally, we consider the last case when ¢ = 1. Let m; > my, n; > ng be such
that m; — max{d,r} = myg, n; — max{n, h} = ngand

1
- - r—1) (h-1) -+
. 1)'(;1 ' S 00 S () Z P =g
i=m+k j=ni+l
(2.631)
1 1
T Z (i) v Z (HNEVfiil <.
(T - 1)'(]1 - ! i=m+k j=ni+l 2
We define a closed, bounded, and convex subset Q of X as follows:
Q={A={Ap,} €X|2<An, <4, (mn) €D} (2.632)
Define a mapping T': QO — X as follows:
- (_1)r+h+l 00 m+2§w:k71 1)
3+ (i-m+r—-1)""
(r=Dih =11 = i—m+(2w—1)k
0 n+2vi-1
x> > (j-n+h-1)"D
v=1 j=n+2v-1)I
TAmn = 1 :
’ x ( 2. pl(,Sj)Ai—r,jfa - fi,j)a (m,n) € Dy,
s=1
TAml,n) (m) l’l) € DZ)
TAm,np (}’l’l, 1’1) € DS)
A.TAml!nl’ (m, l’l) € Dy.

(2.633)
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By a similar argument to that of Cases 1-4, we can easily show that T maps Q) into
Q and for B,A € Q,

ITB - TA| < %IIB _ Al (2.634)
Therefore, by the Banach contraction principle, T has a fixed point A® in Q, that
is,

(_I)H_;H_l 0 m+2wk—1

m Z (i—-m+r-— 1)(#1)

w=1 i=m+Q2w—1)k
) n+2vi-1

x> > (j-n+h-1)"D

v=1 j=n+2v-1)I

3+

Aom,ﬂ:< (Zpl] i-1,j—0 ﬁ»j)’ (m,n) € Dy,
A (m,n) € Dy,
AS L (m,n) € Ds,
LAY, 1 (m,n) € Dy.
(2.635)

It follows that for (m,n) € D,

( 1)7+h+1 ©

AS L +AY Z(z m+r—1)r"D

(2.636)

XZ(j_n+h_1)(h1(ZP15)A91]0 f’)

j=n

Clearly, A° = {AY, ,} is a bounded positive solution of (2.596). This completes the
proof of Theorem 2.114. O

Example 2.115. Consider the higher order neutral partial difference equation

ML (A + €A )+ A g =0, (2.637)
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where 7, h, k, I, 7, and ¢ are positive integers, c € R, a,f € R*anda > r, 3 > h.

Since

[

ad 1
Z moc+1 r Z aSEE
= n=nop

mo

i i (m)(r—l)(n)(h—l

o«
m=mg n="ng m n

by Theorem 2.114, (2.637) has a bounded positive solution.

Theorem 2.116. Assume that ¢ = —1 and that

m(m)" V()= 1)|p(5)n| <o, s=1,2,...,u,

LM
EMs

S

i i m(m)"Vn(m)* V] frun| < oo

m=mgy n=ny

Then (2.596) has a bounded positive solution.

Proof. By a known result [58], (2.639) are equivalent to

> > m) T Vm) PV pY | <o, s=1,2,...,u,

[ee]
w=0 u=0 m=mo+wk n=no+ul

)

i i Z (m)(ril)(n)(hil) |fm,n| < o0,

u=0 m=mo+wk n=no+ul

i

respectively. We choose sufficiently large m; > my, n; > ng such that m,
r} = mg, ny —max{n, h} = ngand

>

| =

1 0 (o) 0
oD s 2 2 (O Y G ”le, | <

" w=0 u=0 i=m;+wk j=m+ul

1 o] (o) [e)
oD 2 2 O > G |<<

w=0 u=0 j=m;+wk j=ni+ul
We define a closed, bounded, and convex subset Q of X as follows:

Q={A={A.} €X|2<An, <4, (mn) e D}

(2.638)

(2.639)

(2.640)

— max{J,

(2.641)

(2.642)
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Define a mapping T : Q — X as follows:

r3 & i i (i—m+r—1)0"D
(r—=Dlih = 1)! w=1 i=m+wk

x> > (j-n+h-1)"D
j=n+ul

=1 j-
_ u
Thmn =1 X ( Zp,S)A, j-o — f,-,j>, (m,n) € Dy,
TAm, 0 (m,n) € Dy,
TAmn,» (m,n) € Dj,
TAp n> (m,n) € Dy.
(2.643)

By a similar argument to that of Cases 1-5 in Theorem 2.114, we can easily show
that T maps Q into Q and for B,A € Q,

1
ITB—TA| < g”B —All. (2.644)
Therefore, by the Banach contraction principle, T has a fixed point A® in Q, that
is,
( )r+h

ﬁz Z (i-m+r—1)r0

w=1 i=m+wk

xS S (j-n+h—1)0D
n+ul

3+

u=1 j=
A0 =
m,n
X(ZP(SA?T]U ﬁ) (m,n) € Dy,
TAS, ., (m,n) € Dy,
TA?n no (m)n) S D3)
[ TAS, > (m,n) € Dy.
(2.645)

It follows that for (m,n) € D;

(—1)r+h+l il
Ay =AY = 6+—( DIt 1),Z(z m+r—1)0D

xZ(;—n+h—1>“>(2p“>A?”a ﬁ,j)-

j=n

(2.646)
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Clearly, A® = {Agm} is a bounded positive solution of (2.596). This completes the
proof of Theorem 2.116. |

2.12. Notes

The material of Section 2.2 is based on Zhang and Liu [171, 172]. The related work
can be seen from Liu and Wang [105]. The results in Section 2.3 are taken from
Zhang and Liu [174]. The material of Section 2.4 is based on Zhang and Liu [167].
The method in Section 2.5.1 is presented first in Zhang and Liu [173]. The mate-
rial of Section 2.5.1 is based on Choi and Zhang [46]. The results in Section 2.5.2
are taken from Zhang and Tian [178]. The material of Section 2.5.3 is taken from
Agarwal and Zhou [7], the related papers can be seen from Zhang [161], Choi et
al. [45], Cui and Liu [50]. The results in Section 2.6.1 are adopted from Zhang and
Zhou [187]. The material of Section 2.6.2 is new [188]. Section 2.6.3 is taken from
Zhang and Liu [170]. The concept of frequent oscillation is posed by Tian et al.
[136]. The material of Section 2.7 is taken from Tian and Zhang [141], the related
work, see Xie and Tian [156]. The material of Section 2.8 is based on Xie et al.
[158]. The material of Section 2.9 is taken from Liu and Zhang [107], the related
work, see Liu et al. [104], Liu et al. [108]. The material of Section 2.10 is taken
from Zhang and Zhou [189]. Theorem 2.112 is taken from Zhang and Xing [182].
In [182], authors discuss the various cases in Remark 2.113 and present another
method to study the existence of positive solutions of (2.583). Theorem 2.114 is
based on Zhou et al. [193]. Theorem 2.116 is new.



Oscillations of nonlinear delay partial

it .

3.1. Introduction

Nonlinear PDEs are very important in applications. Many phenomena in biolog-
ical, physical, and engineering sciences can be described by nonlinear equations.
First, we consider a class of nonlinear PDEs with the almost linear property. We
present the linearized oscillation theory in Section 3.2, which is similar to the well-
known linearized stability theory in ODEs. In Section 3.3, we present some results
for nonlinear PDEs with variable coefficients. In Section 3.4, we state the existence
of oscillatory solutions for certain nonlinear PDEs. In Section 3.5, we consider the
existence of positive solutions for certain nonlinear PDEs. In Section 3.6, we study
some population models using the results in the former sections. In Section 3.7,
we consider the oscillation of initial boundary value problems of PDEs, which
are discrete analogs of the corresponding initial boundary value problems of par-
tial differential equations. Average techniques are very effective for this case. In
Section 3.8, we consider the oscillation of multidimensional IBVPs.

3.2. Linearized oscillations
3.2.1. Linearized oscillation for A, .1, + Ay i1 — PAmn + G f Xm—kn—1) = 0

In Chapter 2, the linear delay partial difference equations
Xm+1n T Xmn+1 — PXmn + QXm—kn—1 = 0, (m,n)e€ Ng) (3.1)

have been investigated and various properties related to the oscillatory behavior of
their solutions have been reported. The purpose of this section is to establish some
connections between (3.1) and a more general nonlinear delay partial difference
equation.

Consider the nonlinear functional inequality of the form

Xm+1,n +xm,n+1 - me,n + qm,nf(xm—k,n—l) =< 0) (ﬂ’l, ”) € Ng) (32)
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and the associated nonlinear partial difference equation
Xm+1,n + Xmn+1l — me,n + qm,nf(xm—k,n—l) = 0) (H’l, ”) € N(% (33)

In (3.2) and (3.3), the numbers p, k, [, the sequence {gm,,}, and the function
f will be restricted by appropriate conditions. For now, we will assume through
out this section that p is a positive number, k and / nonnegative integers such that
min(k,[) >0, {Qmn} (mmeng @ real double sequence, and f a real-valued function
defined on R. By a solution of (3.2) or (3.3), we mean a real double sequence x =
{Xmu},m = —k,n = —I, which satisfies (3.2) or (3.3). It is not difficult to formulate
and prove an existence theorem for the solutions of (3.3) when appropriate initial
conditions are given (e.g., see Chapter 1). As is customary, we say that a solution
x = {xXmn} of (3.3) is eventually positive (eventually negative) if x,,,, > 0 (resp.,
Xmn < 0) for all large m and all large n, and is oscillatory if it is neither eventually
positive nor eventually negative.

First of all, we will establish a comparison theorem.

Theorem 3.1. Suppose that p and p are real numbers such that1 = p = p > 0. Sup-
pose that {qmm} and {qm,} are nonnegative sequences which satisfy qmn = qppn >0
for all large m and n. Suppose further that the functions f, f : R — R satisfy
0 < ?(x) < f(x) for x > 0. If (3.2) has an eventually positive solution, then so
does the following equation:

Xm+l,n T Xmp+l — ﬁxm,n + qm,nf(xm—k,n—l) =0, (m: n) € Ng (34)

Proof. Letx = {X,,,} be an eventually positive solution of (3.2) such that x,,, >0
form=M—k =0andn = N — [ = 0. Suppose further that f(t) > 0 for t > 0.
Then summing (3.2) with respect to the second independent variable from # to
00, we obtain

D Xmerj+ (L= p) D Xmjs1 +p D (Xmjit = Xmj) + D Gmj f (Xm-kjoi) <0
j=n

j=n j=n j=n

(3.5)
so that
z xm+1,j + p(merl,n - xm,n)
j=n+l1
(3.6)

+ (1 = p)mirn+ (1 - p) Z Xm,j+1 + Z Qm,jf(xm—k,j—l) <0.

j=n j=n
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Summing the above inequality with respect to the first independent variable from
m to oo, we obtain

=9

Z Xiv1,j + Z i f (Xi-k,j-1)

(i, j)=(m,n+1) (i,j)=(m,n)
(3.7)
+(1 - P){ D Xieiat D xi,jﬂ} < PXmn-
i=m (i, j)=(m,n)
Thus
1 (o) [e)
Xmn = Z Xiy1,j T Z q:',jf(xi—k,j—l)
p (i,j)=(m,n+1) (i,j)=(m,n)
(3.8)

1 _ (o) (9]
+ P{ Z Xitln T Z xi,jH}
P i=m

(i,j)=(m,n)

for m = M and n = N. Let p be a real number such that 1 = p = p, let
{@,.n} immenz be a nonnegative sequence such that g, > g,,,, for (m,n) € 22,
and further let f be a real and nondecreasing function defined on R satisfying
?(x) < f(x) for x > 0. Let Q be the set of all real double sequences of the form
Y =AYmn | m=M —k, n= N —I}. Define an operator T': QO — Q by

1 (o) (o) B o
(TY)mn = = { > Xyt D q,-,jf(xik,jl)’ik,jl)}
(i,5)

PXmn (i ) ZGmnr) (i) =(mm)

]

1-7( <
+ = { Z Xit1,nYi+1,n T Z Xiyj+1Yi,j+1

P (i (i) =(mm)

(3.9)
form > M and n = N, and
(Ty)m,,, =1 (3.10)

elsewhere. Consider the following iteration scheme: y® = 1 and yUtD = Tyl)
for j =0,1,2,.... Clearly, in view of (3.8),

0=y <yl <1, m=M,n=N,j=>0. (3.11)
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Thus as j — oo, y{/) converges pointwise to some nonnegative sequence w =
{W,n} which satisfies

1 [ee] (o) B o
XmpnWmn = p{ Z Xit1,jWir1,j T Z q,-,jf(xi—k,j—lwi—k,j—l)}
(

i,j)=(m,n+1) (i,j)=(m,n)
(3.12)

)

1-p(<
+ =51 D XiiaWiria . XijrWija

p i=m (i,j)=(m,n)

form = M and n = N and wy,, = 1 elsewhere. Taking differences on both sides
of the above equality, we see that the double sequence {u,n} = {Xp,nWm,n} is an
eventually nonnegative solution of (3.4). Finally, we claim that {u,,,} is eventually
positive, provided gq,, , > 0 for m > M and n > N. To see this, suppose to the
contrary that there exists a pair of integers m* > M and n* > N such that u,,, >0
for (myn) € {M —k,M—k+1,...,m*} x {N-LLN —1+1,...,n*}\{(m*,n*)}
but sy« ,+ = 0. Then in view of (3.12),

00 00

0= Z Uir1,j T Z qi,jf(ui—k,j—l)) (3.13)

(4,j)=(m*,n*+1) (i,j)=(m*,n*)

which implies u;; = 0 for i > m* + 1 and j = n* + 1, as well as

qi,jf(”i—k,j—l) =0 (3.14)

fori > m* and j > n*. This contradicts our assumptions that q,,.. .. > 0 and
Um* —kn+—1 > 0. The proof is complete. O

As an immediate consequence of Theorem 3.1, we have the following con-
nection between the partial difference inequality (3.2) and the partial difference
equation (3.3).

Corollary 3.2. Suppose 0 < p < 1, {qm,} is eventually positive and f is positive and
nondecreasing for x > 0. Then (3.2) has an eventually positive solution if and only if
(3.3) has an eventually positive solution.

In order to establish the desired connections between (3.1) and (3.3), we first
recall a few facts for (3.1) from Section 2.2.

Every proper solution of (3.1) oscillates if and only if the following character-
istic equation has no positive roots:

Atu—p+grful=0. (3.15)

Next, note that when p € (0,1] and g = 0, every eventually positive solution
of (3.1) or (3.3) is proper. Indeed, if x = {x,,,} is such a solution, then

Xm,n+1 +xm+1,n - me,n <0 (316)
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eventually, so that x is eventually decreasing in m and also in n. As a consequence,
when p € (0,1] and g = 0, every solution of (3.1) is oscillatory if and only if every
proper solution oscillates.

Next, note that when g > 0, inequality (2.22) will still be valid when ¢ is de-
creased and p is increased by sufficiently small perturbations. Thus the following
continuous dependence of parameters theorem for (3.1) holds.

Theorem 3.3. Suppose that p,q > 0 and that every proper solution of (3.1) is oscil-
latory. Then there exists a nonnegative number & > —p and a positive number & < g
such that for every €, € [0,&1] and €, € [0,&,], each proper solution of the following
equation is also oscillatory:

Xm+1n T Xmn+1 — (P + El)xm,n + (q - EZ)xm—k,n—l =0, (mn)e Ng (3.17)

We are ready to establish several important relations between the linear equa-
tion (3.1) and the nonlinear equation (3.3).

Theorem 3.4. Suppose p € (0, 1]. Suppose further that
liminf Gmn = q > 0. (3.18)
If there is an eventually positive sequence u = {up,,} which satisfies

Xm+1n T Xmn+1 — PXmpn T QmunXm—kn-1 < 0 (3-19)

for all large m and n, then (3.1) has an eventually positive solution.

Proof. In view of (3.18), for any € € (0,9), gmn > q — € for all large m and n. If
(3.19) has an eventually positive solution, then by Theorem 3.1, the equation

Xm+l,n T Xmyn+l — PXmn + (q - €)xm—k,n—l =0 (320)

also has an eventually positive solution. Therefore, if every solution of (3.1) is
oscillatory, then by Theorem 3.3, there will exist an €y € (0, ¢q) such that (every
proper and hence) every solution of

Xm+1,n +xm,n+1 - me,n + (q - EO)xm—k,n—l =0 (321)

oscillates. This is the desired contradiction.
As an immediate application, suppose that f(x) = x for x > 0 and that (3.18)
holds. If (3.3) has an eventually positive solution u = {u,,,}, then

f(um—k,n—l)

0= Um,n+1 + Um+in — pum,n + qm,n Um—k,n—1>

Um—k,n—I1
.. Um—k,n—1 ..
liminf qm,nM = liminf g0 = g
myn—co Um—kn-1 mon—oo

(3.22)
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would imply, by means of Theorem 3.4, that (3.1) will also have an eventually pos-
itive solution. O

Theorem 3.5. Suppose that p € (0,1], f(x) = x for x > 0, and (3.18) holds. If (3.3)
has an eventually positive solution, then so does (3.1).

Similar reasoning also leads to the following: suppose that p € (0, 1], that
(3.18) holds, and that

AR

liminf (3.23)
x—0* X
If (3.3) has an eventually positive solution x = {x,,} which satisfies

limyy, ;-0 Xm,n = 0, then (3.1) has an eventually positive solution.
It is not difficult to impose conditions such that all eventually positive solu-
tions of (3.3) converge to zero as m, n tend to infinity. For example, assume that

D> G = . (3.24)
m=0n=0

In fact, for any eventually positive solution x = {x,,,} of (3.3) where0 < p <1,
since it is decreasing in m and n eventually, we may assume that x tends to a non-
negative constant x. If X > 0, then assuming x,,, >0form > M —kandn = N -1,
we see from (3.8) that

PXmpn = Z Z Qi,jf(xi—k,j—l)- (3.25)

i=m j=n

Assuming f is continuous or nondecreasing on (0, c0), the infinite series of the
above inequality will diverge to positive infinity, which is a contradiction. This
shows that ¥ = 0. Finally, note that the condition (3.24) follows from (3.18). The
following result is now clear.

Theorem 3.6. Suppose that p € (0,1], (2.8) and (2.11) hold and f is either contin-
uous or nondecreasing on (0, co). If (3.3) has an eventually positive solution, then so
does (3.1).

We now turn to the question as to when the existence of an eventually positive
solution of (3.1) implies the existence of eventually positive solutions of (3.3).

Theorem 3.7. Suppose that p € (0,1], 0 < qmn < q for all large m and n, and
f(x) < x for all x in a nonempty right neighborhood (0, §) of zero. If (3.1) has an
eventually positive solution, then so does (3.3).

Proof. Suppose (3.1) has an eventually positive solution. Then by Theorem 2.1,
the characteristic equation will be satisfied by a pair of positive numbers 1y and yo.
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It is not difficult to check that the sequence {x,,,,} defined by {Aj'ug} is an eventu-
ally positive solution of (3.1). Furthermore, since it is easily seen from the charac-
teristic equation that Ay + yo < p < 1, we see that x,,, — 0 as m, n tend to infinity.
Therefore, f(xm,n) < Xm,n for all large m and n. As a consequence,

Xm+1n T Xmn+1 — PXmpn + an,nf(xmfk,nfl)

(3.26)

< Xmtln T Xmpt1 — PXmn + qXm—kn—-1 = 0
for all large m and n. We now see from Theorem 3.1 that (3.3) will have an even-
tually positive solution. The proof is complete. O

Now it is a position to state a linearized oscillation theorem.

In the oscillation theory, it is desirable to show that a nonlinear equation,
when appropriate conditions are imposed, has the same oscillatory behavior as an
associated linear equation. The following result follows directly from Theorems
3.6 and 3.7.

Theorem 3.8. Suppose that p € (0,1], ¢ > 0, k, I are nonnegative integers such
that min(k,I) > 0, and f : R — R is either continuous or nondecreasing on (0, ©).
Suppose further that 0 < f(x) < x for all x in a (nonempty) right neighborhood
(0,0) of zero and that liminfy_: (f (x)/x) = 1. Then

Xmaln + Xmps1 — PXmon + QXm—kn—1 = 0, m,n=10,1,2,..., (3.27)
has an eventually positive solution if and only if
Xt + X1 — PXmn + @f Xm—kn-1) =0, myn=0,1,2,..., (3.28)
has an eventually positive solution.

Each of the previous results related to (3.2) and (3.3) has a dual statement
valid for eventually negative solutions. This is clear from the fact that {x,,,} is a
solution of (3.3) if and only if {—x,,,} is a solution of

Ym+1in t Ymn+1 — PYman + Qm,np(ym—k,nfl) =0, mn=0,1,2,..., (329)

where F(t) = —f(—t) for t € R. Note that sgnF(¢) = sgnt for t # 0, and F is
nondecreasing on (0, ©) when f is nondecreasing on (0, c0). Thus, if in the above
theorem, we assume several additional dual conditions, then we may conclude that
every solution of (3.27) oscillates if and only if every solution of (3.28) oscillates.

Theorem 3.9. Suppose that p € (0,1], g > 0, k, | are nonnegative integers such that
min(k, ) > 0 and f : R — R is either continuous or nondecreasing on (— oo, 0)\{0}.
Suppose further that x f (x) > 0 for all x # 0 and 0 < f(x)/x < 1 in a (nonempty)
deleted neighborhood (=38, 8)\{0} and that liminf,_(f(x)/x) = 1. Then every so-
lution of (3.27) oscillates if and only if every solution of (3.28) oscillates.
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Example 3.10. Consider the partial difference equation

Xm+in + Xmpt1 — PXmon + ql_):";# =0, mn=0,1,2,..., (3.30)

m—k,n—1

where p € (0,1], g > 0 and k, [ are nonnegative integers. By Theorem 3.8 and its
following remarks, we see that every solution of this equation oscillates if and only
if every solution of (3.27) oscillates. In view of Theorem 2.3, we see further that
every solution of this equation oscillates if and only if q(k + 1+ 1)<H1 > kk[Epkttel,
The linearized oscillation theorem for the delay partial difference equation

AAmiipi bAm,nH - PAm,n + Qm,nf(Am—k,n—l) =0, (mn)e N(? (3.31)

has been also established.

3.2.2. Linearized oscillation for A,,_, , + A1 — pAmn + Gunf (Xmakns1) = 0

We consider a nonlinear advanced partial difference equation
Amfl,n +Am,n—1 - pAm,n + qm,nf (Am+k,n+l) =0, mn=0,1,..., (332)

where f € C(R,R), gm,» = 0 on N¢andk,l € Nj.

In this section, we will show some linearized oscillation theorems for (3.32).
Next, we will show an existence result for positive solutions of (3.32). Finally, we
will obtain a comparison theorem.

Consider (3.32) together with the linear equation

Amfl,n + Am,n—l - pAm,n + qu+k,n+l = 0) (333)

where k and [ are positive integers and p,g > 0.
From Chapter 2, we have the following result.

Lemma 3.11. The following statements are equivalent.
(a) Every proper solution of (3.33) oscillates.
(b) The characteristic equation

Ayt —prghkul =0 (3.34)

has no positive roots.

()

(k + 1+ 1)k+i1

KK I pkeT+1 > 1 (3.35)

where 00 = 1.
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(A, ) is said to be a positive root of (3.34) if it satisfies (3.34) and A > 0,
p > 0. Similar to Theorem 3.3, from Lemma 3.11, we can obtain the following
result easily.

Lemma 3.12. Assume that every proper solution of (3.33) oscillates. Then there exists
€0 € (0,q) such that for each € € [0, €], every proper solution of the equation

Amfl,n +Am,n—l - pAm,n + (q - E)Am+k,n+l =0 (336)
also oscillates.

Theorem 3.13. Assume that
(i) liminf, pco gmun =¢q >0, p € (0,1],
(if) f(x)/x >0 for |x| = ¢ >0 and limy,_.(f(x)/x) = 1.
Then every proper solution of (3.33) oscillates implies that every proper solution
of (3.32) oscillates.

Proof. Suppose to the contrary that {A,,,} is an eventually positive proper solu-
tion of (3.32). Then there exist m, and ng such that A,,, > 0 for m > mg, n = ny.
Hence Ay—10 < Ay and Ay -1 < Ay, that is, Ay, , is increasing in m and n. If
limy, -0 Ay = L > 0, Lis finite. From (3.32), we have (2—p)L+qf(L) < 0, which
is a contradiction. Therefore limy .o Am,n = 0. Similarly, we have limy,—.co Ay =
co and limy, .« Apy, = 0. Let

f (Am+k,n+l) )

(3.37)
Am+k,n+l

qm,n = qm,n

Then liminf,, -« q,,, = g. For each € € (0, €o] there exist M > mg and N > ng
such that G >9— 6 form=>= M —1,n > N — 1. Therefore

Amfl,n + Am,n—l - pAm,n + (q - E)Am+k,n+l <0 (338)

form>M-1,n>N-1.
Summing (3.38) in n from N to #, we have

Z Am—l,i + (]- - P) Z Am,i—l + P Z (Am,i—l - Am,i) + (q - 6) Z Am+k,i+l <0.
i=N i=N i=N i=N
(3.39)

Hence

n n n
Z Am—l,i + (1 - P) Z Am,i—l + pAm,Nfl - PAm,n + (q - E) Z Am+k,i+l <0.
i=N i=N i=N

(3.40)
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We rewrite the above inequality in the form

n—1

Am,N—l + Am—l,n - Am,n + Z Am—l,i
i=N
. (3.41)
+(1 _P) Z Amt 1+(q_€) ZAm+kt+l <0.
i=N+1 i=N
Summing (3.41) in m from M to m, we get
m n—1 m  n+l
— A+ At DO D At (1=p) > D> Aji
j=M i=N j=Mi=N+1
(3.42)
+ ZA]N 1+(Q*€) Z ZA]+kz+l <0.
j=Mi=N
Thus
m n-—1 n+1
Am,n2 Z Z Jj— 11+AM 1n+(1_P) Z Z A]I 1
j=Mi=N j=Mi=N+1
(3.43)
m m n
+ ZAj,N—1+(q_E) Z ZAj+k’i+l’ m>M, n>N.
=M j=Mi=N
Define the set of real double sequences
X={{Bun}10<Byn<1l,m=M-1,n>=N -1} (3.44)
and an operator T on X by
( 1 m n-—1
1 [ > D> Aj1Bj1i+ Ay-1aBu-1m
mn | =M i=N
m n+1
+(1-p) > > AjiBjia
=M i=N+1
(TB) n = m
wr + > AjN-1Bjn-1
=M
m n
+(g —€) Z Z Aj+k,i+lBj+k,i+l:|) m=M, n=N,
j=M i=N
L1, otherwise.
(3.45)

In view of (3.43), we see that TX C X. Define {B;(q?,n}, i=0,1,...,as follows:

mmn >

BR, =1, —(TB)5Y, r=1,2,.... (3.46)
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By induction and (3.43), we can prove that

BY =Bl >--- =By >Brl>... (3.47)

form > M —1,n > N — 1. Thus the limit B, , = lim,_« B%}n exists and

( 1 m n-—1
1 [Z > Aj_1iBjoi+ Ay—1aBy-1m
mn | M =N
m n+l
+(1-p) z Z Aji-1Bji-1
j=M i=N+1
By = | m (3.48)
" + Z AjN-1BjN-1
=M
m n
+(q—¢€) Z Z Aj+k,i+lBj+k,i+lj|s m=>=M, n=>N,
j=M i=N
L1, otherwise.

Clearly, By, >0form = M — 1,n = N — 1. Set Xpun = AmyuBmyu. Then xp, > 0,
m>M-1,n>N —1,and

m n-—1 m n+1
Xn = 2. D> Xj_LitXmoia+ (1=p) D D xjio
j=Mi=N j=M i=N+1
(3.49)
m m n
+ z xXjn-1+(q—¢€) Z Z Xjtkit, m =M, n=N.
=M j=M i=N
From the last equation, we get
n—1 n+1 n
Xm—1,n — Xmn = — Z Xm-1,i — (1 = p) Z Xmyi-1 — XmN-1 = (q — €) Z Xm+k,i+>
i=N i=N+1 i=N
(3.50)

or

n+1 n

n
Xmyn = Z Xm—1,i + (1 - P) Z Xm,i—1 +xm,N—1 + (q - E) Z Xm+k,i+l (351)
i=N i=N+1 i=N
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Hence

n—1 n n—1
Xmn—1 — Xmn = Z Xm—1,i + (1 - P) Z Xm,i—1 + (q - E) Z Xm+k,i+l

i=N i=N+1 i=N

n n+l n (3.52)
- Z Xm-1,i— (1= p) Z Xmi-1 = (q = €) X, Ximtkjitl

= i=N+1 i=N

—Xm—1,n — (1- p)xm,n - (61 - E)xm+k,n+la

that is, (3.36) has a positive solution {x,,,}. In view of x; ; < A; ; for all large i and
j» {xij} is a proper solution. By Lemma 3.12, (3.33) has a positive proper solution,
which is a contradiction. The proof is complete. O

Theorem 3.14. Assume that
(i) 0= pmn <p,
(ii) there exists a positive number ¢ such that f(x) is nondecreasing in x for
|x| = cand

L <1, xlzc (3.53)

0=<

Suppose (3.33) has a positive proper solution, then (3.32) also has a positive proper
solution.

Proof. If (3.33) has a positive proper solution, by Lemma 3.11, its characteristic
equation (3.34) has a positive root (A, y) with A=! +u~! < pand {A,,,} = {A"u"}
is a positive solution of (3.33).

Since A > 1 and g > 1, this is an unbounded solution. There exists ¢ > 0 such
that

Apn=¢, m=M-1,n>=N-1. (3.54)

In view of condition (ii), f(Amyu) < Am,y. Similar to the proof of Theorem 3.13,
summing (3.33) we can get

m n— m  n+l
=> Z it Aueiat(L=p) > > Ajin
j=Mi=N J=Mi=N+1

(3.55)

+ Z A]N 1149 z ZA]+k1+l’

j=Mi=N
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and hence
m n—1 m n+1
Amnzz Z ]11+AM 1n+(1—P)Z Z Aj,i—l
j=M i= j=M i=N+1
(3.56)
m m n
+zA]N 1+Z Zq;:f( ]+k,i+l)-
j= j=Mi=N
Similar to the proof of Theorem 3.13, we can prove that the equation
m - m n+l
= Z Xjcvitxmoia+(1—=p) > D xjia
j=M i=N j=M i=N+1
(3.57)
m m n
+ Z XjN-17F Z Z Qj,if (xjekivt)
j=M j=M i=N

has a positive solution {x,,,} with x,,, < A, which implies that {x,,,} is a
positive proper solution of (3.32). The proof is complete. ]

Combining Theorems 3.13 and 3.14 we obtain the following result.
Theorem 3.15. Assume that qu, = q > 0, (ii) of Theorem 3.13 and (ii) of Theorem
3.14 hold. Then every proper solution of (3.32) oscillates if and only if every proper
solution of (3.33) oscillates.

Corollary 3.16. Assume that (ii) of Theorem 3.14 holds and

kk ll pk+l+1
0< qmn = W (358)
Then (3.32) has a positive solution.
Example 3.17. Consider the nonlinear partial difference equation
A3
Amfl,n +Am,n—1 - pAm,n + QM =0, (359)
1+ Am+k n+l

where p € (0,1],q >0, k,I € Ny. By Theorem 3.15, every solution of this equation
is oscillatory if and only if

kk ll pk+l+1

Now we compare the equation

Am—l,n + Am,n—l - pAm,n + Qm,nAm+k,n+l =0 (361)
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and the equation
Am—l,n + Am,n—l - rAm,n + Sm,nAm+k,n+l =0. (362)

Theorem 3.18. Assume that 0 < p < r < 1 and qmy = Smu for all large m and n.
Then every solution of (3.62) is oscillatory implies the same for (3.61).

Proof. Suppose to the contrary, let {A,,,} be a positive solution of (3.61). As be-
fore, by summing (3.61), we can derive

m n-1 m  nt+l
=> Z Ajit Ao +(1=p) D > Ajic
j=M i j=M i=N+1
m m n
+ D Aot D D qjiA ki
=M j=M i=N
m n—1 m  n+l (3.63)
>Z Z 111+AM ln+(1_r)z ZAJII
j=M i=N j=M i=N+1
m m n
+ A]N 1+ Z Z Sj ]+k i+l
j=M j=M i=N
As before, the last inequality implies that the equation
m m n+l
Z Zx] 1i T XMm- 1n+(1_7’)z Zx]tl
j=M i=N j=M i=N+1
(3.64)
+ Zx]N 1+ Z Zsjzx]+k1+l
j=Mi=N

has a positive solution, and hence (3.62) has a positive solution, this contradiction
proves the theorem. |

Remark 3.19. The above results can be extended to the more general equation

u
Am—l,n + Am,n—l - pAm,n + Z qi(ma n)ﬁ (Am+k;,n+li) =0. (365)

3.2.3. Linearized oscillation for the equation with continuous arguments

In this section, we attempt to show the linearized oscillation theorems for the non-
linear partial difference equation with continuous arguments of the form

Ax+Ly)+ A, y+1) = Alx, y) + plx, ) f(Alx — 0,y — 7)) =0, (3.66)

wherex >0,y >0, f € C(R,R), uf(u) >0 foru# 0, p(x,y) >0,7,0 >0.
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Consider (3.66) together with the linear equation

Alx+1,y)+A,y+1) —Alx, y) + pAlx -0,y — 7) =0, (3.67)

where p, 7,0 > 0.
From Section 2.4, we have the following lemma.

Lemma 3.20. The following statements are equivalent.
(a) Every solution of (3.67) oscillates.
(b) The characteristic equation

Atpu—1+pA oy =0 (3.68)

has no positive roots.

(c)

0’1"

> W. (369)

p

From Lemma 3.20, we obtain the following lemma.

Lemma 3.21. Assume that every proper solution of (3.67) oscillates, then there exists
€0 € (0, p) such that for each € € [0, €y}, every proper solution of the equation

Ax+1,y)+AM,y+ 1) —Alxy)+(p—€)Alx—0,y—1) =0 (3.70)
also oscillates.

Lemma 3.22. Let A(x, y) be an eventually positive solution of (3.67) and
x+1 py+l
Z(x,y) = J Al(s,q)dsdq. (3.71)
x Jy

Then 0Z/0x < 0, 0Z/dy < 0, and lim, ..« Z(x, y) = 0.

Proof. There exist sufficiently large xo and y, such that A(x, y) > 0 for x > xo,
y = yo. From (3.67), we have A(x,y) > A(x + 1,y), A(x,y) > A(x,y + 1) for
X =x0+0,y = y+1.By (3.71), we obtain

oz (M
o = | A+ 1,9) - Alxg)dg <0,
y
o (3.72)

Er [A(s,y+1) — A(s, y)]ds < 0.
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Since Z(x, y) > 0, the limit lim, .. Z(x, y) = d exists. We claim that d = 0.
Otherwise, d > 0, integrating (3.67) in y from y to y + 1 and in x from x to x + 1,
we have

Zx+Ly)+Z(x,y+1) = Z(x,y) + pZ(x — 0,y — 1) = 0. (3.73)

Taking the limit on both sides of (3.73), we obtain d + pd = 0, which is a contra-
diction. Therefore we have lim, .1« Z(x, y) = 0. The proof is complete. O

Lemma 3.23 (Jensen integral inequality). If ¢(u) is a continuous convex function,
f(x) and p(x) are continuous functions on [a, b], p(x) = 0, f:p(x)dx > 0, then the
following inequality holds:

) ( I p(x)f(x)dx) _ S P09 (F () dx (3.74)

[} p(x)dx 1 p(x)dx

Lemma 3.24. Assume that f(u) is nondecreasing and is convex as u = 0. Set
plx,y) = min{p(s,q) : x < s <x+1, y < q < y+1}. Then (3.66) has an
eventually positive solution if and only if the inequality

Ax+Ly)+AMx,y+1) —Alx, ) + plx, ) f(Alx — 0,y — 7)) <0 (3.75)
has an eventually positive solution.
Proof. The necessity is obvious, we only need to prove the sufficiency. Let A(x, y)
be an eventually positive solution of (3.75) and let Z(x, y) be defined by (3.71), so

there exist sufficiently large x and yy such that A(x, y) > 0 for x = xo, y = yo.
From (3.75), we have

x+1 py+l
Zx+1Ly)+Z(x,y+1) = Z(x, y) + J p(s,q) f(x(s— 0,9 —1))dqds < 0.
x Jy
(3.76)
By Lemma 3.23, we have

Zx+1Ly+D)+Z20y+1+0)—-Z,y+i)+pl,y+i)f(Z(x -0,y —1+1)) <0
(3.77)

for x = x9, y = yo, i € No. Summing (3.77) in i from 0 to +co, we get

ZZ(x+1,y+i) —Z(x,y)+Zp(x,y+i)f(Z(x—a,y+i—T)) <0. (3.78)

i=0 i=0
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From the above inequality, we have

+0oo
Zx+1+j,9) = Z(x+j,p)+ > Z(x+ 1+ j,y +1)

i=1

+o0 (3.79)
+> plx+j,y+i)f(Zx—o+j,y+i—1)) <0,
i=0
where j € Np.
Summing (3.79) in j from 0 to +o0, we obtain
+00 00 too oo
Z, )z > D Zx+jy+i)+ > > px+j,y+i)f(Z(x—o+j,y+i—1)).
j=1i=1 j=0 i=0
(3.80)

Define a set of continuous functions
X={B(x,y) €C|l0<B(x,y) <Z(x,y), x =x0— 0, y > Yo — T} (3.81)

and an operator T on X by

400 +o0 +00 +oo
Z ZB(x+j,y+i)+ Z Zp(x+j,y+i)
i=1i=1 =0 i=0
TB(x,y) = Xf(B(x—0+j,y—1+1), X = Xo, ¥ = Yo,
TB(x0, y0) + Z(x, ¥) — Z(x0, y0), otherwise.
(3.82)
In view of (3.80), we see that TX C X.
Define BY(x, y),i = 0,1,2,..., as follows:
BO(x,y) = Z(x, y), B"W(x,y) = TB" V(x,y), n=12,..., (3.83)
so BM(x,y) = TBO(x,y) < BO(x, y),..., by induction we can prove that
BY(x,y) = BY(x,y) = -+ =B"(x,y)--- >0 (3.84)

for x > xo — 0, y = yo — 7. Then the limit lim,_, B®(x,y) = B(x, y) exists.
Hence we have

+oo +oo too oo
B(x,y) = Z ZB(x+j,y+i)+z Zp(x+j,y+i)f(B(x—o+j,y—T+i))
j=1i=1 =0 i=0

(3.85)

for x = xp, y = yo. Clearly, B(x, y) > 0 for x = xo, y = yo and satisfies (3.66). The
proof is complete. U
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Theorem 3.25. Assume that
(i) liminfy , .10 p(x,y) = p >0,
(ii) f(z) € C(R,R), f(z)isconvexasz = 0 and is concaveasz < 0, zf (z) > 0,
forz # 0, andlim,_o(f(2)/z) = 1.
Then every proper solution of (3.67) oscillates implies that every solution of (3.66)
oscillates.

Proof. Suppose to the contrary, let A(x, y) be an eventually positive solution of
(3.66) and let Z(x, y) be defined by (3.71). Then there exist sufficiently large x
and y such that A(x, y) > 0 for x = x¢, y = yo. From (3.66), we have

x+1 py+l

zu+Lw+zmy+nfmmw+L | PO (A~ 0,q-)dgds =0
(3.86)

By condition (i), we see that for each €, € (0, €], there exist X; > xo and Y; > y,
such that p(x, y) = p — €, forx = X, y = Y;. So we have

Z(x+ 1L, y)+Z(x, y+1)=Z(x, y)+(p —€1) Jxﬂ - f(A(s—0,9—7))dgds < 0.
Y (3.87)
Then, by Lemma 3.23, we have
Zx+1L,y)+Z(x,y+1)—Zx,y)+(p—€1)f(Z(x -0,y — 1)) <0. (3.88)
By Lemma 3.22, lim,,, .~ Z(x, y) = 0 monotonically. Let

f(Z(x—0,y—1))
Z(x—o0,y—1)

plx,y) = (p—€1) , (3.89)

then
XI;Enw px,y) =p—e€rn (3.90)
So for each €, € [0, €o] such that €; +¢€; < €y, there exist X; > x and Y, > y, such
that p(x,y) = p—€1 —exforx = X5, y = Ys. Let € = €, + €3, X = max{X;, Xz},
Y = max{Y,, Y}, then we have p(x, y) = p—€ forx = X, y = Y. Therefore, from
(3.88), we have
Zx+1Ly)+Z(x,y+1) = Z(x,y)+(p—€)Z(x -0,y — 1) <0 (3.91)

for x = X, y > Y, that is, the inequality

Ax+1,y)+A,y+1) —Alxy)+(p—€)Alx—0,y—1) <0 (3.92)
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has an eventually positive solution Z(x, y). So by Lemma 3.24, we obtain that
(3.70) has a positive proper solution, which is a contradiction. The proof in the
case of A(x, y) < 0 is similar. The proof is complete. ]

Theorem 3.26. Assume that
(i) 0= p(x,y) <P,min{p(s,q):x <s<x+1, y<qg=<y+1} = pxy),
(ii) there exists a positive number « such that f(z) is convex as z = 0 and is
nondecreasinginz € [—a,a],0 < f(z)/z<1for0 < |z| < a.
Suppose (3.67) has a positive proper solution, then (3.66) has a positive solution.

Proof. If (3.67) has a positive proper solution, by Lemma 3.20, its characteristic
equation (3.68) has a positive root (A, ) with 0 < A, y < 1 and A*” is a positive
proper solution of (3.67). Choose § > 0 such that A(x, y) = A" < « for all
x = —o0, y = —1. Obviously, A(x, y) is a positive proper solution of (3.67) and
satisfies f(A(x, y)) < A(x, y), by condition (i) and (3.67) we obtain that

Ax+Ly)+AMx,y+1) —Alx, ) + plx, y) f(Alx— 0,y — 7)) <0 (3.93)

has an eventually positive proper solution. By Lemma 3.24, we can obtain that
(3.66) has an eventually positive solution. The proof is complete. O

Combining Lemma 3.24 and Theorem 3.25, we obtain the following result.
Corollary 3.27. Assume that p(x,y) = p > 0, (ii) of Theorem 3.25 holds, there
exists a positive number a such that f(z) is nondecreasing in z € [—a,a] and 0 <

f(2)/z < 1. Then every solution of (3.66) oscillates if and only if every solution of
(3.67) oscillates.

Corollary 3.28. Assume that condition (ii) of Theorem 3.26 holds and

UTT
0=< p(x,y) < W, (394)
then (3.66) has positive solutions.
If f(x) = xand
.. loadid
1&{l}jgfp(x,y) > (otrt ot (3.95)

then every solution of (3.66) oscillates.
We consider (3.66) together with the equation
Clx+1,y)+Clx,y+1) = Clx,y) +q(x, y)g(Clx — g,y — 7)) =0.  (3.96)

We have a comparison result as follows.
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Theorem 3.29. Assume that p(x y) and f satisfy the assumptions in Lemma 3.24
and q(x,y) = p(x,y) = 0, ug(u) > uf(u), u # 0, then every solution of (3.66)
oscillates implies that every solutlon of (3.96) oscillates.

Proof. Suppose to the contrary, let C(x, y) be an eventually positive solution of
(3.96). Then we have
Clx+1,9)+Clx,y+1) = Clx,y) + plx, N f(Cx — 0,y — 1))
<Clx+1,9)+Clx,y+1) = Clx,y) + plx, )g(Clx — 0,y — 7))
<Clx+1,9)+Clx,y+1)—C(x,y) +q(x, ¥)g(Cx =g,y — 1)) = 0.
(3.97)

Then by Lemma 3.24, we obtain that (3.66) has an eventually positive solution,
which is a contradiction. The proof is complete. ]

3.3. Nonlinear PDEs with variable coefficients
3.3.1. Oscillation for the equation (3.98)
Consider the equation
u
At + At = A+ 2 Pilm, n) fi(Aptin-1) = 0, (3.98)
i=1

where P;(m,n) > 0, k;,Il; € Ny, fi € C(R,R) and xfi(x) > 0 forx # 0,i =
1,2,...,u

Theorem 3.30. Every solution of (3.98) is oscillatory provided that the following con-
ditions hold:
(i) forl <i=<u,

lim infM =S; € (0,); (3.99)
x—0 X
(ii) forl <i<uy,
Er;laiPOEPi(m, n) = pi > 0; (3.100)
(iii) for 1 <i < u, f; is nondecreasing;
(iv)
(’71 + l)mJr1

ZZ”‘S pi >1, wheren; = min {k;, 1;}. (3.101)

i=1

Proof. Suppose to the contrary that {Am,} 1s an eventually positive solution of
(3.98). By Lemma 2.62, limyn,jy—+c0 Ay = { = 0.
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We assert that { = 0. Otherwise, if { > 0, then by taking limits on both sides
of (3.98), we have

0={+> pifi{) >0, (3.102)
i=1

which is a contradiction.
In view of (3.98), we have

2Am+1,n+l 1< Am,n+1 +Am+1,n -1
Am,n Amn

=_Zp(m n)f( m—k;,n— l)
i=1 mn

<_Zp(m n)f( m—rti,n— ﬂx)
i=1 mn

_ ip(m n)fi(Am*m)”*m) Am’r]nn’”i . Am—l,n—l

' ’ Am—m,nfm Am—r/i+1,n—11;+1 Am,n

_zp(m’ l m Nisn— 11,) ﬁ Am—j,n—j

Am nin—1i j=1 Am—j+1,n—j+1
(3.103)
for all large m and n. Letting
A
U = ——, (3.104)
Am+1,n+1
we see that a,, > 1 for all large m and n, and
2 u
—+> Pi(m,n Mﬂam e < L. (3.105)
Xmn i Ap- Nin—1i
If {am,} is unbounded, there exists a subsequence {ay,, ,, } such that
lim sup o —1,0,—1 = +00. (3.106)

S,t—+00

But in view of the assumptions (i) and (ii), the left-hand side of (3.105) will not
be bounded above. This contradiction shows that {«,, ,} is bounded above.

We now let & = liminf,, ;40 Gpy. Then & € [1,+00). Furthermore, from
(3.105), we see that

p &ns;, (3.107)

S| DO
I/\
WM:
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which implies £ > 2 and

i AR (3.108)
i =L .
i=1 pis §-2
Note that
i+l ) nit+l
min &0 n U +i) , (3.109)
&2 & - 1
thus we have
“ i+ 1 it
S psan WD (3.110)
i=1 i
which is contrary to assumption (iv). The proof is complete. 0

Theorem 3.31. Every solution of (3.98) is oscillatory if conditions (i) and (iii) of
Theorem 3.30 hold and for 1 < t < u,

u m+ko n+ly

limsup > S > > Pi(i, j) > 1, (3.111)

MRTE o] j=m j=n

where kg = min{ky, ko, ..., k,} and ly = min{l}, b,..., 1, }.

Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(3.98). Then, as in the proof of Theorem 3.30, we have lim, ;—. 400 Ap,n = 0. Sum-
ming (3.98), we obtain

m+ Vl+ u

Z Z Z iy j) fi(Aick,j—1,) = 0. (3.112)

m+ko n+ly
DD (A + A — Aij
i=m j=n

By Lemma 2.107,

m+ko ntly u
App = Z > Z ((iy 1) fi(Aiokyjot)- (3.113)

j=n

Since f; is monotone, we see that

m+ky ntly u
Am>” = Z Z Z l])ft mn) (3114)

]:l’l
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or
m+ko ntly u
> 2 2 Pirf) ft(A”"” <1 (3.115)
i=m j=n t=1

But this is contrary to (3.111). The proof is complete. |

Now we consider nonlinear partial difference equations of the form

Ap—in + Ampn-1 = Amn + > Pi(m,n) fi(Apmskner,) = 0, (3.116)
i=1

where Pi(m,n) = 0, kj,]; € Ny, fi € C(R,R) and xfi(x) > 0 forx # 0,i =
1,2,...,u

Theorem 3.32. Every solution of (3.116) is oscillatory provided that the following
conditions hold:
(i) forl <i<u,

ll{(rlglff( %) =H; € (0,0); (3.117)
(ii) forl <i<u,
LilIgl_Hlogpi(m, n) = p; > 0; (3.118)

(iii) for 1 <i < u, f; is nondecreasing;
(iv)

. (7’1+ 1)r,+1 . '
ZZ ’Hp,ix >1, wherer; =min{k;,L},i=1,...,u (3.119)

i=1 ti

Proof. Suppose to the contrary, let {A,,,} be an eventually positive solution of
(3.116). Ay, is increasing in m and n. Then we have limy, 400 Amn = k.

We assert that k = +o00. Otherwise, if k is finite, then by taking limits on both
sides of (3.116) we have

k+ Z pifik) <0, (3.120)

i=1

which is a contradiction.
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In view of (3.116), we have

2Am—1,n—1 1< Am,n—l +Am—l,n -1
Am,n Amn
)
_ P (m’ 1 m+k i+,
2 ™ (3.121)
< —ZP(V” I’l)f( m+r,n+r,),

mn

for all large m and n. Letting

Am n
O = —————, 3.122
e ( )
we see that a,, > 1 for all large m and n. The above inequality leads to
u
> Pi(m,n) ) Amtrnin) ) | [T amssonss (3.123)

X, i=1 Am+r, n+r; j=1

which implies that {a,,,} is bounded. We now let & = liminf,, e &my. Then
¢ € [1,+00). Furthermore, from the last inequality, we see that

2 e
3 — > pi"H;, (3.124)
i=1
which implies £ > 2 and
u Er,+1
Hi——— < 1. 12
Zl pifig— (3.125)
Note that
+1
G (ri+ 1)’1*
=20 - , 3.126
ming 3 =2 (3.126)
thus we have
u 41 ri+l
ZPiHizri (rlirn) <1, (3.127)

which is contrary to assumption (iv). The proof is complete. ]
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Theorem 3.33. Every solution of (3.116) is oscillatory if conditions (i) and (iii) of
Theorem 3.32 hold and

m

u n
limsup > H, > > Pi,j) > 1, (3.128)

MR=H o] ik j=n—I,

where kg = min{ky, ka,...,k,} and ly = min{l}, b,...,1,}.

The proof is similar to the proof of Theorem 3.31.

3.3.2. Oscillation for the equation with continuous arguments
We consider nonlinear partial difference equations with continuous arguments of

the form

Alx+a,y)+A(x,y+a) — Alx, y) + Zhi(x,y,A(x —0,y—1)) =0,
i-1

(3.129)

where h; € C(R" X Rt X R,R), uhi(x,y,u) > 0 for u # 0, h; is nondecreasing
inuao0;,1 >0,i=12,...,m Let 0 = maxi<j<uioi}, T = maxi<i<m {7}, 0; =
kia + (;, 7; = Lia + &, where k;, I; are nonnegative integers, (;, & € [0,a).
Lemma 3.34. Assume that A(x, y) is an eventually positive solution of (3.129). De-
fine

1 [(xte (yta

Z(xy) = J J Al v)du dv, (3.130)
a X y

then Z(x, y) >0, 0Z/0x < 0, 0Z/0y < 0 for all large x and y.

Proof. Because A(x, y) is an eventually positive solution of (3.129), Z(x, y) >0
eventually. From (3.129), we have A(x+a, y) + A(x, y+a) — A(x, y) < 0. Therefore

oz 1 (¢
= (A(x+a,v) — A(x,v))dv < 0. (3.131)
ox a’ly

Similarly, 0Z/dy < 0 eventually. O

Remark 3.35. Similar to Lemma 3.34, if A(x, y) is an eventually negative solution
of (3.129), then Z(x, y) < 0, 0Z/dx > 0, dZ/dy > 0 eventually.
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Theorem 3.36. Every solution of (3.129) is oscillatory provided that the following
conditions hold:
(i) forl<i<m,

=820, >8>0 (3.132)

(ii) for 1 < i < m, hij(x, y,u) is convex in u for u = 0 and concave in u for
u<o0;
(iii) one of the following conditions holds:

& (’7i+ l)r’i+1 . )
ZZ’%S,‘# >1, ni=min{k,L}>0,i=1,...,m; (3.133)
i-1 i
m kkl
Si—— = >1 if min {k} >0, min {I} =0; (3.134)
z:zl (ki — l)k’ ! I<i<m I<i<m
I
Si—— = >1 if min {k} =0, min {i} >0; (3.135)
o (L=1)° l<ism l<ism
>.8>1 if min {k} = min {I} = 0. (3.136)

i=1

Proof. Suppose to the contrary that A(x, y) is an eventually positive solution of
(3.129). By Lemma 3.34, limy .1 Z(x, ) = { = 0.
We claim that { = 0. It is easy to see that

Z(x+a,y)+Z(x,y+a) — Z(x, ) +Zh,~(x,y,Z(x— 0,y—1)) <0.
i-1

(3.137)
Hence
Z(x+a,y)+Z(x,y+a)—Z(x,y) <0. (3.138)

If { > 0, then by taking limits on both sides of the above inequality, we have
{ < 0, which is a contradiction. So { = 0.
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In view of (3.137), we have

2Z(x+a,y+a) 1 Z(x+a,y)+Z(x,y+a)

Z(x,y) < Z(x,y) !
_ N hilny, Z(x - 01,y — 7))
B ,:Zl Z(x,y)
- hi(-x) y)Z(x —nid, y — 11,'(1))
=- Z Z(x,y) (3.139)

1l
—

hi(x, y, Z(x — nia, y — mia))

+ Z(x—mia,y — mia)

n Z(x — ja,y — ja)

X ; . 5
[ Z(x=(j-Da,y—(j—1Da)

s

1

j=1
for all large x and y. Let

Z(x,y)

Zorayia (3.140)

alx,y) =

Then a(x, y) > 1 for all large x and y. From the above inequality, we have

2 Dz nay—ma)
alx — ja,y — ja) < L. 3.141
(X(X’ }’) Z Z(X — i,y — r]ia) ]1:[1 ( Jay =] ) ( )

Condition (i) implies that a(x, y) is bounded. We rewrite (3.141) in the form

(x, ya — i,y = nia)) - . ‘
2+ alx — ja,y — ja)al(x, y) < alx, y).
Z (x— ’71‘1 y— i) ]:1_[1 ]ay =] Y y

(3.142)

We now let f = liminf,, ;o a(x, y). Then f € [1,+0c0). Furthermore, from
(3.142), taking the inferior limit on both sides, we obtain

2+ > SpIB < p. (3.143)
i=1
Hence

ﬁ”' (3.144)

I
I/\
uMs
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which implies § > 2 and

m ﬁq,-+l
Zsiﬁ — =1 (3.145)
i=1
Note that
7it1 +1 ni+l
min B =M (1 ,1,.) , (3.146)
p>2 - ni
thus we have
" + 1)
S sV (3.147)
i=1 77i

which contradicts assumption (3.133).
For mini<j<,» {ki} >0 and min;<;<,,{l;} = 0, from (3.137), we have

Zx+a,y)+Z(x,y+a) - Z(x,y) + zhi(x,y,Z(x— kia,y —1;)) <0.

i=1

(3.148)
Hence
Z(x+a,y)+Z(x,y+a) 1
Z(x,y)
f: (%Y, Z(x = kia, y — 17))
i=1 Z(x )/)
gh,x,y, x—kia,y—1)) Z(x—a,y N Z(x - ja,y — 1)
i=1 Z(x — kia,y — 1) Z(X,)/) ]:22 x=(G-Day-1)
(3.149)

Since Z(x, y) is decreasing in x and y, so Z(x — a, y — 1:)/Z(x, y) > 1, for all large
x and y. The above inequality leads to

Z(x+a,y) ﬁ xy, (x = kia, y — 1k—[ Z(x— ja,y — ) -
Z(X,)/) -1 x ka, T ]:2Z X — ]—1)a’ ) .
(3.150)
Let a(x, y) = Z(x, y)/Z(x + a, y) > 1. From (3.150), we have
(x, y,Z(x kia, y — ’ )
alx —ja,y—1;) < 1. 3.151
a(xy)g Ty ) ,»:2( jary i) (3.151)
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(i) implies that «(x, y) is bounded. Let § = liminf, , ., a(x, ). The above
inequality leads to

I, _ S sipht, (3.152)
B =
which implies that § > 1 and
m
p
Si <1 (3.153)
2551
Note that
K ki
min B = ki T (3.154)
ﬁ>lﬁ_1 (ki—l)x
we obtain
m kk‘
> Si———— <1, (3.155)
i1 (ki—=1)"

which contradicts (3.134).

The proof of (3.135) is similar to the proof of (3.134). Now we consider the
last case, minj<j<; 1ki} = minj<j<,{l;} = 0.

From (3.137),

Zx+a,y)+Z(x,y+a) —Z(x,y) + ihi(x,y,Z(x,y))
i=1

<Zx+a,y)+Z(xy+a)—Z(x,y)+ > hi(x,y,Z(x — o,y — 1)) < 0.

i=1

(3.156)
Hence
& i\ A ) Z 5
s hiteyZEp) g (3.157)
= Z(xy)
Taking the inferior limits on the above inequality, we have
> Si—-1<0, (3.158)

which contradicts (3.136). If A(x, y) is an eventually negative solution of (3.129),
we can lead to a contradiction by the similar method as the above. The proof is
complete. ]
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Theorem 3.37. Every solution of (3.129) is oscillatory if conditions (i) and (iii) of
Theorem 3.36 hold and

m ko

lim sup Z Z Z o (x + i, y+]a “) > 1, (3.159)

Xy=to0,u=0y,=1 j=0 j=0

where kg = min{ky, ka,..., kn} and ly = min{l;, L,...,L.}.

Proof. Suppose to the contrary, let A(x, y) be an eventually positive solution of
(3.129). Then, as in the proof of Theorem 3.36, we have lim, , ., Z(x, y) = 0 and

Zx+a,y)+Z(x,y+a) — Z(x,y) + Zhi(x,y,Z(x —kia,y — Lia)) < 0.

i=1

(3.160)
Summing the above inequality, we obtain
k() lo
Z Z [Z(x+ (i+a,y+ ja) + Z(x+ia,y+ (j+ 1)a) — Z(x+ia, y + ja)]
i=0 j=0

ko I m
+ZZ(Z x+zay+]aZ(x+(z—k)a,y+(j—ln)a))>SO.

i=0 j=0 =1
(3.161)
Similar to Lemma 2.107, the above inequality leads to
ko () m
Z(x,y)>zzz (x+ia,y+ja,Z(x+ (i—kp)a,y+ (j — l.)a)).
i=0 j=0 n=1
(3.162)

When ky = 0, we use o, to substitute k,a, when [, = 0, we use 7, to substitute [, a.
Since h; is nondecreasing in u, we see that

ke lh m
Z(x,y) = Z Z Z (x+ia,y+ ja, Z(x, y)), (3.163)
i=0 j=0 n=
which contradicts (3.159). In the case where A(x, y) is eventually negative, the
proof is similar to the above. The proof is complete. ]

Example 3.38. Consider the partial difference equation

Alx+1, y)+A(x, y+1) = A(x, y)+plx, y) (1+A%(x =2, y—1))A(x—2, y—1) =0,
(3.164)
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where

(y+2)(y—1)°
y(y+1)(y2—2y+1+5in2(77:x))’ (3165)

p(x,y) =

h(%}’; u) = p(x,y)(l + uz)u.
We see that liminf, ) e, o (h(x, y,u)/u) = 1 >0 and

limsup h(x, y,usgnu) = (1+b*)|b| >0 for b + 0; (3.166)
X,y =00, |u|—|b|

h(x, y,u) is convex as u > 0 and concave as u < 0 and

)q,+l

Zzw m+1 =21+ =8>1, (3.167)
ni'

so by Theorem 3.36, every solution of (3.164) is oscillatory. In fact, A(x,y) =
sin(7x)/y is an oscillatory solution of (3.164).

3.3.3. Oscillation for the equation with mix nonlinear type

Consider nonlinear partial difference equations of the form

Am+1,n + Am,n+1 - Am,n + pm,n |Am—k1,n—ll | “ sgn Am—kl,n—ll
8 (3.168)
+ qm,n |Am—kz,n—12 | SgnAm—kz,n—lz =0,

where pp, > 0and gy = 0on NG, ki > ky > 0,1, = I, > 0,1,k € Ny fori = 1,2,
ae[0,1),f>1.
The following inequality will be used to prove the main result of this section.

Lemma 3.39. Letx,y = 0, m,n >1and 1/m+1/n = 1. Then

ﬁ_'_y l/m

1/n
e yun, (3.169)

Define the subset of the positive reals as follows:
{)L >0]1- Ap(ﬁ v qg LV S0 eventually}. (3.170)

Given an eventually positive solution {A,,,} of (3.168), define the subset S(A) of
the positive reals as follows:

S(A) = {l>0 | Amsin + Ampns1 — mn(l A V=) g/ (B a)) <0 eventually}.
(3.171)

If A € S(A),then1 —Ap ’Bnl /(B a)q (B o g eventually. Therefore S(A) C E.



170 Oscillations of nonlinear PDEs

It is easy to see that condition

limsup pin " gina® > 0 (3.172)

m,n— oo
implies that the set E is bounded.

Theorem 3.40. Assume that
(i) (3.172) holds;
(ii)

m—1 n-1 1/n
sup w{ [T TT (1205 g >)} <L (%)

A€E,m=M,n=N i=m—k, j=n—1,

where n = mintk;, b} 2 1,0 = min{(f —a)/(f-1),(f—a)/(l —a)} > 1, M, N
are large integers. Then every solution of (3.168) oscillates.

Proof. Suppose to the contrary, let {A;;} be an eventually positive solution of
(3.168). Then A,,, , is decreasing in m, n. Hence we have

Am—kl,n—ll = Am—kz,n—lz >

(3.173)
Amrin + Ampit = Ampn + PmnAg g, g, + qm,”Afn—kz,n—lz <0.
By Lemma 3.39, we have
PrnAp_y i, + GmnA fn P PR qg;la)/(ﬁia)Amsz,nflz- (3.174)
From (3.173) and (3.174), we obtain
Amitn + Amnst — Ay + 0pon VB0 g B g w0, (3.175)
thus we have
Amitn + Amst — A + 0pihnVF g0 E0 g <0, (3.176)
$0
0 < Amirn+ Amart < (1= 0pin” P g™ T Ay (3.177)

which implies that S(A) is nonempty. Let 4 € S(A), then

Amirn = (1= ppiin” " gnn™ F) A (3.178)
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and so
(= (B-1)/(B-0) _(1-a)/(B-c)
- —a —a)/(B-a
Amn < 1_[ (1 ~UPin 9in )Amsz,n-
i:in*kz
Similarly, we have
)/ /
Amgsr < (1= upihin P g P) Ay
and so
e B-1/(B-a) _(1-a)/(B~c0)
o o
Am)n < l_[ ( ["pm] qm,] )Am,nflz.
j:n—lz
Hence
A (B-1/(B-0) _(1-a)/(f-
(X
A%nSAmn 1" "Am,ﬂ*lzS n 1_[ ( #plj ql]
j:n—lz i:m—kz

Similarly, we have

Al = ﬂ H (l—upfé“ P ) A

Combining (3.182) and (3.183), we obtain

a)) AP

171

(3.179)

(3.180)

(3.181)

m—kz,n—lz *

(3.182)

(3.183)

1/n
Apn < { 1_[ 1_[ ( [’lpzlj 1)/(B~ tx)qli tx)/(ﬁ—a))} Am—kyn—b- (3.184)

i=m—k, j=n-I

Substituting (3.184) into (3.175), we obtain

(B-1/( (1-a)/(B~a)
Am+l,n+Am,n+l mn{l 9Pﬂ hra q ,na fra

m—1 n—1 =1/
X[ [T TT (1-upf Ve ogl e “))} }so,

i=H’I*k2 j:n*lz

which implies that

m-1  n-1 /5~ —1
of s [T 11 0wt oogoreo] )

m=M,n=N i=m—ky j=n—I,

(3.185)

e S(A).

(3.186)
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From condition (ii), there exists y € (0, 1) such that

m—1 n—1 1/n
1 TT (1-apteo q,?fj“w“))} <yl

sup /19{
AEE,m>M,n>=N i=m—k, j=n—l
(3.187)
Hence
= T B (-avg-any | ]
- —a —a)/(B-a
{ sup [ﬂ (1_/”pi,j i j )} } =5, (3.188)
m=M,n=N | j_pf, j=n-h Y

so that y/y € S(A). By induction, u/y" € S(A), r = 1,2,.... This contradicts the
boundedness of S(A). The proof is complete. |

From Theorem 3.40, we can derive an explicit oscillation criterion.

Corollary 3.41. Assume that

1S T e (-aw fa“
lim inf (B-1/(p-0) (-a)/(p-0) U@ 3.189
}n)nllgo kzlz i:mz—kz j:;—lz pl)] ql)] (1 + a)1+a ( )

where a = max{k,, L }. Then every solution of (3.168) is oscillatory.

Proof. Letg(A) = A(1 — cA)? for A > 0, ¢ > 0. Then

aﬂ

M= 3.190
I%Xg( ) c(1+ a)lta (3.190)
Set
1 ST e (-
€= Z Z Pi; dij . (3.191)
ke Iz i=m—k, j=n—l
Since
LS (B=1)/(f—a) (1-a)/(B—a) !
- ol > 2 bij qi,;
22 ok, j=n-1b
(3.192)

_ {’"I—f ’ﬁ O _/\pgﬁ—1)/(ﬁ—tx)q£;—tx)/(ﬁ—a))}1/’7,
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we obtain

-1
a* (B=1)/(B-a) (1-a)/(B-a)
1> (1+a)1+“{kzlz Z Z P qt] }

i=m—ky j=n-I

s0l1- -2 Z Z Plﬁ 1)/(B— zx)qll a)/(f—a) (3193)
kzlz ]

i=m—ky j=n—h
i B-1-a) (-ayG-an ]
zw{ [T IT (1-2p q) )} .
i=m—k, j=n—1

Then the conclusion follows from Theorem 3.40. O

Example 3.42. Consider the equation

Am+1,n + Am,n+1 - Am,n + Pmyn |Am—4,n—2 | @ SgnAm—zL,nfz
g (3.194)
+ @ | Am—1n-1 1" sgn Ap—1,0-1 = 0,

where a = 1/8, B = 9/8, pmn = e 7354 (e — 1) > 0, gun = VI8 > 0,
0 =min{(f—a)/(f—-1),(f—a)/(l —a)} =8/7,and a = max{ky, L} = 1, so

< (B=1)/(B~a @)/(f~a) 1/8 ,—73/64 Ba“ 2

li f—- —(e—1 _—
i k2121 mzkz j glzp q,] e TAtrae 7
(3.195)

Hence every solution of (3.194) oscillates. In fact, e™" sin(7/2)m is an oscillatory
solution.
If gmn = 0, (3.168) becomes the sublinear equation

Am+1,n + Am,n+l - Am,n + pm,n |Am—k,n—l | “ SgnAm—k,n—l = 0: (3196)
where 0 < a < 1.

Theorem 3.43. Assume that p,,, = 0 and

> pij = oo. (3.197)
(i) =(m,n)

Then every solution of (3.196) oscillates.

Proof. Suppose {A,,,} is an eventually positive solution of (3.196). Then A,, , is
decreasing in m, n eventually. Hence A,,, — L > 0 as m,n — co.
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Summing (3.196) in # from n(= N) to o, we have

ZAm+1,i - Am,n + me,t m—k,i—l = <0, (3.198)
i i=n
we rewrite the above equation in the form
Z Am+1,i +Am+1,n - Am,n + me,z m—kyi—l = <0. (3-199)
i=n+1 i=n
Summing (3.199) in m from m(= M) to oo, we obtain
Apnt D D At D D piiAY i <0 (3.200)

j=m i=n+1 j=m i=n+1

Thus

Mg

I

j=m i

PiiA i b (3.201)

n

which contradicts (3.197) if L > 0.
If L = 0, then from (3.197), we can see that

o) o) « 0 0
ik,j—1 Ajj -
0o = Z pij = Z Pij AQ = Z A% = Z Ai,j “
(i,j)=(m,n) (i,j)=(m,n) bJ (ij)=(mn) “bJ (i) =(m,n)
(3.202)
Note that y = 1 — a, then 0 < y < 1. Notice that
Aij > Aij+ Aije > Aprnje + Airnje = 240041, (3.203)
we can get Ay iy < (1/2)A; ;. Thus
l-a _ )
Z Ai»j - Z AiJ Z Z i+k, n+k Z Z mk,j+k
(i,j)=(m,n) (i,j)=(m,n) i=mk=0 j=n+1 k=0
(3.204)
> 9y i 2y
y y
<23 AWt 2 5 A
i=m j=n+l

So, if we can show that >;° A, ,and X% jmntl Al ,j converge, the conclusion can be
drew naturally.
We only discuss the series > j=ntl A j and the next case is similar.
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Notethat]]f{]eZlAm]+1<A <Ay} forj=mnmn+1,. ... Wecan
see forall j = n,n+1,..., ] is finite. Let ]1 = maxj=, |J;|, where |J;| denotes the
number of the elements in it,and j; = min{j | j € J,}, so

i1
ZAmjs}IZAm]+ ZA (3.205)

j=h

Then the series Z;‘;n Aym, j converges to a constant according to (3.200), which con-
tradicts to (3.202).
If pmu = 0, (3.168) becomes the superlinear equation

Am+1,n +Am,n+1 - Am,n + qm,n |Am—k2,nflz |ﬂ SgnAmsz,n—lz = 0) (3206)
where 8 > 1. O
Theorem 3.44. If

ki1
0 < qm,n < (k +l N 1)k2+lz+1 > (3.207)
2t h

then (3.206) has an eventually positive solution.

In fact, Theorem 3.44 follows from Theorem 3.7.
In the following, the result of Theorem 3.40 will be improved.

Theorem 3.45. Assume that (i) holds and

m—1 n—1
D/(B—a) (1-a)/(f—a)
sup AG{ l_[ l_[ (1 - szfq ]+;1ﬁ ¢ qz+;1 l;+;1ﬁ ¢

A€E,m=M,n=N i=m—k, j=n—1

(3.208)

1/n
D/(B-a) (1-a)/(f~a)
/\P ﬁ - ql] - )} <l

where 1 = min{k,, l,}. Then every solution of (3.168) is oscillatory.

Proof. Suppose to the contrary, let {A;;} be an eventually positive solution of
(3.168). As in the proof of Theorem 3.40, set 4 € S(A). Then

/( )/
Amein + A < (1= upin”F g ) Ay (3.209)

Hence

-1)/(— 1-a)/(B—
Apan < (1 —[/lp%gn e “)q( yid a))Am,n = Amnr1

) (B-a) (1— a)/(ﬁ

(3.210)
( Hpm n qm, )Am,n - Am+11,n+r/-
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From (3.174), we have

epg[i;l)/(ﬁ—a)q%);a)/(ﬁ—tx)Am wn-n = ep(ﬂnl /(e Qm,n /(ﬁ_a)Am—kz,n—lz < Amn-
(3.211)
Substituting (3.211) into (3.210), we obtain
/ ~D/(B-0) _(1-a)/(B~
A = (1= 000 _ i)y
(3.212)
By the similar argument of the proof of Theorem 3.40, we can derive
D/(B-a) a)/(f—a)
mn—{ l_[ l_[ ( Mpllj ﬁ“qt] fre
k !
ek (3.213)

1/n
B-a) (1-a)/(f~a)
- epﬁ—q ]+}1 Ditn,j+n )} Am-ton—-

Replacing (3.184) by (3.213), the rest of the proof is exactly the same with the
proof of Theorem 3.40. The proof is complete. |

Corollary 3.46. Assume that (i) holds and

liminf —— U R 60— (1- o),
e k2 i= mzkz j glzp o (1+ )1+a( :
(3.214)
where
(B=1/(B~a) (1-a)/(B~a)
hmmf— Z Z [ R ) (3.215)

mn—
® zlzzmkzjnlz

Then every solution of (3.168) oscillates.

The main idea of Theorem 3.45 is to improve the estimation (3.184). There-
fore this method is also available for the linear equation

Am+1,n + Am,n+1 - Am,n + Pm,nAm—k,nfl =0. (3216)

Theorem 3.47. Assume that = min{k, [}, lim SUp,, e P >0, and

1/n

m—1 n-1
sup A{ 1_[ 1_[ (1 —/\Pi,j — Pi+11,j+7])} <1 (3217)
j=n—1

A€E,m=M,n=N i=m—k j

Then every solution of (3.216) oscillates.
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Corollary 3.48. If (3.217) is replaced by

ﬂ
_ 1+a
l}nrry}lrolof kll %k]%lp,] >(1-4d) taia (3.218)

where a = max{k,l} and

n
d = liminf ﬁ, %k ;54 Dienja- (3.219)

Then every solution of (3.216) oscillates.

Remark 3.49. Equations (3.217) and (3.218) improve the corresponding results in
Chapter 2.

Remark 3.50. Ifk; > k, > 0and 0 < [; < L, then (3.174) becomes
/( )/
Am+l,n +Am,n+1 - mn +9P/5 Dr(fe q(l B “)Am ko1, <0, (3.220)

(ii) becomes

1/n
sup { l_[ 1_[ ( ’\Pzﬁ D/(B- a)%i a)/(B-a ))} <1, (3.221)

A€E,m=M,n=N i=m—k, j=n—
where # = min{k, ;}. Then Theorem 3.40 is also true.
Similarly, we can easily derive the form of Theorem 3.40 for the case that 0 <
kl Skz andll = lz > 0.
If0 <k <k,and 0 <[; <, then (3.174) becomes
/( )/
At + At — A + 0t VE OG0 E g <0, (3222)

and (ii) becomes

m—1 n—1 1/n
sup w{ [T TT (1-apfVEegi e ))} <1,  (3.223)

AEE, m=M, n=N
where # = min{k;,;}. Then Theorem 3.40 is also true.
Example 3.51. Consider the equation
Apiin + Ampi1 — Amn + Am—1,0-2 = 0, (3.224)

we can see that (3.218) is satisfied, so every solution of this equation oscillates. In
fact, sin(7/2)m is an oscillatory solution.
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Next, we consider (3.168) when k, = 0,1, >0 or k; >0, , = 0 and we can get
the following conclusion.

Theorem 3.52. Ifk, =0, I, > 0in (3.168). Assume that (3.172) holds and

n—1
sup 20 [ (1-2aph P g ) <1 (3.225)

AeE,m=M,n=N j=n—1
Then every solution of (3.168) oscillates.
From (3.225), we can drive an explicit oscillation condition.

Corollary 3.53. Assume that k, = 0, I, > 0 in (3.168). Further assume that (3.172)
holds and

1 'S B0 (-a(B-o) 5
liminf — P qm > —————. (3.226)
myn— oo l2] ;lz J »J (1+lz)1+lz

Then every solution of (3.168) oscillates.

When k; > 0, I, = 0, the similar conclusion holds, we omit it in detail here.
By using the inequality

ﬂM:

ﬁ 2 (3.227)

where o > 0, > a; = 1,x; = 0,i = 1,2,...,u, we can consider the partial
difference equation with several nonlinear terms of the form

u
Am+l,n +Am,n+1 - Am,n + Zpi(m: I’l) |Am—k,,n—l, |ai SgnAm—k,,n—li =0, (3228)
i=1

where ay, > a1 > -+ > > 1 > a1 > -+ >0« > 0, Pi(mn) > 0,
i=1,2,...,uonNZ, ki,li € No,i=1,2,...,u

Theorem 3.54. Assume that there exista; >0, a, > 0,...,a, > 0suchthat > a; =
1) z?:I aii; = 1)

limsup [ [ P{(m,n) >0,

MR =]

(3.229)

=

m—1 -1 u 1/n
sup w{ [T T1 (I—AHPZ”(i,j))} <1,
mk j= -

A€E,m>M,n=N i=m—k j nl
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where k = minj<j<, {ki}, [ = min;<;<,{;}, # = min{k,I} > 1, 8 = min{1/ay,...,
1/au}:

E = {A >0]1-21 1_[ Py (m,n) >0 eventually}, (3.230)
h=1

M, N are large integers. Then every solution of (3.228) oscillates.

Proof. Suppose to the contrary, let {A;;} be an eventually positive solution of
(3.228). Then A,y is decreasing in m, n. Hence

Am—kn-1; > Am—?,n—f’ i=1,2,...,u. (3.231)

From (3.227), we have

u
Am+1,n + Am,n+1 - Am,n + Z Pi(m: n)AZi—E,n—T <0. (3232)
i=1
Using (3.227) and (3.232), we have
u
Am+1,n + Am,n+1 - Am,n +0 1_[ P?i(ﬂ’l, l’l)Am,E’n,j <0. (3233)

i=1

The rest of the proof is similar to those in Theorem 3.40. We omit it in detail. The
proof is complete. U

For example, we consider the case u = 3, 03 > 1 > ay > a; > 0. Let

an = o3 — 1 a4 = o3 — 1
P 2(as - )’ T 2 - w)’
(3.234)
a5 = 2(1 - o) (a3 — o) + (o3 = 1) (@2 — 1)
2(as —a1) (a3 — a2) '
Thena; >0,i=1,2,3, 37 a;= 1, % aa; = 1.
Theorem 3.55. Assume that
3
limsup [ [ P{(m,n) >0, (3.235)
M= =1
m—-1 n-1 3 /1
sup w{ (1 —AHPZ"(i,j))} <1, (3.236)
A€E,m=M,n=N i=m—k j=n-I h=1
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where k = min{k;, k», k3}, | = min{l, b, 5}, n= min{k,I} > 1, 8 = min{1/a,,
1/a3,1/as}, M, N are large integers and

3
= {A >0|1-— /\nPZ"(i,j) >0 eventually}. (3.237)

i=1

Then every solution of the equation

3
Am+l,n + Am,nH - Am,n + Zpi(m: n) |Am—k,,n—li |al SgnAm—k,,n—Ii =0 (3.238)

i=1

is oscillatory.
From (3.236), we can obtain the following explicit oscillation criterion.

Corollary 3.56. Assume that (3.235) holds. Further, assume that

m—1 n—1
.. .. Oa®
mgg k3 1%}( nZzﬁl (i, )P (i, j)PS (i, ) > o (3.239)

where a = max{k,1} = 1. Then every solution of (3.238) oscillates.

3.4. Existence of oscillatory solutions of certain nonlinear PDEs

Consider the partial difference equation
Al AL (X = CXmn—t) + f (M1, Xz n—q) =0,  m,n € No, (3.240)

where ¢ # 0 is a real constant, h,7,k,] € N, 7,06 € N, A is the forward dif-
ference operator defined by AyXmn = Xmt1.0 — Xmn> DMaXmn = Xmps1 — Xmn and
Afnxm,n = Am(AI;ln_lxm,n)) A?,qu,n = Xm,n> A;xm,n = An(A;_lxm,n)) Agxm,n = Xm,n>
f € C(Ny X Ny X R,R). Throughout the section, we assume that there exists a
continuous function F : Ny X Ny X [0, ) — [0, o) such that F(m, n, u) is nonde-
creasing in u and

| f(m,n,u)| < F(m,n,lul), (m,n,u) € Ngx NyXxR. (3.241)
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A solution of (3.240) is a real double sequence defined for all (m,n) € {(m,n) |
m = min{M — k,M — 7}, n = min{N — , N — ¢}} and satisfying (3.240) for all
(m,n) € {(myn) | m =M, n> N}, where M,N € Nj.

The definition of oscillatory solutions of (3.240) is same with Chapter 2.

Let X be the linear space of all bounded real sequences x = {x,,}, m = M,
n > N endowed with the usual norm

lxll = sup |xmul, (3.242)
m=M,n>=N

then X is a Banach space.

Let Q be a subset of Banach space X. Q is relatively compact if every sequence
in Q has a subsequence converging to an element of X. An €-net for Q is a set of
elements of X such that each x in Q) is within a distance € of some member of the

net. A finite €-net is an €-net consisting of a finite number of the elements.

Lemma 3.57. A subset Q) of a Banach space X is relatively compact if and only if for
each € > 0, it has a finite €-net.

Definition 3.58. A set Q of Banach space X is uniformly Cauchy if for every € > 0
there exist positive integers M; and N, such that for any x = {x,,,,} in Q

| Xmm = X | < €, (3.243)
whenever (m,n) € D', (m’,n’) € D', where D' = D} U D, U Dj,

D} = {(m,n) | m >Mj, n >N}, D, = {(mn) | M <m< M, n>N},

Dé = {(m,n) | m >M1, N<n SN]}.
(3.244)

Lemma 3.59 (Discrete Arzela-Ascoli’s theorem). A bounded, uniformly Cauchy
subset Q of X is relatively compact.

Proof. By Lemma 3.57, it suffices to construct a finite €-net for any € > 0. We
know that for any € > 0, there are integers M; and N; such that for any x € Q

E ’ 4 4 ’
| X — X | < > for (m,n) € D', (m',n’) € D'. (3.245)

Let K be a bound of Q, that is, [|x]| < K, x € Q. Choose an integer L and real
numbers y; < y,<- -+ < yr such that y; = —K, yp = K and

€ .
’yi+1_yi| <E, i=1,2,...,L—1. (3246)
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We define a double sequence v = {v,,,}, m > M, n > N as follows: let v,,,, be
one of the values {y1,y2,...,y1} for M < m < M;, N < n < Ni;let vy, =
Vmn, for (m,n) € Dj; let vy, = vy for (m,n) € Dj; let vy, = vayn, for
(m,n) € Dj. Clearly, the double sequence v = {v;,,}, m > M, n > N belongs to
X. Let Y be the set of all double sequences v defined as above. Note that Y includes
LMi=MFDN=N+1) gyuch double sequences.

We claim that Y is a finite €-net for Q. For any x in ), we must show that
Y contains a double sequence v which differs from x by less than € at all positive
integer pairs (m,n), m > M, n > N. For each M < m < M;, N < n < Nj, choose
Vmu IN A Y1, ¥2,..., yr} such that

| Xmn — Vi | = lrgjigL | X — i . (3.247)

Let

Vmn = Vm,Ny> (m) f’l) € Dé)
Vi = Vs (m,n) € D3, (3.248)

Vi = VMmN, (m,n) € DI

Hence, v = {vi}, m = M, n = N belongs to Y. In view of (3.246) and (3.247),
we have

Xoan — Vum | < % M<m<M;, N<n<N. (3.249)
For (m,n) € D5, (3.241) and (3.249) imply that

|xm,n - Vm,n| = |xm,n — Vm,N, | = |xm,n - Xm,N, | + |xm,N1 — Vm,N, | <E€E.
(3.250)

For (m,n) € D3, (3.241) and (3.249) imply that

|xm,n - Vm,n| = |xm,n - VMl,n| =< |xm,n - le,n| + |xM1,n - VMl,n| <E€.
(3.251)
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For (m,n) € Dy, (3.241) and (3.249) imply that

| Xmn = Vi | = [ %mn = varon | < [%mn = xan3, | + [ 2008, = vann, | <€
(3.252)

Equations (3.249), (3.250), (3.251), and (3.252) imply that ||v — x|| < €. The proof
is complete. U

From the above we obtain the following Schauder’s fixed point theorem for
the difference equations.

Lemma 3.60. Suppose X is a Banach space and Q) is a closed, bounded, and convex
subset of Q. Suppose T is a continuous mapping such that T(Q) is contained in Q,
and suppose that T(Q) is uniformly Cauchy. Then T has a fixed point in Q.

Theorem 3.61. Suppose ¢ € (0, 1] and there exist constantsa > 0, b > 0and d > 0
such that

ZC (1/2)(i/k+j/T) h+a]r+hF(ZJ de (172)((i=7)/k+(j— a)/l)) < 00, (3.253)
1 j=1

[\/J8

i

Then (3.240) has a bounded oscillatory solution { X, } such that

2 2
X = Ky W2 m/ken/l ( cos ?m cos -1 + 0(1)) as m,n — oo, (3.254)

where K is some constant.

Proof. By (3.253), we can choose positive integers M, N sufficiently large such that

i i DK/ hea jrebp (i de1/2(G=0/k =0/ g (3.255)
i=M j=N
and so that
M = min{M — k,M — 1}, N = min{N - N — ¢} (3.256)
satisfy
Lyec, ANt (3.257)

ak
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For every pair of positive integers p,q € N, we define a set S, ; by

Spg =16 j) 1, jEN, i=p, j=q} (3.258)

Let X be the linear space of all bounded real sequences x = {x,,}, m > M,n> N
endowed with the usual norm

Ixll = sup |Xmuls (3.259)
m=M,n>=N

and let

Q- {x €X | [xmn] < gc(l/z)(m/kJrn/l)m*(Ha)n—(Hb)’ m=M n> N}

(3.260)

with the topology of pointwise convergence, that is, if {x“}, u = 1,2,... is a se-
quence of elements in (), then {x*} converges to x in ) means that for every
(m,n) € SunN, limy—.w Xjp, = Xmn. Thus Q is a closed, bounded, and convex
subset.

For every x € Q, we associate the function X : Sy, — R defined by

= gc(l/zx’”/“””) cos Z%m cos zTﬂn = > W ki (3.261)
ij=Li=j

Notice that

]

)i+
z W )(l+1)xm+ik,n+jl
ij=Li=j

IA
I [\/]8

z —(1/2) (H—])dC(l/2)((m+1k)/k+(n+]l)/l)(m + lk) 1+u)(n +]l) (1+b)

b
) m/kany M7 n
ak bl’

IA

w\&

(3.262)

form> M, n > N.
Thus we see that for each x € Q, ¥ is oscillatory, and moreover,

Emn — Fombond = X | Zmn | < dcV/D/ken/l), (3.263)
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Define an operator L : QO — Q by

(_1)h+r+1
(h—1Dl(r—-1)!
Ly, = - X S(i-m+h-1)"V(G-n+r-1rD
’ i=m j=n
X f (i, j> Xi-1,j-0)> m=M,n=N,
LxmNs otherwise,
(3.264)
where n™ denotes the generalized factorial given by n'™ = n(n—1) - - - (n—m+1).

Claim 1. L(Q) C Q. For every x € Q and m > M, n > N, we have

| L | < !

S h—Dir—1)

X > S(i-m+h=1)"V(G—n+r—1D)"Vx|f(i,j,Xirj0) |

i=m j=n

I
™e
Mz

lhlrlFl]|x,T]g|

Z i l Sr— lF(l ] dC(I/Z i—7)/k+(j— o)/l))

1+a)n (1+b) Z Z lh+a ir+b *(1/2 (t/k+j/l)F(i’j’dC(l/z)((ifT)/kJr(jfU)/l))

i=m j=n

< éc(l/z)(m/kﬂt/l) m—(1+a) l’l_(Hb).

3
(3.265)

Claim 2. If {x"} converges to x in (), then for each pair of integers s = M, t = N,
we have lim,, . X, = X,. For every € > 0, there exist positive integers M, N| with
M, = Nj such that

TS (s ik o jpy 0 < €
ij=M,+1,i=j 4

(3.266)
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For these ¢ and M;, N, there exists a positive integer N* such that for every u >
N*andeveryi € {s,s+k,...,s+(M; — D)k,s+ Mk}, j € {t,t+1....,t + (N, —
1)I,t+ NilI}, we have

K — x| £ ———c(WVDMEND 3.267
=] < 53 (3.267)
Then for every u > N*, we see that
o0
— v _ 1/2)(i+
| %5 — Xot| = Z TR (o Xstik,t+jl = Xesikt+l)
ij=1,i=j
M,
1/2)(i+
= Z ~r J)( Xsvik,t+jl x5+ik>t+ﬂ)
ij=1,i=j
(o)
+ D WD (i = Xsvikerjt) (3.268)
i,j=M,+1,i=]
M,
—(1/2)(M+N;
< D AN | it jt — Xsvikeeji |
ij=1,i=j
> d
+2 Z (1/2)(S/k+t/l)(s+lk) (14a) (t+]l) (1+b) <e
i j=M+1,i=]

Claim 3. L is a continuous operator. Suppose {x*} converges to x in Q. We will
prove that Lx" converges to Lx in (), that is, for every m = M, n = N, we claim
that lim, . Lx}j, , = Lxnu. Let € > 0 be given. By (3.245), there exist M, = M,
N, > N such that

Z Zlh 1ar— 1F (i, j,dc (1/2)((i-7)/k+(j— o)/l)) €

i=Mp+1 j=n 6
(3.269)

z Z l-hfljr—lF(i,j,dC(l/Z)((iff)/k+(jfo)/l)) < E‘

m j=Nr+1 6

Since f is continuous on {M,M + 1,..., M} X {N,N + 1,...,N>} X [-d,d], f
is also uniformly continuous there. From Claim 2, there exists a positive integer
N** such that for every u > N**, and everyi € {M,M + 1,...,M, — 1,M,},
jEIN,N+1,...,N, — 1,N,}, we have

C o €
Flodiat ) = Flodimasea) | < 5
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Then, for every u = N**, we have

|sz1,n - Lxm,n| = Z Z ih_ljr_l }f(i)j)fzy—r,j—a) - f(i’j)ii*‘r,jfo) |

i=m j=n

M, N,

< > 2GR ) = i o Finjo) |

i=m j=n

+ 2( Z Z ih*ljrle(i,j’ dC(l/Z)((ifT)/k+(jfo')/l))

i=My+1 j=n
+ Z Z l'hljr1F(i’j,dc(l/2)((iT)/k+(jJ)/l))) <&

i=m j=N+1

(3.271)

Claim 4. L(Q) is uniformly Cauchy. The proof is similar to Claim 3, so we omit it
here.

Now, by Lemma 3.60, L has a fixed point w € €, that is,

(71)h+r+l
M= =Dl - 1!
X > Si-m+h=D"VG—n+r—1D)"Vf(i,j,Wirjo).
i=m j=n
(3.272)
Since
Wm,n - CWm—k,n—l = Wmn> (3273)
we have
Al AL (Wi = Wnion-i) + f (M1, Win—rng) = 0, (3.274)

which implies that {w,, ,} is an oscillatory solution of (3.240). From (3.261), W, »
satisfies (3.254). The proof is complete. ]

Theorem 3.62. Let ¢ > 1. If there exist constants a > 0, b > 0 and d > 0 such that

Z ih+ajr+bF(l~,j’dC(l/Z)((i—‘r)/kJr(j—a)/l)) < oo, (3.275)
1j=1

\r

1
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then (3.240) has an unbounded oscillatory solution {Xp,,} such that

2 2
X = Ko cW2m/ktn/l ( cos ?mcos o + 0(1)) as m,n — oo, (3.276)

where K, is a constant.

Proof. By the assumption, we can choose positive integers M, N large enough so
that

Z Z 1h+a r+hF 1 ] dc (172)((i=7)/k+(j— a)/l)) < éc(1/2)(m/k+n/l) (3277)
Sy 3
i=M j=N
and so that
M = min{M - k,M — 1}, N = min{N - LN — ¢} (3.278)
satisfy
By S vl (3.279)
ak ’ bl ’

Let Q) be defined as in the proof of Theorem 3.61. For each x € (), define X by

- d c2) (k) (12

21 2 > L
COS —— M COS —n + z (’“)xmﬂ-k’nﬂl. (3.280)

k ! i,j=0,i=j

Thus we can prove that X, , is oscillatory, X, — (1/¢)Xmtknsl = Xmyn and [Xp,,| <
dC(l/Z)(m/kJrn/l)‘

Next define an operator L : O — Q by

(_1)h+r+1
Ce(h=D(r = 1)
X z Z i-m—k+h-1""D
Ly = 1 i=m+k j=n+l
’ X(j—n—Il+r—-1)0D
X f (i, j» Xi-1,j-0)> m=>M, n=>N,
L0, otherwise.
(3.281)

The remainder of the proof is similar to the proof of Theorem 3.61 and we omit
the details here. O
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Theorem 3.63. Suppose ¢ < 0 and let A = —c > 0. If there exist constants a > 0,
b >0, andd >0 such that

Z Z lh+a ,+bF l ],d)t (172)((i=7)/k+(j—0)/1) ) < 00, (3.282)
i=1 j=1

then (3.240) has an oscillatory solution {x,, } such that

2
Xy = KA V/Dm/ken/ ( cos %m cos Tﬂn + o(l)) as m,n — oo, (3.283)
or
2
X = K \1/2)(m/ktn/l) ( cos ?ﬂm cos %n + 0(1)) as m,n — oo, (3.284)

where Kz and Ky are constants.

In fact, we define

)

d Vi 2 "
T = 5/1(1/2>(m/k+n/l) cos Trmcos - Z (_/\)7(1/2)(1+])xm+ik,n+jl)
ij=1,i=j
(3.285)
or
. a2 mikenity . 2T m —(1/2)(i+)
T = 3 cos == cos 71 — > (=M D Xt 1o
ij=li=j
(3.286)
thus it satisfies Xy, + AX—kn—1 = Xm,n, define an operator L : Q — Q as Theorem

3.61, we can prove Theorem 3.63.
As an application of the above results, we consider the following equation:

Ah A, (xmn mefk,nfl) + PmpnXm—rn—0 = myn> (3.287)

where p,,, and g, are positive real double sequences. Let f(m, 1, Xp—rn-5) =
PmnXm—1,n—c —qm,n- From Theorems 3.61-3.63, we obtain the following corollaries.

Corollary 3.64. Suppose ¢ € (0,1] and there exist constantsa >0, b > 0, and d > 0
such that

Z C—(l/z)(i/k+j/l)l-h+ajr+b( |pi’j |dc(1/2>((i—r)/k+(jfv)/l> + |q;;; |) < 0. (3.288)
1 j=1

M8

i
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Then (3.287) has a bounded oscillatory solution {x,, ,} such that

2 2w
X = Ky W2 m/ktn/l ( cos - cos —-n + o(l)) asm,n — oo, (3.289)

where K is some constant.

Corollary 3.65. Let ¢ > 1. If there exist constants a > 0, b > 0, and d > 0 such that

Zlh+a r+h |p |dC(1/2)(1 7)/k+(j—0)/1) + |q | < oo, (3290)
1 j=1

Mz

i

then (3.287) has an unbounded oscillatory solution {x,, ,} such that

2 2
X = K, c(V/2) m/kn/l) ( cos ?ﬂmcos Tﬂn + 0(1)) asm,n — oo, (3.291)

where K, is a constant.

Corollary 3.66. Suppose ¢ < 0 and let A = —c > 0. If there exist constants a > 0,
b>0,andd >0 such that

uMg

z h+a r+b |P |dl (W2 (=1)/k+(j=0)D) 4 |Qz]| 0, (3.292)

then (3.287) has an oscillatory solution {x,,,} such that

2
Xy = KA V/D m/ken/ ( cos %m cos Tﬂn + o(l)) asm,n — oo, (3.293)
or
2
X = K A2 m/kn/) ( cos %m cos %n + 0(1)) as m,n — oo, (3.294)

where Kz and Ky are constants.

Example 3.67. Consider the equation

1
AP AT (X — Xm—2n-2) + P arctanXpy_om-3 =0, m=>=2, n=>3,
(3.295)

where a, 8 are real numbers.
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We only notice that ¢ = 1 and F(m,n,u) = (1/m*nP)u, and here take 0 < a <
Lo<b<l,anda=h+1,f =r+1,then (3.253) comes to

> ittt —d < oo, (3.296)
1j=1 ]

M8

i

By Theorem 3.61, (3.295) has an oscillatory solution which satisfies (3.254).

3.5. Existence of positive solutions of certain nonlinear PDEs
3.5.1. Existence of positive solutions for the neutral-type equation

We consider nonlinear partial difference equations of the form
AZArm (Xm,ﬂ - mefk,n—l) + (_ l)h+r+1pm,nf(xm—r,n—g) =0. (3297)

With respect to (3.297), throughout we will assume that
(i) c € R hr,k,1 € N1, 1,0 € N, {prunt o, nen, is a double sequence of
real numbers,
(ii) f € C(R,R) is nondecreasing, x f(x) > 0 for any x # 0, and | f(x)| <
lf(D)las x| <[yl
Let § = max{k, 7}, # = max{l, 0} be fixed nonnegative integers.

Theorem 3.68. Assume that 0 < ¢ < 1, pn = 0, and that there exists a positive
double sequence {Ay,n} such that for all sufficiently large m, n

Then (3.297) has a positive solution {x, ,} which satisfies 0 < Xyn < Ay
Proof. Let X be the set of all real-bounded double sequences y = { ¥} with the

norm ||yl = SUP 15 1. n o [ ¥mn| < 0. Then X is a Banach space. We define a
subset Q) of X as

Q={y={ymunt €X10= ymn <1, m=my, n=nel, (3.299)
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where a partial order on X is defined in the usual way, that is,
X,y € X, x < y means that X, < Y, for m = mo, n = ny. (3.300)

It is easy to see that for any subset S of (), there exist inf § and sup S. We choose
my > my, np > ng sufficiently large such that (3.298) holds. Set

D = Ny, X Ny, Dy = Ny, X Ny,
D, = Nm() X an\Dl, Ds = Nm] X Nno\D17 (3301)
Dy = D\(D) U D, UDs).

Clearly, D = D; U D, U D3 U Dy. Define a mapping T : Q — X as follows:

C%ymknl‘f' Zz(z—m+r—1)

mi=m j=n r—1

i—n+h—1
X (] ) pijf Aicrj-oYi-rj-o)s (m,n)€ Dy,

h-1
Tym,n = ET}’Vm,n + (1 - ﬁ)) (m’ Tl) € Dy,

n ny
ﬁTym,ﬂl-'—(l_ﬂ): (m’n)€D3’

mq my
Tymlm (1_ o ); (m,n) € Dy

Lm 1 min;
(3.302)

From (3.302) and noting that y,,, < 1 we have

m,n

ke 1 & & (fi-m+r—1
OsTym,ns0M+ ZZ(I mer )
A Am’” i=m j=n r—1

(jn+h1 (3.303)
X

ho1 )pi,jf(li_f,j_g) <1 for (m,n) (S Dl,

0<Tymu=<1 for(m,n) € D, UDs;U Dy.
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Therefore, TQ) C Q. Clearly, T is nondecreasing. By Knaster’s fixed point theo-
rem—Theorem 1.9, there is y € Q) such that Ty = y, that is,

C)mek,nfzymik’nil N /\1 Z Z (i —-m+r— 1)

Am,n N i j=n r—1

j—n+h—1
X (] ) pijf Ai—rj-oYi-r,j-¢)» (m,n) € Dy,

h-1
Imn =1 LTy, o+ (1 - ﬁ), (m,n) € Dy,
ny np
ﬂT}’m,nl + <1 - ﬂ)) (m) n) S D3)
mi my
mn mn
T Yy ny + (1 - ), (m,n) € Dy.
ming min;
(3.304)

It is easy to see that y,,, > 0 for (m,n) € D, U D3 U D4 and hence y,,,, > 0 for all
(m,n) € Dy. Set

Xmpn = Am,n}’m,m (3305)

then from (3.304) and (3.305) we have

o w [i—-mtr—1
xm,n :me—k,n—l+ Z Z( r—1 >

i=m j=n

j—n+h-1
X (] Z_ 1 ) pijf(Xi-rj-), (m,n) € Dy,

(3.306)

and so

AﬁArm (xm,n - me—k,n—l) + (_1)r+h+1pm,nf(xm—r,n—0) =0, (m,n)e€ Dy,
(3.307)

which implies that {x,, ,} is a bounded positive solution of (3.297). The proof of
Theorem 3.68 is complete. O



194 Oscillations of nonlinear PDEs

Inequality (3.298) is not easy to verify, but we can derive some explicit suffi-
cient conditions by choosing different {A,,,} in (3.298) for the existence of posi-
tive solutions of (3.297). For example, by choosing A, = a™*" or A, = 1/mn,
respectively, we obtain the following results.

Corollary 3.69. Assume that 0 < ¢ < 1, pn = 0, and that there exists a positive
number a such that for all sufficiently large m, n

e l - < (i-m+r—1\(j—-n+h-1 o
ZZ( ro1 )(J o1 )Pajfw )<1.

(3.308)

Then (3.297) has a positive solution { X, } which satisfies 0 < X, < a™*".

Corollary 3.70. Assume that 0 < ¢ < 1, pmy = 0, and that for all sufficiently large
m, n

e [i—mtr—1
“m— k)(n—l)+m ZZ( r—1 )

j—n+h-1 1 -
X( h-1 )P”f ((i—r)(j—a))_l

Then (3.297) has a positive solution { Xy} which satisfies 0 < X, < 1/mn.

(3.309)

<

Theorem 3.71. Assume that ¢ > 1, pym, < 0, and that there exists a positive double
sequence { A} such that for all sufficiently large m, n

Am+k,n+l_ 1 i i (l_m_k+r_l)
r—1

C/\m’" Clm’” i=m+k j=n+l

j—n—I+h-1
X (J h—1 )Pi,jf(lir,ja) <L

(3.310)

Then (3.297) has a positive solution {Xp,,} which satisfies 0 < Xy < A

Proof. Let X and Q be the sets as in the proof of Theorem 3.68. We define a partial
order on X in the usual way. It is easy to see that for any subset S of (), there exist
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inf § and sup S. We choose m; > my, n; > ng sufficiently large such that (3.310)
holds. Set

D = Ny, X Ny, Dy = Ny X Ny,
DZ = Nmo X an\Dh D3 = le X Nno\Dl) (331])

Dy = D\(D] uD, U D3)
Clearly, D = Dy U D, U D3 U Dy. Define a mapping T : Q — X as follows:

( C)Lm+k,n+l
1 Vm+k,n+l
m,n

1 i i (i—m—f:—r—l)

CAm’" i=m+k j=n+l r

j—n—I+h-1
X (] ) pijf Aierj-oYi-rj-0)» (m,n) € Dy,

h-1
Tym,n =
ﬁT}’ml,n + (1 - ﬁ)) (m) n) € DZ)
n n
ﬁTym,n1 + (1 - ﬁ) (m,n) € Ds,
m my
mn mn
T Yy + (1 - ), (m,n) € Dy.
1M1y mimny
(3.312)

From (3.312) and noting that y,,, < 1 and p,,, < 0, we have

Amtlen+l 1 S o< (i-m—k+r—1
02 Ty < ket 55 (K

CAm’" MM j—mtk j=n+l

- _ 3.313
X <] nh iih 1) pijf(Airj o) <1 for(m,n)e Dy, ( )

0<Tymn=<1 for(m,n) € D, UDsU Dy
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Therefore, TQ C Q. Clearly, T is nondecreasing. By Knaster’s fixed point theorem
there is y € Q such that Ty = y, that is,

i CAm+k,n+l
Ym+k,n—1
Am,n
1 i i (i—m—k+r—l>
CAm’n i=m+k j=n+l r—1

j—n—I+h-1
X (] ) pijf Aicrj-oYi-rj-0)» (m,n) € Dy,

Ymn = k-1
lTyml,n + (1 - ﬁ)) (m: 1’[) € D2;
n np
ﬁTym,fh + (17ﬁ)) (m,i’l) €D3,
my mp
mn mn
Tymbnl + (1 - )a (m,n) € Dy.
L M1y miny

(3.314)

It is easy to see that y,,,, > 0 for (m,n) € D, U D3 U D, and hence y,,,, > 0 for all
(m,n) € D;. Set

Xmn = Am,n}’m,n: (3.315)

then from (3.314) and (3.315) we have

1 l « <« [i-m—k+r—1
xm,n—;xm+k,n+l_z'z Z( r—1 )

- lth-1
X (J nh -1 )piajf(xir,ja)> (m, 7’1) (S Dl)

(3.316)

and so

AﬁA:n (xm,n - me—k,n—l) + (71)r+h+1pm,nf(xm7‘r,n—a) = 0) (ma 1’[) € D1,
(3.317)

which implies that {x,, ,} is a bounded positive solution of (3.297). The proof of
Theorem 3.71 is complete. O
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By choosing Ay, = @™ and Ay, = 1/mn, respectively, we can obtain the
following explicit sufficient conditions for the existence of positive solutions.

Corollary 3.72. Assume that ¢ > 1, pn < 0, and that there exists a positive number
a such that for all sufficiently large m, n

ak” m—k+r—1
T am+n z Z( r—1 )

¢ i=m+k j=n+l

—n—l+h-1 .
% (] h—1 )Pi,jf(a’“ )<L

(3.318)

Then (3.297) has a positive solution {xm,,} which satisfies 0 < Xy, < a™*".

Corollary 3.73. Assume that ¢ > 1, ppm < 0, and that for all sufficiently large m, n

mn mn m—k+r—1
cm+k)(n+l) ¢ Z z( r—1 )

i=m+k j=n+l

(3.319)
j—n—I+h-1 ( 1 )
X iifl—————=) <L
( -1 )G
Then (3.297) has a positive solution {Xm,} which satisfies 0 < X, < 1/mn.
Example 3.74. Consider the partial difference equation
AnDXomn = PrmnXpoi g1 =0, m=2,1n>2, (3.320)
where
dmn+2m+2n+1)(m—1)?3(n—1)¥3
Pmn = ( )( ) ( ) . (3.321)

(m+1)2(n+1)2m2n?

We take ¢ = 0, h = r = 1, f(x) = x/*, 7 = ¢ = 1 in Corollary 3.70. Obviously,
conditions of Corollary 3.70 are satisfied for (3.320). By Corollary 3.70, (3.320)
has a positive solution {xy,,}, which satisfies 0 < x,,, < 1/mn. In fact, {xp,} =
1/m?n? is such a solution of (3.320).
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3.5.2. Existence of nonoscillatory solutions for the neutral-type equation

In this section, we consider the existence of nonoscillatory solutions of the non-
linear partial difference equation of the form

ACAY (Y + CYm—ten-1) + F(1, 1, Yiu—rn—q) = 0, (3.322)

where h,7,k,] € N1, 7,0 € Ny, c € R. F: Ny X Ny X R — R is continuous.

Theorem 3.75. Assume that ¢ + —1 and that there exists an interval [a,b] C R(0 <
a < b) such that

Z Z (m)"=D (52)h=D) sup | F(m,n,w)| < . (3.323)

m=mqy n=ngy a,b]

Then (3.322) has a bounded nonoscillatory solution.

Proof. The proof of this theorem will be divided into five cases in terms of c. Let
X be the set of all bounded real double sequence y = {yn}, m = M, n = N with
the norm [ y|l = SUP,opr pan [Ymnl < 0. X isa Banach space. We define a closed,
bounded, and convex subset ) of X as follows:

Q={y={ymnt €Xla<ymn<b, m>=M, n>N} (3.324)

Case 1. For the case —1 < ¢ < 0, choose m; > M, n; > N sufficiently large such
that m; — max{k,7} > M, n; — max{/,o} > N and

(b -
mzm"%m“wg |Fli o] < X000
(3.325)
Set
D= {Gmn) [ m =M, n=zNj, Dy = {(m,n) | m=my, n=m},
Dy = {(m,m) | M < m <, n>m}, Dy = {(m,n) | m>m, N<n<mn},
Dy = {(mn) M <m<m,N<ns<m}
(3.326)

Clearly, D = D; U D, U D3 U Dy.
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Define two maps T7 and T; : QO — X by

’m — CVm—k,n—1> (m,n) € D,

2
Ty Ymn = - ?yml,n, Em,n; IS gz,
1 Ymn,» m,n) € D3,
LTt Yiyms (m,n) € Dy.

(_1)r+h+l > (1)
CEN TSP

x> (G-—n+h-1)"VE@G,j,yirj), (mmn)e€ D,
TZym,n =7 j=n

T2Ymns (m,n) € Dy,

Toymm» (m,n) € Ds,

MT2ym1,np (m, 11) € Dy.
(3.327)

(i) We claim that for any x, y € Q, Tix + Toy C Q.
In fact, for every x, y € Q and m = m,, n = n;, we get

Tlxm,n + szm,n

(c+)(b+a) 1
= 2 bt Tt )

X (i—m+r—D" D> (G—n+h-1)"Y sup |F@,j,w)

i=m j=n we|[a,b]
- (c+1)(b+a) b+ (c+1)(b—a) 0
2 2
(3.328)
Furthermore, we have
Tlxm,n + lem,n

(c+D)(b+a) 1

= 2 D)

x> (i-m+r-DVY(GG—n+h-1)"Y sup |F@,j,w)|
i—m j=n we|a,b]
tDbra)  (c+Db-a)

2 2
(3.329)
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Hence
a < TixXmp + Toymn < b for (m,n) € D. (3.330)

Thus we have proved that T1x + T,y C Q for any x, y € Q.
(ii) We claim that T} is a contraction mapping on Q.
In fact, for x, y € Q and (m, n) € D;, we have

!Tlxm,n - Tl)/m,n| =< _C|xm7k,nfl - ymfk,nfl| < —cllx - )/|| (3.331)
This implies that
[|Tix — Tiy|| < —cllx = yl. (3.332)

Since 0 < —c < 1, we conclude that T} is a contraction mapping on .

(iii) We claim that T is completely continuous.

First, we will show that T, is continuous. For this, let y(”) ={ yﬁ,l',)n} € Q be
such that y,(ﬁ)n — Ymnasv — oo, Because Qis closed, y = {ymn} € Q. Form = my,
n > n;, we have

| T2y£rlz/,)n = T2Ymn |

<

m+r—1)00 > (j—n+h-1)"D

j=m

1 <

X (i juyi o) = Flis jo Yierj-o) |
(3.333)

Since
(l -—m+r— 1)("71)(] - n+h - 1)(h71) X |F(1>])yz(z)r,]—cr) - F(irj)yi—‘r,j—lf) |

< ir—ljhfl(|F(i)j,yi(r)1,j_g) | + |F(i, j, Yir,j-o) |)

<2i" 711 sup |F(i, j,w)|
we|a,b)

(3.334)
and that IF(i,j,yﬁf)T,j,a) — F(i, j, yi—r,j—o)| — 0 as v — oo, in view of (3.325)
and applying the Lebesgue dominated convergence theorem, we conclude that
lim,—e || T y(") — T} = 0. This means that T5 is continuous.
Next, we will show that T,Q is relatively compact. For any given ¢ > 0, by
(3.323), there exist M| > m; and N; > n; such that

9]

1 < £
- - i+r—10D i+h—-1)"D gy F(i,j,w)| < <.
(r—1DI(h - 1)!1-:%( ) ]g\:l](] ) we[fb]' 5wl 2

(3.335)



Existence of positive solutions of certain nonlinear PDEs 201

By (3.323), we have

o Nj+1
> > ) VmB Y sup |F(m,n,w)| < . (3.336)
m=mgy n=n, we(a,b]

Hence, there exists an M’ > M, such that

N +1
1
- i+r—1)0b +h-1)"Y sup |FG,i,w)| <e
(r— DA 1)1/ Z( 2 Jop, [FGjw]
(3.337)
Similarly, there exists N’ > N such that
1 M+1 0
- i+r=1D0D N (G+h-1D"D sup |FG,j,w)]| <e.
Gy : ]zN ! 2, [FGhwl
(3.338)

Then, for any y = {y,,} € Q, when (m,n), (m’,n’") € {(m,n) : m=M,, n=N,},

| szm,n - TZ}’m',n’ |

1 . .
- mié(l‘m+r_1)< 1)

X2 (G =n+h =D |F (i, j, yicej-) |

i=n

1 > r—
+mi;( —m+r—10D

X > (j=n+h=1"Yx|F(,j,yirj-0) |

i=n’

1 o )
Sm;(lfrrwrfl)( 1

1
X § —n+h-1)0rD F(i, j, APy
= n(] " ) wseufb] |FGjow)] = Di(h—1)!

X Z(i—m+r—1)(”1)2(j—n+h 1)h-D sup |F(i, j,w)|

P i—n we|a,b]

(3.339)
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When (m,n),(m',n") € {(m,n) :m = M;, nj <n < N; + 1}, we have

1 o0
Z(i— m+r—1)0"b

| T ymn = Toymow | < ml

=m

N
X > (j=n+h=1"Dx|F(i,j,yirjo) |
- (3.340)
1

BTNV Di+r =1

=M

N
X > (j+h=1"D sup |F(i,j,w)| <e.

j=m we|a,b]
Similarly, when (m, n), (m’,n") € {(m,n) : m;y <m < M, +1, n > N}, we have
| Taymmn — Toymew | <e. (3.341)

Let

Dy = {(mn) |m>M;, n>N},  Dj={(mn)|m <m=<M,n>N]},

Dé = {(m,n) I m>M, n <n SNI}.
(3.342)

Then
| Toymn — Toymw | <&, for (myn),(m’,n") € D =D;u DU D;. (3.343)

This means that T, is uniformly Cauchy. Hence, by Lemma 3.59, T>Q) is relatively
compact. By Theorem 1.14, thereisa y = {ym,} € Qsuchthat Ty y + Toy = y.
Clearly, y = {ymn} is a bounded positive solution of (3.322). This completes the
proof in this case.

Case 2. For the case ¢ < —1, by (3.323), we choose m; > M, n; > N sufficiently
large such that

—%mz @D 2 (" sup [FGyj,w)| <

i=m j=m we|[a,b]

(c+1)(b—a)
2c '
(3.344)
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Define two maps mapping T} and T : Q — Q by

((c+Dath) %y(m+k,f’l+l)> (m,n) € Dy,

2c
Tl}’m,n =9 leml’”’ (m,n) € Dy,
lem,np (m, T’l) S D3,
‘Tl}/ml,nly (m, 1’!) S D4.
(_1)7+h+1 *

m+r—1)0

c(r = Di(h = 1)! i:Zm(i - (3.345)

x > (j-n+h-1)"1D

j=n+l
TZym,n = xF i) b) i—T,j—0)> (m) 71) S Dl)
J> Vi1,
TZyml,n) (ms n) S DZ)
TZym,np (m) I’l) S D3>
\TZ}’ml,np (m, 71) € Dy.

The rest of the proof is similar to that of Case 1 and it is thus omitted.

Case 3. For the case 0 < ¢ < 1, by (3.323), we choose m; > myg, n; > ng sufficiently
large such that

; < A\ (r—1) ol - (h—1) L. w
(r—D!(h—-1)! i:zml(l) j:ZnI(J) Wsel[lfb] |F(i, j,w)| < : )
(3.346)

Define two maps mapping T} and T : Q — Q as in Case 1, the rest of the proof is
similar to that of Case 1 and thus it is omitted.

Case 4. For the case ¢ > 1, by (3.323), we choose m; > my, n; > ng sufficiently
large such that

)

1 D) . - 1)(b-
c(r—1)!(h—1)11.:zml(’)” DY sup [FGy j,w) | clezDbma) ;(C @,

j=m we|a,b)

(3.347)

Define two maps mapping T} and T5 : Q — Q as in Case 2, the rest of the proofis
similar to that of Case 1 and thus it is omitted.
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Case 5. For the case ¢ = 1, by (3.323), we choose m; > myg, n; > ng sufficiently
large such that

S < . b—
o 2 00 X (0 s (RG] < C

Ti=mit+k j=ni+l wel[a,b]

(3.348)
Define a mapping T': QO — Q by

(a+b N (_1)r+h+1
2 (r—D!(h—-1)

) m+2uk—1

x> > (i—-m+r-1rY

u=1 i=m+Qu—1)k

) n+2vi-1

TYmn = 1 x> > (j-n+h-1)"D (3.349)

v=1 j=n+Q2v-DI

XF(i,j,)/i—T,j—o)) (m’ n) € Dl)
le}’n],ﬂ) (m) 7’1) S DZ)
Tl)’m,nl) (m) Tl) S D3>

LT Yimynas (m,n) € Dy.

Proceeding similarly as in the proof of Case 1, we obtain TQ) C Q and the mapping
T is completely continuous. By Lemma 3.60, there is a y € Q such that Ty = y,
therefore for (m,n) € D,

(_1)r+h+1 ©
Ymn t Ym—kn-1 = a+ b+ m Z(l —-—m+r— 1)(”’1)

=m

o (3.350)
XD (j=n+h=1)"VE(,j,yirjq).

j=n

Clearly, ¥ = {ymn} is a bounded positive solution of (3.322). This completes the
proof of Theorem 3.75. O

Theorem 3.76. Assume that ¢ = —1 and that there exists an interval [a,b] C R
(0 < a < b) such that

i i mn(m)" "V (n)" Y sup |F(m,n,w)| < oo. (3.351)
m=M n=N

wela,b)

Then (3.322) has a bounded nonoscillatory solution.
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Proof. By the known result, (3.351) is equivalent to

00

i Z m)(r D) i Z (n)-1 sup | F(m,n,w)| < co. (3.352)
u=0 ,b]

=M+ v=0 n=N+vl wela

We choose m; > M, n; > N sufficiently large such that

Y S 0SS G sup (RG] < O30

u=0 j=m;+uk v=0 j=ny+vl wela,b
(3.353)

We define
Q=1{y={ymn} €Xla<ym, <b, (mn) €D}. (3.354)

Define a mapping T : QO — Q by

(a+b (=1t SRR _1\0-D
2 +(r—1)l(h—l) ;%uk“ mtr—1)

X Z Z (j—n+h=1"YEG,j,yirjq), (mn)€Dy,
Tym,n = v=1 j=n+vl

leml,m (m) n) S DZ)
lem,nlr (m: I’l) S D3)
LT Y (m,n) € Dy.
(3.355)

Proceeding similarly as in the proof of Theorem 3.75, we obtain TQ C Q and the
mapping T is completely continuous. By Lemma 3.60, there is a y € Q such that
Ty = y, therefore for (m,n) € Dy,

Ymn = Ym—kn-1
(_1)r+h+1 ©
=m Z(z m+r—1)rD Z(]—n+h—l)” YF(i, j, yi-r,j-o)-

] n
(3.356)

Clearly, ¥ = {¥mn} is a bounded positive solution of (3.322). This completes the
proof of Theorem 3.76. O

Example 3.77. Consider the nonlinear partial difference equation

1
AQA:n (ym)n + Cym*kﬂfl) + Wyif‘r,n—a =0, (3357)

where r, h, k, I, 7, 0, and 8 are positive integers, ¢ # —1, o, § € R".
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If« > r, 3 > h, for any real number b > a > 0,

S 5 v sy ()

m=M n=-N welap) Lmen?
(3.358)
1,h-1
Z % m'™ mtxnﬁ Z motl-r %nﬁﬂ n < co.
By Theorem 3.75, (3.357) has a bounded positive solution.
Ifa >r+1,B >h+1,for any real number b > a >0,
Z Z mn(m)" = (n) "D sup { p ﬁ}
m=M n=N welab] LT
(3.359)
<§:imrhb0:bei 1i1<oo
- m=M n=N mlxnﬁ m=m mer n=mny nﬁ "

By Theorem 3.76, (3.357) has a bounded positive solution.
In the following, we present some results for the existence of unbounded pos-
itive solutions of the nonlinear partial difference equation

A" AT (X = CmnXm—ton—1) + f (M1 X zn0) = 0, (3.360)

where m,n € Ny, ¢y = 0, m = mg, n = ng; h,r,k,1 € Ny 1,0 € Ny. f(m,n,u)
is of one sign on Ny, X Ny, X (0, c0) and | f(m, n,u)| is nondecreasing in u for
u € (0,00) and (m,n) € Ny, X Ny, .

In the following, we note that

Ri(m,n) = [(Nm+ik \Nm+(i+1)k) X Nn+il] U [Nm+ik X (Nn+il \ Nn+(i+1)l)]> ieZ
(3.361)

Theorem 3.78. Assume that A, y are integers with0 <A <h—-1,0<uy <r—1and
. .. A
that there exists a positive sequence (b} defined on Ny, X Ny,_; such that
A ) 2
U — Cm,flurrfik,nfl U — Cm,ﬂunf—k,nfl

0< lgnr’rr}lrgof " < h,f:::‘i,p " < o0, (3.362)

Then (3.360) has a positive solution {Xy,} such that

Xmn — CmnXm—kn—1
mint

— const >0 asm,n — o (3.363)

if and only if

oY)

> iAol |f(i,j,au?'fr,j,g) | < oo forsomea > 0. (3.364)
1 =1

r

1
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Moreover, if {Xm,} is a solution of (3.360) satisfying (3.363), then
Cx u/},’:n < Xy < C* uﬁf,n for all large m, n, (3.365)
where c.., c* are positive constants.
To prove this result, we will prove the following lemmas first.

Lemma 3.79. Assume that u, v : Nyy—k X Ny,—1 — R satisfy

Umpn — CmnUm—kn—1 = Vmn — CmpnVm—k,n—l>, M = Mo, N = Ho,
(3.366)
Umpn = Vmns  (myn) € R_1(mo, no).
Then
Umpn = Vg, m=mg—k, n>ng— 1. (3.367)
Proof. Tt is easy to see Nyy—k X Nyo—1 = Uj_; Ri(mg,no). By the assumption,
Umpn = Vi for (m,n) € R_1(mo, np).
Assume that u,,, > vy, (m,n) € Ri(mg,np) for some i = —1,0,1,2,....
Then

Umn = Vmn — CmnVm—k,n—I1 + CmnUm—kn—1 = Vmn for (m> 1’[) € Ri+l (mO) nO)-

(3.368)
By induction, the proof is complete. ]
Next, consider the initial value problem(IVP)
Umn — CmpUm—kn—1 = G, M = Mo, N = Ho,
() (3.369)
Umn = CPm,ns (m,n) € R-y(mo, no),
where ¢ € R, ¢ : R_1(my, nyp) — R satisfies
(pmo,ﬂﬂ - Cmo,flo(Pﬂ’Io*k,nnfl = 1)
(3.370)

inf : {omn} > 0.

(m,n)€R_1(mo,no
By the method of steps, we can show that IVP(I) has a unique solution u on
Ning—k X Ny, —1. We denote the solution of IVP(I) by u,(m, n, ¢). By the uniqueness
of solutions of IVP(I), it is clear that, for any y € R,

yug(m, n,c) = uy(m,n,yc), m=mo—k, n=ng—1 (3.371)

From Lemma 3.79, we obtain the following lemma.
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Lemma 3.80. Let uy(m,n,c) be a solution of (I) and suppose that v : Ny, X
Ny,—1 — R satisfies

Vimn — CmnVm—kn—1 = G m = mpy, N = Hy,

3.372
Vimn = CPm,n> (ma I’l) €ER, (mO: nO)' ( )

Then
Vmn < Up(m,n,c), m=mo—k, nzng— 1L (3.373)

Lemma 3.81. Suppose that y, v, {y'}, {w'}, i € N satisfy the following conditions:
(i) ¥, y: Nmy X Nyy — R, and y' converges to y asi — oo for any (m,n) €
N_m0 X Nyys _
(ii) y', w : R (mg,ng) — R, and y' converges to y asi — o for any (m,n) €
R_1(mo, no).
Letx',i=1,2,...and x : Ny,—k X Ny,—1 — R be solutions of

i i I |
X = CmnXp_n—1 = Ymp> M = Mo, N = Ny,

Xy = Vi (myn) € R_y(mo,ng),
(3.374)
Xman — CmpnXm—k,n—1 = Ymn> m = mpy, n = N,

X = Yms  (myn) € Ry (mo, mp),
respectively. Then x' converges to x as i — oo for any (m,n) € Npy—k X Npo—1-

Proof. Take a positive constant ¢ and a positive function ¢ on R_;(my, 1) satisty-
ing (3.370) and consider the initial value problem (I). We note that

up(m,n,c) >0, m=z=mo—k, n=ny—1L (3.375)
For any € > 0, there exists iy € N such that if i > i, then

|y£n)n—ym,n| <& m=mg, n=Hy,
‘ (3.376)
|1//rln,n ~ Vmn | = EQm,n» (m,n) € Ry (m(): nO)-

Hence we have

(xin,n - xm,n) — Cmyn (Xin,k)n,l - xm—k,n—l) <g, m = mpy, n = no, (3 377)
X = Xmn < EPmn»  (m,n) € Ry (mo, ny). '

From Lemma 3.80 and (3.371), we obtain
xin,n = Xmn < Up(m,n,€) = eug(m,n,1) form=my—k, n=no—1L

(3.378)



Existence of positive solutions of certain nonlinear PDEs 209

Similarly, we have

X — xi,”, < uy(m,n,e) = euy(m,n,1) form=my—k, n=ng— 1L
(3.379)

Thus we obtain

| X0 = Xmn | < ug(m,n,€) = eug(m,n,1) form=my—k, n=ng—1,

(3.380)

which implies the conclusion of Lemma 3.81. g

Lemma 3.82. Let A, y be integers with0 < A <h—1,0 <y < r — 1, and let v be
a positive function on Ny, —k X Ny, -1 satisfying

H #
Vmn = CmanViy—kn-1

o =1 form=mg, n=n. (3.381)

Then, for any positive function u™ satisfying (3.362), there exist M > mg, N > ny
and positive constants cy, c* such that

c*vfn’fn < u’}ﬁfn < c*v;l,ffn form=M—-k, n=N-1 (3.382)

Proof. We can choose sufficiently large M > myy, N > ny, a sufficiently small
¢+ > 0, and a sufficiently large ¢* > 0 such that

A 1 A
u m—k)*(n—D# Uy fep—
m,n ( ) ( ) m—k,n—I SC*, sz’ T’IZN,

minh mint " (m—k)n— D

Cx <

Au Au Au

*
CxVm,n Um,n C " Vmn

TS o < > (mmn)€ R (MN).
min# mint min#

(3.383)

Since by (3.371) and (3.362), we can obtain that there exist two constants d,. and
d* such that

Au

—k,n—1
1 Tt < d (3.384)
t u
Vmn = CmnVip_n-1

A
Umn — CmnlU

dy <

A A e .
Because tinmn and vy are infinity, as m, n — oo, we can obtain that the order of the

infinity u%n and v;\n’fn are the same which implies that the latter inequality holds.
Next, we have

A A 5, M
c*vy m—k)*(n— D YV ke
di ( il ) m—kn-l c*, m=M, n=N.

(3.385)

mint " mAnt Cm—kMNn—-Dr
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Applying Lemma 3.80 with ¢, @y.n, ¢m,n replaced by ¢*, vﬁf,n/mln” and ¢y, ((m —
k)*(n — 1)*/m*n#), respectively, we obtain

M ) M

Umn € Vmn s M—k, n=N -1 (3.386)
min# min

In the same way, we get

! Covit
T R m>M-—k,n=N-L (3.387)
mint — min#
The proof is complete. O

Proof of Theorem 3.78. Let {v;\n’fn} be a positive function satisfying (3.381). For
the function {uﬁf,n} in the statement of the theorem, we have (3.382). Assume

that x is a positive solution of (3.360) on Ny X Ny satistying (3.363). Applying
Lemma 3.82 to the case of uM = x, we also have

clvﬁf,n < X < czv%fn for all large m, n, (3.388)

where ¢y, ¢; are positive constants. From (3.382) and (3.388), we obtain

gu%‘,n < Xppn < szuﬁnﬂ,n for all large m, n, (3.389)
c* ? Cx
which implies (3.365).
By (3.363), we have
lim AL A} (Xpun — ConXmtnt) = 0, (3.390)

(i, j) € [(Nx41 \ Nie1) X (No \ Nps1)] U [(No \ Ni) X (N1 \ New1)]\ (h, 7) and

lim A} A% (X — ConnXm—kn_1) = const > 0. (3.391)

Then sum (3.360) repeatedly, we have

A Al
AmAﬂ (xm,n - Cm,nxm—k,n—l)
1

_ _1\htr=A-p-1
const+(—1) (h=A=1)l(r—pu-1)

XD S (i—m+h=A-D" A V(G —ntr— = DD f (i, X0 0).
i=m j=n

(3.392)
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form = M, n = N. By (3.389), we have

HMg

Z AL s £ (i ],aufL nj-o)| <00, m=M,n=N. (3.393)

Conversely, we assume that (3.364) holds. By virtue of (3.382), we may assume
that

SS e |f(i,j)av?f1,j—o) | < oo. (3.394)

i=m j=n
Therefore we can choose M = my, N = ny so large such that

ﬂ:min{M—k,M—T}Zm, I\N]:min{N—l,N—a}Zn,

LM

-

e

AL £ (i ],av,”T] < ia/l!y!(h —A=DI(r—p—1)L

(3.395)

Let X denote all functions { y,,»} defined on Ny XNy with sup,,_ s o n | Yimnl/
(m*n#) < 0. Define the subset Q in X by

Q= {y e X | %amln’* < Ymn < am*n, m> M, n > N}. (3.396)

Clearly Q is a nonempty, closed, and convex subset of X.
For y € Q, let x be a solution of the following equation:

Xmmn — CmnXm—k,n—1 = Ymn> m>M, n>N,

_ (3.397)

xm,n MAN’“ Vm,n»

(m,n) € R,

where R" = [(Nj; \ Na+1) X Ngg] U [N X (Ng \ Ny)]. By the method of steps we
see that x is uniquely determined as a positive function on Nj; X Ng. We define
the operator S by

_é _1\htr-1 1
Syman = qa+ GO TG

X> S-m+h=D"VG—n+r-1)"Vf(i,j,%i0j0);

i=m j=n

(3.398)
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for the case of A = y = 0 and

5 m—=1 n—1 (m —s)AD(n — )1
SYmn = Samnt + (=1)Mr-Aul
Vm, 4 =1 S:ZM t:ZN ()L_l)!(y_l)!

y i 5 (i—s+h—A—-1DEAV(G—pgr—py—1)rwn  (3.39)
e (h=A=Di(r—pu— 1)

X f(i)j)xif‘r,jflf))

for the case of at least one of A and p # 0. Here we assume that the general factor
n™ =1 for m < 0. It is obvious that we can draw the conclusion if we can prove
that S has a fixed point in Q.

First we show that Sy is well defined on Nj; X Ny for each y € Q and that
SQ C Q. Let y € Q. We see that

Xm,n (m — k)l(n — Xm—k,n—1 Ymn
w . J = — < aq, >M,n=N,
mint " mint m—krn - mwne =P "
X YMN v Vi
mn_ N Vmn m,n ’
mnt  MANE mint = i (m,n) € R
(3.400)
On the other hand, form > M, n > N, av;\n’fn/ min# satisfies
v A M
Vinyn (m —k)*(n—D¥ Vb=l
a — Cmpn . =a. (3.401)
mAn# mhnt (m—k)Mn—1DH
According to Lemma 3.79, we obtain
X v
e < g, m=M, n=N. (3.402)
mAn# mAn#
Hence,
X < av;\yffn, m=>M, n>N. (3.403)

In a similar way, we obtain

1 N
Xomn = Eavi‘,,",n, m= M, n=N. (3.404)
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Thus, for0 <A <h—1,0 <y < r — 1, it follows that

m—1 n—1
(m— D= e
S m,,_fam Ak 4
’ 2% G-

o oo (i—S‘l‘h_A_ 1)(h—)t—1)(j_t+r_‘u_ 1)(7—#71)
X2, 2. (h=A=D!(r—p—1)! (3.405)

i=s j=t

.. A
X |f(l>]>avifr,j—o)|

A A

A

3 1
< Zam)‘n” + Zam n* = am’'n*

form > M,n > N, and

m—1 n-1 — —
(m—s)AVD(n — )=
ZM tZN A- Dl 1)!

\2
|
Q
3

3
=

3
Sympn = )

S (i—s+h—-A—1)"ADG —t+r—p—1)#D
(h=A-Dlr—p—1)! (3.406)

X |f(i:j7avglf1,j—o)|

3 1
Zam’\n” - Zum

A A

\%

1
nt = Sam n*
for m = M, n = N. The above observation shows that Sy is well defined on Ny, x
Ny and that Sy € Q.

Next, we show that S is continuous on Q. We assume that y', y € Q, i =
1,2,...,y" — yasi — oo. Let x, x be solutions of (3.397) corresponding to y’
and y, respectively. Then by virtue of Lemma 3.81, we find that x' — x asi — o
on Ny X Ng. By the Lebesgue dominated convergence theorem we conclude that
Sy' — Sy asi — oo, which means that S is continuous on Q.

It is easy to see that SQ is relatively compact.

By the Schauder fixed point theorem, S has a fixed point in Q, that is, there
exists a y € Q) such that Sy = y. Then we easily see that x is a positive solution of
(3.360). The proof is complete. ]

A A

We can take the case um,n = m*n# as an example.

Corollary 3.83. Let ufn”,n = mtn#. Condition (3.362) becomes that there exist two
positive constants a < 1 and b < 1 such that

1 -0b <liminfcy, <limsupcpy, <1—a. (3.407)

m,n—c m,n— 00

Then the conclusion of Theorem 3.78 holds.
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Similarly, we can obtain the following conclusion.

Theorem 3.84. Let A, u be integers with 0 < A < h— 1,0 < u < r — 1. Further,
assume that there exist two positive functions u™ and w such that

u Conti ™ U — conti™
.. mn — bmnWyy_fon—1 . mn — tmnWyy_fon—|
—o0 < liminf T < limsup T <0, (3.408)
m,n— 0o min# Myn—co min#
Wimn — CmnWm—kn—1 = 0, M = mp, n = ny. (3.409)

Then (3.360) has a positive solution satisfying

liminf 2% > 0, (3.410)
mn=0 Wy
Xmon — C";’"xm_k‘"_l — const< 0, m,n— oo, (3.411)
min#
if and only if
> £ (h jawir o) | < 0, a>0. (3.412)
i=m j=n

Moreover, if x is a positive solution of (3.360) satisfying (3.410) and (3.411), then

Xm,

lim sup =™ < oo, (3.413)

mn—co Wm,n
We need the following lemmas in proving Theorem 3.84.

Lemma 3.85. Let A,y be integers with0 <A < h— 1,0 < u < r — 1. The following
three statements (i)—(iii) are equivalent.
(i) There exists a positive function x satisfying (3.411).
(ii) There exists a positive function u satisfying (3.408).
(iii) There exists a positive function v* satisfying

U
Vmn — CmnV

moknl _ for all large m, n. (3.414)

mAn#

Proof. It is clear that (i) implies (ii), and (iii) implies (i). We will prove that (ii)
implies (iii). Suppose that (ii) holds. Then there exists a positive constant ¢ > 0
and M > mg, N = ng such that

Mt A M
Um,n (m—k)'(n— D Uy k-1
n . > < —¢, > M, n>N.
mint " mint m—krn—1r = ™ !

(3.415)
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We can choose a function ¢ : R_; (M, N) — R such that

S @ (mym) € R(M,N),
min# ’
(3.416)
(M —)MN =¥
PMN ~CMN T PMkN-I = L.
Let V:U;Z_; Ri(M,N) — R be a solution of the IVP
~ — kM -D#
Vimn — Cm,nwvm—k,n—l =-¢ mx=M,nx=N,
mAn# (3.417)
;m,n = —CPm,n> (m,n) € R_; (M, N).
We see from Lemma 3.80 that
s
Vn = —= >0, m=M—k,n=N-L (3.418)
min#

Then vfn”,n = (1/c)m*n#¥,,, is a positive function defined on ;> _; R;(M,N) and
satisfies

4 Au
Vi = CmnVon—fen—
mLmimknl - 1, m=M, nzN. (3.419)
min#
Hence (iii) holds. The proof is complete. |

Lemma 3.86. Let both w' and w? be positive functions on Ny X Ny,—i which
satisfy (3.382). Then there exist positive constants ¢y and c* such that

CxWhy S Why S C*wh, form=My—k, n=Ny—L (3.420)

m,n
Lemma 3.86 is a direct corollary of Lemma 3.79.

Lemma 3.87. Let w and u™ be positive functions which satisfy (3.408) and (3.397),

0<A=<h-1,0<yu=<r-— 1 Then there exist constants c* >0, M = my, N = ny

such that

uﬁf,n <*wpyn, m=M, n=N. (3.421)

Proof. By (3.408), there are M = myg, N = ng such that

Mt A M
Um,n (m—k)*'(n—D# Un—kin—1
— — . ; <0, > M, n > N.
mhne " mAn# (m—k)Mn -1 " "

(3.422)
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We note that

W (m—k)*(n D Win—kn—1
no . > =0, > M, n>N.
mins " mAn# (m—k)Mn - D " "
(3.423)
For a sufficiently large number ¢* > 0, we have
Ul ctw
= < % (m,n) € R_;{(M,N). (3.424)
mint = mint
From Lemma 3.79, we obtain
u%‘n C* Winn
— < o om=>=M-—-k,n>=N-—-1L (3.425)
min# T min#
Hence the proof is complete. |

Proof of Theorem 3.84. Assume that x,,, is a positive solution of (3.322) satisfy-
ing (3.388)-(3.389). Since x,,, satisfies (3.389), applying Lemma 3.87 to the case
uM = x, we obtain

Xmpn < Wy for all large m, n, (3.426)

where ¢* is a positive constant. Thus we get (3.408). On the other hand, by (3.388),
there exists a positive constant c, satisfying

CxWmn < Xmn for all large m, n. (3.427)

As in the proof of Theorem 3.78, we can show that (3.397) holds.

Conversely, we suppose that (3.397) holds. Since we assume the existence of a
positive function uM satisfying (3.381), by Lemma 3.85, there is a positive function
vM satisfying (3.409). Using Lemma 3.87 in the case u™ = v}, we find that

=9 [

______ .. A
Z Z lh A 1]r u 1|f(1>])cl(vif‘r,j—0 +Wi—r,j70))| < 0 (3428)

i=m j=n

for some ¢; > 0. By Lemma 3.87, there exist My > myg, Ny > ng, c; > ¢; such that

1
(¢ —c1)viby < F6Wmm M= My, n = Ny (3.429)
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Choose M = my, N = ny so large that

MEmin{M—k,M—T}ZM*, ﬁEmin{N—l,N—a}zN*,
(3.430)

,,,,,, . by
A f G e [Viff,jfo+wi—r,j—o])|

I

-

NG

(3.431)
< %(cz — )M = A = Dlp!(r —u— 1)L

Define the set Q by

Q= {y: U Ri(M,N) — R | ecym*nt < Ymn < comint, m> M, n> N}.
i=—1

(3.432)
For y € Q, let x be a solution of
Xmn = CmpnXm—kn—-1 = —Ymmn> M = M, n>N,
3.433)
w2 (
Xmn = A);X[Ii;ﬂ Vrrfn"’ gclwmm (m’n) S R*l(M)N)-

Clearly Q) is a nonempty, closed, and convex set of Banach space X and x is unique-
ly determined by y € Q.
Let ¢ = (¢1 + ¢2)/2 and define the operator F by

1

_ N (_1\htr—1
By = = CU G i — 1y

x> Si-m+h-1)"VG-n+r-1" (3.434)
i=m j=n
Xf(i)j)xif‘r,jfo), mZM, T’IZN,
forl =pu =0,

F}/m,n — gm/\ny _ (_1)h+r—/1—;4—1

S s)”L D(n— )b
:z: :z]:\] — 1 l(‘u — 1)'

(3.435)

e (i=sth=A=1)AD(G -ty —py— 1)t
2.2 (h—A—Dlr —p— 1)

X f(i,j,Xi-z,j-¢), m=M, n=N,
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for at least one of A, 4 # 0. We show that Fy is well defined for y € Q and FQ C Q.
For y € Q, we see that

Xm,n (m — k)l(n — D Xm—k,n—1 Ymn
— — ¢ - 2 =—*"— m=>=M,n>N,
mint " mAnt (m —k)An — 1H mAnt
X ¥ i 2 aw
mn M,N i m,n <. 1Wm,n
mint — MANH  mhnH * 3 mint’ (m, 1) € R1(M,N).
(3.436)
By virtue of (3.429) and (3.430), we observe that
b ) )
oV L CiWmn _ JMNVin 2 CWan _ Vi G (3.437)
mint 3 min# T MANHmrnt 3 min# mint  mint
Let
~ 1 ~ ~
Xmpn = szﬂyﬁn + gclwm,n, m>M, n> N. (3.438)
Then, for m > M, n > N, we have
QNcm n (m — k)'\(l’l — D 3Ncm—k n—I YVm,n
— — . 2 =—c < — —, 3.439
mint ™" mhnt (m—k)Mn -1 © mhnt ( )
From Lemma 3.79, we have
~ 1 ~ ~
Xmp = X = cwﬁfn + §C1Wm,n, m>M, n>N. (3.440)
In a similar way, we obtain
X < cw%‘,n + Wi, M= M, n>N. (3.441)

By (3.440), we see that x is positive for m > ]W, n>N. Furthermore, by (3.428)
and (3.441), Fy is well defined for all y € Q. From (3.431) and (3.441), it follows
that

mtn#

Mul(h = A = Dl (r —pu = 1)!

Fymn < Cmint +

0o 0
,,,,,, A
XZZ ML f G jra[vite g + Wiirjo]) |
i=s j=t

(3.442)

~ € —C
< (C+T>m’\n" =cm'nt, m=M,n=N,

~ G—C
Fym,nz(c—%>mkn”, m=>=M, n=N,

which implies that Fy € Q.



Existence of positive solutions of certain nonlinear PDEs 219
As in the proof of Theorem 3.78, the continuity of F and the relatively com-
pactness of FQ are verified. The Schauder fixed point theorem implies that F has

a fixed point in Q and the x corresponding y is a solution of (3.322). Obviously,
we can see that x satisfies (3.388). The proof is complete. O

Next, we will assume that there exists a function F : Ny, X Ny, X R such that
| fm,n,u)| < F(m,n,|ul), (m,n,u) € Ny, X Ny, XR, (3.443)
and for all (m, n) € Ny, X Ny, F(m, n, 1) is nonincreasing in u for u € R.

Theorem 3.88. Let 0 < ¢y < ¢o < 1 and A, p be integers with 0 < A < h — 1,
O<su=<r—-11If

mh—/l—lnr—‘u—lp(m’ n,c(m— T)A(Vl _ 0)”) < 00 for somec >0,

[Me

>

m=M n=N
(3.444)
then (3.322) has an eventually positive solution x satisfying
.. Xm,n . Xm,n
0 < liminf T < lim sup —— < oo. (3.445)
mn—o iAnH 11— 00 min#

For this result, we prepare the following lemma.

Lemma 3.89. Let 0 < ¢y < o < 1 and A, p be integers with 0 < A < h — 1,
0 < u < r — 1. Let uM be a positive function satisfying (3.323). Then

! !
0 < liminf :{"” < limsup T’n < 0. (3.446)
mn—oo AnH ,n— o0 n#
A
Proof. Define vin = m*n. We observe that
A A
. Vm,n - C()V _ _
lim e Y (3.447)
m,n—o0 mint

Then we can choose sufficiently large M, N, a sufficiently small ¢, > 0, and a
sufficiently large c* > 0 such that

A A A A oz
Vinn Umn = CmnUpy -1 Vmn = C0Vi_,n-1
Cx s < T UL o A”‘ . m=M,n=>=N,
min# mtn# min#

A A A
C*Vman < Urr’ll,n < C*Vmﬂ,n, (myn) € R_.{(M,N).

(3.448)
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It follows that

A

m—k,n—1>

A At Ay

by
CxVmn < Umpn — cm’nunf_k,n_, < ™V — coc*v m=>=M, m=>=N,

C*Vﬁﬁn < U)rtnﬂ,n < C*V:Lnﬂ,n, (m, T’l) S R_l(M,N).
(3.449)
So we have
it
Cx < TH’nSC*, m=>=M-k, n=N-—1. (3.450)
Vmn
The proof is complete. O

Proof of Theorem 3.88. From Theorem 3.78, we have that under the condition of
Theorem 3.88

Xm,n *

Cy < T < c¢* forall large m, n. (3.451)
Um,n
By Lemma 3.89, we obtain
ik
Cx < ;’;” <c¢* foralllarge m,n. (3.452)
Vm,n
Hence
.. Xm,n . Xm,n
0 <liminf =2~ < limsup —- < co. (3.453)
mn—oco Ank mn—oco M n#
The proof is complete. |

3.6. Application in population models

In order to describe the population of the Australian sheep blowfly that agrees well
with the experimental data of Nicholson, Gurney et al. proposed the following
nonlinear delay differential equation:

P'(t) = —OP(t) + qP(t — 0)e (=), (3.454)

where P(t) is the size of the population at time t, q is the maximum per capita daily
egg production, 1/a is the size at which the blowfly population reproduces at its
maximum rate, § is the pair capita daily adult death rate, and o is the generation
time. Since this equation explains Nicholson’s data of blowfly quite accurately, it is
now referred to as the Nicholson’s blowflies model.
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The discrete analog of (3.454) is the delay difference equation
Py — Py = =8P, + qPy_ge P, (3.455)

where g,a € (0,),§ € (0,1) and n € N. The state variable P, in (3.455) rep-
resents the number of sexually mature blowflies in cycle # as a closed system of
the mature flies surviving from previous cycles plus the flies which have survived
from the previous o cycle. Specifically, gP,_,e~ " represents the number of ma-
ture flies that were born in the (n — o)th cycle and survived to maturity in the nth
cycle.

In this section, we will consider the nonlinear delay partial difference equation

Pm+1,n + Pm,n+1 - Pm,n = _8Pm,n + qpm—u,n—reiaPMﬂ’"ir) (ma I’l) € N(?s
(3.456)

where g,a € (0,),8 € (0,1),g > e(1+6), 0 and 7 € N,. Here P,, , represents the
number of the population of blowflies at time m and site n. Let Q = N_; X N_; \
Ny X Nj. Given a function ¢, , defined on €, it is easy to construct by induction a
double sequence {P,,, } which equals ¢,,, on Q and satisfies (3.456) on Ny X Nj.
Such a double sequence is unique and is said to be a solution of (3.456) with the
initial condition

Pun = bmpn, (m,n) € Q. (3.457)
We say that P* is an equilibrium of (3.456) if
P* = —8P* + qP*e ", (3.458)

From (3.458) it is clear that there are two equilibria for (3.458), Py = 0, which
represents extinction, and a positive equilibrium

w1 1
p —aln<1+8>, (3.459)
provided that g > e(1 + §).

A solution {Py,,} of (3.456) is said to be eventually positive if P,,,, > 0 for
all large m and n. It is said to be oscillatory if it is neither eventually positive nor
eventually negative. We consider only such positive solutions of (3.456), which are
nontrivial for all large m, n.

A solution {P,, ,} of (3.456) is said to oscillate about the equilibrium P* if the
terms Py, , — P* of the sequence {P,,, — P*} are neither all eventually positive nor
all eventually negative.

We will show that every positive solution of (3.456) which does not oscillate
about the positive equilibrium point P* converges to P* as m,n — co and present

some sufficient conditions for oscillation of all positive solutions of (3.456) about
P*.
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Theorem 3.90. Suppose that & € (0,1], B = 6, g = 0, 0, T are positive integers, and

that f : R — R is nondecreasing function. Suppose further that x f (x) > 0 for all
x # 0. Then every nonoscillatory solution of the nonlinear delay difference equation

Xm+1,n + ﬂxm,nJrl - é\xm,n + qf(xm—a,n—r) =0 (3460)
tends to zero as myn — oo,
Proof. We will consider only the case when {x,,,} is eventually positive as the
arguments when {x,,,} is eventually negative are similar and hence omitted. Sup-
pose that there exist my > 0 and ny > 0 sufficiently large such that x,,41,, > 0,
X1 > 0, X > 0, X—gn—r > 0 for m > mg and n > ny. Then, from (3.460) we
have

Xt + Pt < OXmyus ™M = Mg, 1 = o, (3.461)

from which it follows that

Xm+ln = 6xm 1> Xmpn+l = 5 Xmn> m = mg, n = Ho. (3462)

Now, since § = § and § < 1, then (3.462) implies that

Xm+1n = Xmpns>  Xmap+1 = Xmp> M = Mo, N = Ho, (3.463)
and then {x,,,} is nonincreasing sequence in both m and n; thus x,,, — b = 0 as
m,n — oo, We assert that b = 0. If not, there exist m; > mg and n; > ng sufficiently
large such that x,,+1 = b > 0, Xp10 = b > 0, Xy > b and xyy—g,—r = b > 0 for
m=M=m+0candn = N = n; + 7. Now, since f is a nondecreasing function

then f(Xm—¢n—r) = f(b). From (3.460), we have

Xm+1,n + ﬁxm,rﬁ-l 8xm n = qf(b) (3464)

Now, it follows from Lemma 2.74 that

n
Z (x,‘+1)j +ﬁxi,]‘+1 - 6361‘,]‘) = Xmn+l — (SXM)N >b— 8xM,N (3.465)
j=N

LM

i

for large M and N. On the other hand, from (3.464) it is clear that for large M and
N)

n

> (Xier,j + Pxijer — 0xij) < —qf(b)(m — M)(n — N). (3.466)
j=N

L]

i
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Combining (3.465) and (3.466), we get
0=b—38xyn+qf(b)(m—-M)(n—-N). (3.467)

If b > 0, then the right-hand side of (3.467) tends to infinity as m,n — o and this
leads to a contradiction. Hence b = 0. This completes the proof. O

Now, we are ready to state our main results.

Theorem 3.91. Let {Py,,} be a positive solution of (3.456) which does not oscillate
about P*. Then P, , tends to P* as m,n — oco.

Proof. Let {P,,,,} be an arbitrary positive solution of (3.456) which does not os-
cillate about P* and let

1
Pm,n =P*+ ;Zm,rb (3468)
Clearly, z,,,, does not oscillate, and satisfies the equation

Zm+1,n + Zm,n+1 - pzm,n + ap*((s + 1)fl (Zm—(r,n—‘r) - (5 + 1)f2 (meo,n—r) =0
(3.469)

with0<p=(1-9)<1,
filu)=1-¢€% fo(u) = ue™. (3.470)

We observe that fi(u) = f,(u) for all u € R, ufi(u) > 0 and ufo(u) > 0 for all
u # 0. Since P* = (1/a)In(q/(8 + 1)), thus, in this case, the condition aP* > 1 is
the same as In(q/(d + 1)) > 1, thatis, g > e(8 + 1), then from (3.469) we have

Zmiin + Zmpi1 — PZmu + (0 + 1) (aP* = 1) fi(zm-gu-r) < 0. (3.471)

Note that f; is nondecreasing function and that (8 + 1)(aP* — 1) > 0. Then, from
Corollary 3.27, the equation

Zm+1,n + Zmpn+1 — pzm,n + (6 + 1)(ap* - l)fl (Zm—o,n—r) =0 (3472)
has an eventually positive solution. From (3.470) and since p < 1 and (§+1)(aP* —
1) > 0, Theorem 3.90 implies that every nonoscillatory solution of (3.472) tends

to zero as m,n — co. Then from the transformation (3.468), we see that every
positive solution of (3.456) tends to P* as m,n — . The proof is complete. ~ [J

Theorem 3.92. Assume that every solution of the equation
Zm+1,n + Zmn+l — pzm,n + (8 + 1)(ap* - I)Zm—a,n—r =0 (3473)

oscillates. Then every positive solution of (3.456) oscillates about P*.
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Proof. Assume for the sake of contradiction that (3.456) has a positive solution
which does not oscillate about P*. Without loss of generality, we assume that
P,.» > P* and this implies that z,,, > 0. (The case when P,,,, < P* implies that
Zmn < 0 for which the proof is similar, since u fi (1) > 0 for all u # 0.) Again define
Zm,n as in (3.468). Then, from the proof of Theorem 3.91 it is clear that z,,,, > 0
and satisfies (3.472). From (3.470) we observe that f; is nondecreasing function,
(6 +1)(aP* —1) >0,

ufi(u) >0 foru+0, li% # =1 (3.474)
Also we claim that
filu) <u foru>0. (3.475)

The proof of (3.475) follows from the observation that f;(0) = 0 and that

d%(fl(u)—u) :—(1—6%) <0 foru>0. (3.476)
Then (3.475) holds. Then, from (3.474) and (3.475), Theorem 3.8 implies that
there exists an eventually positive solution of (3.473). This contradiction shows
that every positive solution of (3.456) oscillates about P*.

Theorem 3.92 shows that the oscillation of every positive solution of (3.456)
about P* is equivalent to the oscillation of the delay difference equation (3.473).
Thus, we can use the result in Section 2.2 to obtain an oscillation criterion. We
state such a result in the following theorem. O

Theorem 3.93. Every positive solution of (3.456) oscillates about P* if and only if

+ 7+ 1)otTtl
(8 +1)(aP* - 1)% > 1. (3.477)

It remains an open problem to prove that every oscillatory solution of (3.456) tends
to P* asm,n — oo to complete the proof of global attractivity.

Next, we will consider the discrete partial delay survival red blood cells model
Pm+l,n + Pm,n+l - Pm,n = _6Pm,n + qefap’”’”””ﬂ (3478)

where Py, , represents the number of the red blood cells at time m and site n, § €
(0,1), a and q are positive constants and ¢ and 7 are positive integers. We will show
that (3.478) has a unique positive steady state P* and that every positive solution
of (3.478) which does not oscillate about P* converges to P* as m,n — oo, and
present necessary and sufficient conditions for oscillation of all positive solutions
of (3.478) about P*.
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Let O = N_; X N_; \ Ny X N;. Given a function ¢y, defined on Q, it is easy

to construct by induction a double sequence {P,,,} which equals ¢, on Q and
satisfies (3.478) on Ny X N;. We say that P* is an equilibrium of (3.478) if

P* = —8P* + qe™ ", (3.479)

Now, we prove that (3.478) has a unique equilibrium P*. Observe that the equi-
librium points of (3.478) are the solutions of the equation

ge " —(1+8)P* = 0. (3.480)
Set

f(x) =qe ™ —(1+9)x, (3.481)
then f(0)=¢>0and f(o0)=—o0, so that there exists x* > 0 such that f(x*) = 0.
Now since f'(x) = —aqe™™ — § < 0 for all x > 0, then f'(x*) < 0, from which it
follows that f(x) = 0 has exactly one solution x*, and then (3.478) has a unique

equilibrium point P*.

Theorem 3.94. Let {Py,,} be a positive solution of (3.478) which does not oscillate
about P*. Then P, , tends to P* as m,n — oo.

Proof. Let {P,,,} be an arbitrary positive solution of (3.478) which does not os-
cillate about P* and let

Py = P* + ézm,n. (3.482)
Clearly, z,,,, does not oscillate, and satisfies the equation
Zistn + Zmns1 — PZmn +qae Y f(Zm_gn_z) = 0, (3.483)
where
0O<p=1-46<1, flu)y=1-e" (3.484)
Note that, f is a nondecreasing function,

uf(u)>0 foru+0, Li% % =1 (3.485)

From (3.485) and since p < 1 and gae~*" > 0, Theorem 3.90 implies that every
nonoscillatory solution of (3.483) tends to zero as m, n — o. Then from the trans-
formation (3.482), we see that every positive solution of (3.478) which does not
oscillate about P* tends to P* as m,n — oo. The proof is complete. O
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Theorem 3.95. Then every positive solution of (3.478) oscillates about P* if and only
if
—aP* (U + 7+ 1)0+T+1

q W > 1. (3486)

Proof. Assume for the sake of contradiction that (3.478) has a positive solution
which does not oscillate about P*. Without loss of generality, we assume that
P,.n > P* and this implies that z,,, > 0. The case when P,,,, < P* implies that
Zmn < 0 for which the proof is similar. In fact, we see that if {z,,,} is a negative so-
lution of (3.483) then {U,,n} = {—2mn} is a positive solution of (3.483). From the
transformation (3.482) it is clear that P,, , oscillates about P* if and only if z,,,,, 0s-
cillates about zero. The transformation (3.482) transforms (3.478) to (3.483) and
(3.485) holds. Also we claim that

f(u) <u foru>0. (3.487)

The proof of (3.487) follows from the observation that f(0) = 0 and that
d 1
%(f(u)—u)= (1——)<0 for u > 0. (3.488)

Then (3.487) holds. The linearized equation associated with (3.483) is

Zm+1,n + Zm,n+1 - pzm,n + qaeiap* Zm—a,n—‘r =0. (3489)
Then by Theorem 2.3, every solution of (3.489) oscillates if and only if (3.486)
holds. The proof is now elementary consequence of the linearized oscillation
Theorem 3.9 according to which the following statements are true. If (3.485) and
(3.487) hold, then every solution of (3.483) oscillates if and only if every solu-
tion of (3.489) oscillates. Thus, in conclusion, every positive solution of (3.478)
oscillates about P*. ]

3.7. Oscillations of initial boundary value problems
3.7.1. Parabolic equations

Consider delay partial difference equations of the form
Muij = ajAfuirj — qijf(uij-g), 1<i<n, j=0, (3.490)

where the delay o is a nonnegative integer, a; > 0 for j = 0 and f is a real function
on R. The real function u;; is dependent on integral variables i, j which satisfy
0<i<mn+landj= —o.In (3.490), we use the following notations:

Aouij = Ujj1 — Ui Avuij = Uipj — Ui, ( )
3.491
5 .

Auioyj = A (Avuiog) = i) — 2uij + dioyj.
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We assume that u; j is subject to the conditions

up,j +ajurj =0, j=0, (3.492)
Upr1j + Bjtn; =0, j=0, (3.493)
uj=pij —-0=<j<0,0<is<n+l, (3.494)

where aj +1>0andf3; +1 = 0for j = 0.

Given an arbitrary function p; ; which is defined for —0 < j < 0and 0 <i <
n + 1 and arbitrary functions e; and §; for j > 0, we can show that a solution to
(3.490)—(3.494) exists and is unique. In fact, from (3.490), we have

uiy = aopisio + (1= 2a0)pio + aopi-10 — gio f (pi—0)> 1<i=<mn,
(3.495)
Up,1 = —aUy,1, Un+1,1 = —ﬁlun,l-

Inductively, we see that {u; j1 }?Ll is determined uniquely by {ui,k}?j()l, k<j.

Let v; ; be a real function defined for 0 <i < n+ 1 and j = —o. Suppose there
is some nonnegative integer T such that v;; > 0for 1 <i < nand j > T, then
v; j is said to be eventually positive. An eventually negative v; ; is similarly defined.
The function v;; is said to be oscillatory for 1 < i < nand j > 0, if it is neither
eventually positive nor eventually negative.

We now assume that q;; > Ofor 1 <i <nandj > 0. Let

Qj=min{gi; | 1 <i=<n} (3.496)
By the average technique we will prove the following result.

Theorem 3.96. Let o be a positive integer and suppose that Q; = 0 for j = 0. Let f (x)
be a real function defined on R such that x f (x) > 0 for x # 0, f(x) is nondecreasing
on R, f(x) and — f(—x) are convex on (0, +o0) such that

li =M>0. 3.497
0 f(x) f(x) (3:497)

If
hgiglf ] ;UQJ 1oy G)HU (3.498)

then every solution of (3.490)—(3.494) oscillates.

Proof. Suppose to the contrary, let {u;;} be an eventually positive solution of
(3.490) such that u;; >0 for 1 <i <nand j > T. From (3.490), we have

Apuij = ZAIu, Lj— zq”f(u,] o). (3.499)

1 i=1

S =
'M=

1



228 Oscillations of nonlinear PDEs

Since f is convex, by Jensen’s inequality (1.29), we have

_i fluijo) = Qif ( Zu,, a> (3.500)
By conditions (3.492) and (3.493),
a]ZAlu, Lj = ajl = (Bj+ Dupj— (aj+1)uj] <0 forj=T. (3.501)
i=1
Let w; = (1/n) Y., u; ;. From (3.499)—(3.501), we have
Aw; +Qif(wjo) <0, j=T, (3.502)

that is, (3.502) has a positive solution wj, j = T.
In order to complete the proof of Theorem 3.96, we need the following lem-
mas.

Lemma 3.97. Assume that the assumptions of Theorem 3.96 hold. If the difference
inequality (3.502) has an eventually positive solution, then (3.498) does not hold.

Proof. Let {w;} be an eventually positive solution of (3.502) such that w; > 0 for
i>T.Then Aw; < 0 fori > T. Hence lim;_ . w; exists and

i—1
wit > Qif(wj—y) < wr. (3.503)
j=T+o

Thus

Qjf(wj—¢) < co. (3.504)

ie

j
If (3.498) holds, then Z;O:N Q; = oo, which together with (3.504) imply that w; —

Oasj — oo.
From (3.502),

Awy + Qu f (wy) < Awy + Quf (wp-6) <0, (3.505)

so that

(3.506)
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Set y = Mo°/(0 + 1)°*L. If (3.498) holds, then there exists a constant 7 such that
for sufficiently large n,

1 n—1
x<tT=- > Q. (3.507)
i=n—o

Since w; — 0 as j — oo, there exists & > 0 such that e < (¢/y — 1)M and

w
" <M+e foralllarge n. (3.508)
Flwn) &

From (3.506) and (3.508), by the inequality between the arithmetic and geometric
means, we have

T < (M+e)é :121 (1 - %) < (M+g)|:1 _ (6;;”0>1/a] 3509)

By means of the inequality

o° 1/0 ,
A< — —1/o <
1-d= (o) AU 0<asn, (3.510)
we obtain
W, T \° xM+e)
<|1- < <1, 511
Wy—¢ ( M+£> ™ (3.511)

for all large n.
Substituting the above inequality into (3.502), we have

™
Aw,, + an(mwn) < Awn + Q,,f(w,,,g) <0. (3512)
A similar procedure then leads to
M 2
Wp—g T
0, > (X(M+ e)) for n > nj. (3.513)

Inductively, we see that for every positive integer K, there is ng such that

K
) for n > ng. (3.514)

Wy—g - ™
w,  \x(M+e)
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On the other hand, (3.498) implies that there is a positive constant ¢ such that for
all large n,

n n' n
Cc C
>, Q>¢ > Q=5 2 Q=zs, (3.515)
i=n—o i=n—o i=n'
wheren — o <n <n.
Since Aw; < 0, from (3.502) we obtain
n' n' c
Wy'+1 — Wp—og = — Z Qif(wi—o) = _f(wn’—a) Z Qi = _Ef(wn'fo))
i=n—o i=n—o
n n c
Wyl — Wy = — Z Qif(wi—o) < _f(wn—o) Z Qi < _Ef(wnfo)-
i=n’ i=n'
(3.516)

Combining (3.516), we obtain

C Wy— Cc Wy— C

02wn+1 —wy + Ef(wn—o) w:_z = Wpt1 — Wy + E% (wn’+1 + Ef(wn/—o)>)
(3.517)

so that

2
Cc Wy—
o () ) <0

(3.518)

wnr,u(zy Ono  Wyg ﬁ(%)zMz
wy \c f(wn—a) f(wn’—u) c ’

which contradicts (3.514). In fact, there exists a positive integer K such that

2
™ K 2
The proof of Lemma 3.97 is complete. |

We consider (3.502) together with the equation
ij + ij(wj—g) =0, ] > 0. (3.520)
Lemma 3.98. Let o be a positive integer. Suppose that Q; = 0 for j = 0 and

o-1

> Quij >0 foralllarge n. (3.521)

j=0

Suppose further that f(x) is a positive and nondecreasing function on (0, ). If
(3.502) has an eventually positive solution, so does (3.520).
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Proof. Assume that {w ;} is an eventually positive solution of (3.502). There exists
T >0 such that w; >0 for j > T — 20, then Aw; <0 for j = T — ¢ and

i-1
w; + Z ij(a)];g) < wr. (3.522)
j=T
Since lim; . w; = we exists, so
Wy = 0o+ . Qif(wj—g), n=T. (3.523)

j=n

Let X denote the partially ordered Banach space of all bounded real sequences
{x,} _r with the usual supreme norm and the componentwise defined partial or-
dering <. Let Q) be a subset of X defined by

Q={{x} €X|wew <x, <wy, n=T}. (3.524)

For every x € Q, define

Xn» n>T,
Xy = (3.525)
xr+w, —wr, T—-oc<n<T.

Notethat 0 < x, <w,forT—o<n<T.
Define a mapping S on Q by

(SX)p = weo + i Qif(Xj—), n=T. (3.526)
j=n

By (3.523), SQ € Q and S is monotone. By Knaster-Tarski’s fixed point theorem
(Theorem 1.9), S has a fixed point z € Q. Clearly, z satisfies (3.520) for j = T,
and so the proof will be complete if we can show that z, > 0 for n = T. In fact,
as noted before, z, > 0 for T — ¢ < n < T. Assume by induction that z, > 0 for
T -0 <n<K,where T < K, then

ZK = Weo t+ Z ij(zj—a)

j=K
K+o-1
= W + Z ij(Ej_(,) (3.527)
=K
K+o-1
ot min, SCm) 2 Q>0

The proof of Lemma 3.98 is complete. O
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We return to the proof of Theorem 3.96. Suppose that {u;;} is an eventually
positive solution of (3.490). By Lemma 3.97, (3.498) does not hold, a contradic-
tion.

We note that {u;;} is a solution of (3.490) if and only if {—u;;} is a solution
of

AzV,‘)]‘ = ajA%v,-_l,j — qi’jF(vi’j_o), 1<i=<n, ] >0, (3528)

where F(t) = — f(—t) for all t. Also, {w;} is a solution of (3.502) if and only if
{—wj} is a solution of

Azj+QjF(zj-¢) 20, j=0. (3.529)

Hence if (3.490) has an eventually negative solution, we can derive a contradiction
also. The proof of Theorem 3.96 is complete. O
From the proof of Theorem 3.96, we can obtain a more general result.

Corollary 3.99. Under the assumptions of Theorem 3.96, if every solution of (3.520)
is oscillatory, then every solution of (3.490)—(3.494) is oscillatory.

Remark 3.100. There are some oscillation criteria for (3.520) in the literature.
Therefore we can obtain different oscillation criteria with (3.497) and (3.498) for
the oscillation of (3.490).

3.7.2. Nonhomogeneous parabolic equations

We consider the nonhomogeneous partial difference equations of the form
MNouij = ajAfuiyj — pjthij—o+ fijy 1<i<mn, j=0 (3.530)
with the conditions

u,j=gp» Jj=1
Uni1,j = hjy  j=1, (3.531)

Uij = Pij» —O'SjS0,0SiSI’l+1.

It is easy to prove that (3.530)-(3.531) have a unique solution.

We will be concerned with conditions which imply that every solution of
(3.530)-(3.531) is oscillatory. The definition of the oscillation is similar to that
in Section 3.7.1.

Theorem 3.101. Suppose the following conditions hold:
(i) aj=0and pj =0 for j = 0;
(i) yj = a;j(hj +g) + i fijp j = 0;
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(iii) the difference inequality
AVj tPpiVji-o = (Z)l//j (3.532)

has no eventually positive (negative) solutions. Then every solution of (3.530)-
(3.531) is oscillatory.

Proof. Suppose to the contrary, let {u;;} be an eventually positive solution of
(3.530)-(3.531). From (3.530), we have

n n n n
> Doty = a; 3 Aty = pj D thija + 2. fije (3.533)
i=1 i=1 i=1 i=1
Since
n
Z A%u,;],j = Alun,]’ — Alu(),j = (h] — un,j) — (ul,j —gj) < hj +gj, (3.534)
i=1
then when a; > 0 for all large j, we have
n
Avi+pivig <aj(hj+g) + 2 fij =y (3.535)
i=1

for all large j, where v; = Y11, u; ;.
Similarly, if (3.530)-(3.531) have an eventually negative solution, then

AV]' tPpiVi-o 2 Vj (3536)

has an eventually negative solution, which contradicts condition (iii). The proof is
complete. ]
Now we will show some sufficient conditions for condition (iii).

Theorem 3.102. Assume that one of the following conditions holds.
(1) There exists a sequence {¢;} such that Ap; = y; for j = T,

liminf ¢; = —co, limsupg¢; = +o0. (3.537)
j—oo

j—oo
(2) Assume that

liminf¢g; = m > —co, limsupg; = M < oo,

Jj—oo

j—»oo
o o (3.538)
D Pi(9j-o—m), =00, > pi(M=9j,), = co.
j=T j=T

Then (iii) holds.
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Proof. Suppose to the contrary, let {v;} be an eventually positive solution of
(3.535). Then A(v; — ¢;) < 0 eventually.

For Case (1), ¢; always changes sign for sufficiently large j. Therefore there
exists a sequence jx — oo as K — oo such that v(jx) > ¢(jx), and hence v;—¢; >0
eventually, which implies that lim; . (v; — ¢;) = [ = 0 exists. This contradicts the
fact liminf ¢; = —co.

Similarly, we can derive a contradiction when (3.536) has an eventually nega-
tive solution.

For Case (2), let {v;} be an eventually positive solution of (3.535). As the
above A(v; — ¢;) <0, v; — ¢; > 0 eventually. Summing the inequality

A(vj =) +pjvjo <0, (3.539)

we obtain
> Piviog < . (3.540)
j=T

By the condition in Case (2), we have Z;iT pj = oo. Hence liminf; .o v; o = 0.
Set

hm (Vj - (/)J) =1>0. (3.541)

j— oo

We will show that [ = —m. In fact, for any & > 0 there exists T such that[ < v;—¢; <
I+eand hence —¢; <I+¢, j = T. Then

—-m = —liminf ¢; <[ +e. (3.542)
j—oo

On the other hand, there exists a sequence {jx} such that limg_. jx = co and
limg - vj; = 0.From (3.541), we have —¢(jk) > [-v(jk) and hence — liminfg .
¢(jx) = land so —m = I. We have proved that | = —m. From (3.541),v;—¢; > —m
and so v; > (¢; — m)y, j = T. Then

Vi-g > ((pj_g — m)+, ] >T+o. (3.543)

Substituting this into (3.540), we obtain

> pilgje—m), < oo, (3.544)

j=T+o

which contradicts the assumption. Similarly, we can prove that (3.536) has no
eventually negative solution. The proof is complete. O
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Corollary 3.103. Assume that (i) and (ii) of Theorem 3.101 hold. Further assume
that Condition (1) or Condition (2) of Theorem 3.102 holds. Then every solution of
(3.530)-(3.531) is oscillatory.

3.8. Multidimensional initial boundary value problems
3.8.1. Discrete Gaussian formula

Consider a sequence {uy,n} = {tm, m,,..m.n} Which is defined on Q X N,,,, where

1 1 1 o) (¢ ¢ ()
Q={p"pss . oy x - x it pd,. L, pi ) and every py) € Z.

Now we give some definitions for deriving the discrete Gaussian formula.

Definition 3.104. m is said to be an interior point of Q, ifm+12{m+, my, ..., me}
U---U{m,my...,me,mp+1Yandm—12 {m — 1,ma,...,mp} U -+ U
{my,my,...,me_1,me—1} areall in Q; Q°, which is composed of all interior points,

is said to be an interior of Q.

Definition 3.105. m is said to be a convex boundary point of Q, if m € Q and
at least ¢ points of m + 1 are in Q; m is said to be a concave boundary point, if
m,m + 1 € Q) but just one of the points {m; + 1,m, + 1,...,m, = 1} isnot in Q,
where {m; = 1L,my +1,...,mp =1} 2 {my+L,ma+1,...,mp+1} U {m — 1, my +
L...omg+1}U---U{m —1,my—1,...,mp — 1} € 9Q, which is composed of
all (convex and concave) boundary points, is said to be a boundary of Q.

Remark 3.106. If Q) is a rectangular solid net (its definition can be seen from any
book on the computation of partial differential equations), then dQ) is only com-
posed of all convex boundary points.

Definition 3.107. Q is said to be convex, if dQ is only composed of all convex
points.

It is easy to see that if () is a rectangular solid net, then Q) is convex.

Definition 3.108. m is said to be an exterior point, if it is neither an interior point
nor a boundary point.

Definition 3.109. m is said to be an allowable point, if at least two points of m + 1
are in Q.

Definition 3.110. Q is said to be a connected net, if Q is only composed of all
allowable points.

Remark 3.111. If Q is a rectangular solid net, then it is a convex connected solid
net.

We only consider in this section that Q) is a convex connected solid net.
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Definition 3.112. If m € 9Q is a convex boundary point of (), we define that the
normal difference at (m,n) € 0Q X Ny, is

ANum—l,n £ Z (Alum,n - Alum—l,n) = Z A%um—l,m (3545)
all m+1¢Q all m+1¢Q

where A; and A? are, respectively, partial difference operators of order one and of
order two.

We write V2 a discrete Laplacian operator, which is defined by
e
VU141 £ z A%umn,...,mxvq,mﬁl,mm,...,me,n+1’ (3.546)
i=1

where A? is a partial difference operator of order two.
Now we give the discrete Gaussian formula as follows.

Theorem 3.113 (discrete Gaussian formula). Let Q) be a convex connected solid net.
Then

D Viimoun = D, ANtmoi. (3.547)
meQ meoQ)

Proof. Because a convex connected solid net can be divided into several rectan-
gular solid nets, therefore we can only consider the latter case. Without loss of
generality, we let Q) £ (1,2,..., My} x - - x {1,2,..., M,}. In the following we
give only, for the sake of simplicity, the proof in the case of £ = 2,

2 _ 2 2
Z \Y Un—1n+1 = Z (Aluml—l,mz,rﬁ—l + Azuml,mz—l,rﬁl)
meQ) meQ)

= Z (uM1+1,m2,n+1 — UM, ma,n+1 — Ulimy,ntl + Uo,m,,n+1
meQ

+ Um ,Mr+1,n+1 — Um Myn+l — Umy,1,n+1 + uml,O,rH—l)

Z (Aluml,mz,nﬂ |M1:M1 = AUyl |Wl1:0
meQ)

+ Ayt iy ni1 |mz=M2 = Doty n1 |m2:0)

M,
= Z (Aluml,mz,nﬂ |M1=M1 = AUyl |m1=0)
WIz:1
M,
+ Z (AP 7R—— |m2=M2 = Doty my 1 |mz:O)'
mp=1

(3.548)
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Noting that the first term in the above is the sum of the normal differences on both
left and right boundaries and the second one on both upper and lower boundaries
of Q, we have that the equality (3.547) holds and complete the proof. |

3.8.2. Parabolic equations

Consider the nonlinear parabolic difference equations of neutral type of the form

AZ (um,n - Z rk,num,ntxk) + pm,num,n + Z pg;?,nﬁ(um,n—ﬁ;)
kekK i€l (3.549)

2 2
= @u VU1t + O QjnViUm-1ni1—y, form € Q, n € Ny,
jel

where I £ {1,...,I,}, J £ {1,...,Jo}, K £ {1,..., Ky}, Q is a convex connected
net.
We assume throughout this section that
(Hi) gn € Nyy — R*and g, € ] X Ny, — R*;
(HZ) pm,n € QX Nﬂo - R+) P:(fq),n el xQx Nﬂ() - R+) pn = minmeﬂ{pm,n})
Pin = minmeg{p%),n} fori € Iandn € N,;
(H3) 093 EKHNI,/siEIHNl andyj €] - Ny;
(H4) fi € C(R,R) are convex and increasing on R* \ {0}, ufj(u) >0 foru # 0
andieIand f(0) = 0;
(Hs) rx0 € KX Ny, = R and D jeg 1hn < 1.
Consider the initial boundary value problem (IBVP) (3.549) with the homo-
geneous Robin boundary condition (RBC)

ANUp—1,0 + Znptimn =0 on dQ X Ny, (3.550)
and the initial condition (IC)
Upmys = Um,s forng — 7 < s < ny, (3.551)

where 7 = max{a, i,y; :k € K, i€ Iand j € J} and gy, € 0Q X N,,, — R,

By a solution of IBVP (3.549)—(3.551) we mean a sequence {u,,, } which sat-
isfies (3.549) for (m,n) € Q X N,,, RBC (3.550) for (m,n) € dQ X N,,, and IC
(3.551) for (m,n) € Q X {ny — 7,np — 7+ 1,...,n0}. Similar to Chapter 2, by the
successive calculation, it is easy to show that IBVP (3.549)—(3.551) has a unique
solution.

Our objection in this section is to present sufficient conditions which imply
that every solution {u,,,} of IBVP (3.549)—(3.551) is oscillatory in Q) X N, in the
sense that there are no solutions to be eventually positive or eventually negative in
n.
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Theorem 3.114. Let hypotheses (H, )—(Hs) hold. Suppose that there exist two positive
constants B,C > 0 and an iy € I such that fi,(u)/u = C for u # 0 and p,, pi,n = B
forn € Ny,. If

n
. 1
limsup > Pins > & (3.552)
n—o s=n—Pi,

then every solution {uy, ,} of IBVP (3.549)—(3.551) is oscillatory in Q X Np,.

Proof. Suppose that it is not true and {u,, } is a nonoscillatory solution. Without

loss of generality, we may assume that there exists an n; € N, such that u,,, >0

for n € Ny,. Hence thm,n—o> tmyn—p; a0d thinn—y; > 0 for n € Ny, 4q 2 N,,.
Summing (3.549) over 2, we have

AZ( Z Umpn — Z Tk,n Z ”m,nak) + Z PmnUm,n +z Z pﬁriz),nﬁ(um,nfﬂ,-)

meQ) kekK meQ meQ i€l meQ

={qn Z vzum—l,nJrl + Z Qj,n Z vzum—l,nJrl—yj for (Wl, T’l) € QX an-

meQ j€l meQ
(3.553)
From (Hy), Theorem 3.113, and the Jensen’s inequality, it follows that
Z vzum—l,n-%—l = Z ANumfl,n+1
meQ) meo)
= - z Gmnt1Umnt1 <0 forn e Ny,
meoQ)
(3.554)
Z vzum—l,nﬂ—yj = Z AI\Il'{m—l,nJrl—yj
meQ) meo)
== Z Emn+1—y;Umn+1—y; < 0
meoQ)
forj € Jandn € N,
Z PmnlUmn = Pn Z Umn = |Qlpav, forn e N,, (3.555)
meQ) meQ)

where v, = (1/1Q[) >,neq tmn and | Q| is the number of points in Q, and

Z Pmn i umn B, Zpi,n Z ﬁ(um,n—ﬂi) Zpi,nfz<|Q| Z Um,n— /31)'0'

me) meq) meQ
(3.556)
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fori € I and n € N,,. Thus, we obtain by (3.553)—(3.556) that

A(vn - Z rk,nv,,,xk> + Zpi,nﬁ(vn,ﬁ[) <0 forn€N,, (3.557)
kek icl
where A is the ordinary difference operator.
Let
Wi =Vn— > TknVn-as- (3.558)
keK
We have by (Hs) and (3.557)
Aw, <0, Wy < V. (3.559)
This follows lim,,—... w, = L. We can prove that L > —oo. In fact, if L = —oo, then

vy is unbounded. Hence, there exists an n3 € N, such that

Wy, <0, Vi, = nzrzlnagcm V. (3.560)

It then follows from (Hs) that

Vg — Z Tk V- = Vi (1 - z rk,n) > 0, (3.561)

kek kek

which contradicts (3.560). Hence, L > — oo and is finite.
Summing (3.557) from n3 to n, we obtain

0<B Z fio("s—ﬁ,O) = Z Z Pi,Sfi(VS—ﬂ[)

§=n3 i€l s=n3

(3.562)

S_

M=

Aws = Wy, — Wyl < Wy, — L < 00,

S=n3

Therefore fio(vn,ﬁi()) is summable and lim,,—.« v, = 0 by (Hy). It then follows that
lim,— o w, = 0.
From (3.557) and (3.559), there exists an n4 € Nj, such that

Aw, + Zp,-,,,f,-(w,,_ﬁ[) <0 forn € N, (3.563)

iel
Moreover,

Awy + Dign fio (wn,/;io) <0 forsomeip €I, n € N,. (3.564)
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Summing (3.564) from n — f3;, to n, we have

Wil — Waop, + Z Piosfis(Ws—p,) <0 forn € N, (3.565)

s=n—Pj

Since Aw,, < 0 and f;, () is increasing on R* \ {0}, we have

n
Wnil — Wapy + fio Wn_p,) D, Pips <0 forn € Ny,

s=n—Pi,
( ) (3.566)
io (Wn—B,; u n
fiﬁo Z pio)s <1- M < 1.
anﬁi() szn—ﬁio 1/anﬁfl]
Hence CX(_, g Pips < 1 and
. $ 1
lim sup Z Dios = —=» (3.567)
n— 00 _ C
s=n—Pi,
which contradicts (3.552). This completes the proof. ]

Theorem 3.115. Let (H;)—(Hs) hold. Suppose that there exist C; > 0 and a B > 0
such that fi(u)/u = C; for u # 0 and pj,n = B for some iy € I. If

n
lim sup Z Z Cipis > 1, (3.568)

n=0  s=n-tijel

then every solution of IBVP (3.549)—(3.551) is oscillatory in Q0 X Ny, .

Proof. Let {uy,} be a nonoscillatory solution of IBVP (3.549)—(3.551). With-
out loss of generality, we assume that u,,,, > 0 for some ns € N,,. Hence, we
have o> hmn—p; and Umn—y; > 0 for n € Ny ir £ N,,. As in the proof of
Theorem 3.114, we know that (3.557)—(3.563) hold. Summing (3.563) from n — 8
to n, we have

Wil — Wn_p + Z Z Pisfilwsp) <0 forn € Ny, (3.569)

i€l s=n—f
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where f3 £ max;e; {Bi} and ng is sufficiently large. From (3.560), we have

Wnil — Wn_p + Zf,-(w,,,lg) Z pis <0 forn € Ny, (3.570)

i€l s=n—p
It follows that

Z fi(anﬁ)

n
RN pe= - Wil 1 forne N, (3.571)
el W g Wn-p

and Z?:n_ﬁ Yier Cipis < 1, which contradicts (3.568). The proof is thus complete.
O

Corollary 3.116. Assume that (H,)—(Hs) hold. If the difference inequality (3.557)
(resp., (3.563)) has no eventually positive solutions, then every solution {,} of
IBVP (3.549)—(3.551) is oscillatory in Q0 X Ny,.

3.8.3. Hyperbolic equations

We consider the nonlinear hyperbolic partial difference equations of the form

AZ |:5nA2 (um,n + Z rk,num,n—ak>:| + PmnUmn + Z p;(yl;),nﬁ(um,n—ﬂ,)

kek icl
c “ (3.572)

= anzum—l,rﬁl + Z qj,nvzum—l,n-%—l—yj) (m) f’l) SHOD Nﬂ()
j€l

with RBC (3.550) and IC (3.551).
We assume in this section that (H;)—(Hs) hold and
(Hg) sp € Nyy — R*\ {0} and 3,7, (1/s,) = oo.

Theorem 3.117. Let (H;)—(Hs) hold. Suppose that for any constant A > 0, there
exists an ig such that

Z pio:"ﬁo |:A(1 - Z rk,nﬁio>:| = . (3573)
n=ny keK

Then every solution of IBVP (3.572), (3.550), and (3.551) is oscillatory in Q X Ny,.
Proof. Let {u,,,} be such a nonoscillatory solution of IBVP (3.572), (3.550), and

(3.551) that u,,,, > 0 for some n; € N,, and n € N,,. Then we have u,, ,_q,,
Umn—p;> AN Upyp—y; > 0 for n € Nyir £ N,,, where i € I,je],and k € K.
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Summing (3.572) in the both sides over Q, we have, for (m,n) € Q X N,,

Ay |:5nA2< Z Ump + Z Tk,n Z um,nak>:|

meQ keK meQ)

+ Z Pm,num,n+z Z pﬁril),nfi(u’”’"_ﬂi)

meq) icl meQ
2 2
=qn z VoUm-1,n+1 +Z‘b',n z \% Um—1,n+1-y;-
meQ JjEJ meQ)

As in Theorem 3.114, (3.554)—(3.556) hold. Therefore, we obtain

A[snA <vn + Z rkmvnak>] + Zpi,nf,'(vn,ﬁi) <0 forn € N,,.

keK i€l

Let

Wy = Vy + Z TkonVin—ag-
keK

Then we have
w, >0, w,>v, forneN,,.
From (H,), (Hs), and (3.575), we obtain

A(sp,Awy) < — Zp,-,nfi(v,,_ﬁi) <0 forn€ N,

iel
which means that {s,Aw,} is decreasing. We claim that

suhwy, =0 forn € Ny,.
Consequently,

Aw, >0 forn € N,.

(3.574)

(3.575)

(3.576)

(3.577)

(3.578)

(3.579)

(3.580)

If it is not true, then there exists an n3 € N, such thats,,Aw,, < 0and s,Aw, >0
for n, < n < n3. Using (3.578), we have Aw,, < (1/s,)$n, AWy, for n € N, which

follows that

n

1
Wyl — Wpy < Spy AWy, Z — forn € Ny,.
n=nz °N

Then we have w,, < 0 as n — oo, which contradicts (3.577).

(3.581)
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We know from (3.578) that for some iy € I we have
A(suAwp) + pignfiy (Vap,) <0 forn € Ny,

which follows

A(snAwWy) + Pign fio (wnpi0 - z Thn—Bi, Vnﬁ,orxk> <0 forn € Ny,.

keK

From (3.577), (3.580), and (3.583), we have

A(snAWn) + Pign fio |:Wn_ﬁig (1 — Z rk’n_ﬂig):| <0 forné€N,,.

keK

Summing (3.584) from 3 to n and using (3.580), we have

Sut1AWpi1 — Sps Awy, + Z Pig,tfio |:Wn3—ﬁ,-0 (1 - Z rk,t—ﬁ,0>] <0.

t=n3 kek

By (3.578) and (3.579), letting n — oo in (3.585), we have

Z pio,l‘fio |:W"3—ﬁzo (1 - Z rkv“/jio):| < .

t=n3 keK
Let A = wy,—p, . Then we have
> Pintfi [A<1 - > ”k,tﬁ,-o)] < 0,
t=ns kek

which contradicts (3.573). Thus, this completes the proof.
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(3.582)

(3.583)

(3.584)

(3.585)

(3.586)

(3.587)

O

Remark 3.118. From the proof of Theorem 3.115, if the second-order delay differ-

ence inequality

A(spAwy,) + Cpi, (1 - rk,nﬁ[(])wnﬁ[l) <0, n>ns
keK

(3.588)

has no positive solutions, then the conclusion of Theorem 3.115 holds. Hence the
well known Ricatti technique can be used to derive some oscillation criteria for the

oscillation of IBVP (3.572), (3.550), and (3.551).
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Example 3.119. Consider the parabolic equation

1 P
AZ (um,n - Eum,n—l) + Umpp + zeimz um,nfieum’"fi
=q,V? + inV? form=1,2,...,M, n € N,

qn um—l,n+1 QJ,n um—l,nJrl—yj or m yLyeees , n o>
jel
(3.589)

where i > [(1/2)eM’ — 1], ([-] is the integer function) is an even integer, gn, qj,n,
and y; satisfy the hypotheses in Theorem 3.114.

We have r, = 1/2 < 1, pwu =1 > B, pji, = 2¢" > B, where B £
min{1,2e M}, f(u) = ue®, f(u)/u=e" =12 C,and

- . 1
D> prs=(i+1)2e™M > c=1L (3.590)

s=n—i

By Theorem 3.114, every solution of (3.589) is oscillatory. In fact, u,,, = (=1)"m
is an oscillatory solution of (3.589).

Example 3.120. Consider the hyperbolic equation

5n° — 181> + 10n + 12 y
2n—Dn(n+ D(n+2) ™2

1
Az |:I’IA2 (um,n + Eum,n,l)] + 3um,,, +

= @ VU1 + . GinViUm-1nr1-y, form=1,...,M, n € Ny,
j€l
(3.591)

It is easy to see that the conditions in Theorem 3.115 are all satisfied. Then
every solution of (3.591) is oscillatory. In fact,

—1)"
i = 21 (3.592)
n
is an oscillatory solution of (3.591).
Example 3.121. Consider the hyperbolic equation
n—1 1
A, [”AZ (um,n + 7um,n—l>:| + S Umn

n 2

+mB(n— 1) n’ —11n* —23n° —9n? +8n+4 ,,; (3.593)

2(n—1)2n2(n+1)2(n+2)32 Hmn-1

= anzumfl,lﬁl + Z q;’,nvzum—l,n+1—y]) m=1,...,M, n€ Nno-
j€l
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It is easy for one to see that (3.573) is false this time. In fact, (3.593) has a
nonoscillatory solution u,,, = m/n>.

3.9. Notes

The material of Section 3.2.1 is taken from Zhang and Yu [186]. The linearized
oscillation theorem for the partial difference equation (3.31) can be seen from
Zhang and Xing [184]. The results in Section 3.2.2 are adopted from Zhang [162].
The material of Section 3.2.3 is taken from Liu and Zhang [97]. The results in
Section 3.3.1 are taken from Zhang and Liu [173, 175]. The material of Section
3.3.2 is taken from Zhang and Liu [168]. The material of Section 3.3.3 is adopted
from Zhang and Xing [183]. The material of Section 3.4 is taken from Zhang and
Xing [181]. The results in Section 3.5.1 are taken from Zhang et al. [190]. The
contents of Section 3.5.2 are taken from Zhou [192], Xing and Zhang [159], re-
spectively. The material of Section 3.6 is adopted from Zhang and Saker [177].
The material in Section 3.7.1 is taken from Cheng and Zhang [42]. The material of
Section 3.7.2 is taken from Cheng et al. [40]. The material of Section 3.8 is taken
from Shi et al. [126].






Stability of delay partial
it :

4.1. Introduction

In this chapter, we consider the stability of delay partial difference equations. It is
well known that the conditions of the global attractivity of the trivial solution of
the ordinary difference equation

Xp41 — Xn + puXn—k =0, n=0,1,2,..., (4.1)

were obtained in [58, 179].
Consider the delay partial difference equation

Am+1,n + Am,nH - Am,n + Pm,nAmfk,nfl =0, (4-2)

where {Py,,}, 10 is a real double sequence, k, [ are nonnegative integers.
Let O = N_x X N_; \ N7 X Ny be an initial value set

Aij=¢ij, (,j) €Q, (4.3)

where ¢; j is a given initial function.

The sequence {A;;} is called the solution of the initial value problem (4.2)
and (4.3) if it satisfies (4.2) and (4.3). The (trivial) solution of (4.2) is said to be
global attractive if, for any given initial function {¢;;}, the corresponding solution
{Ai,]‘} satisfies lim,‘)jﬂoo A,‘)j =0.

The first question is that if (4.2) has the global attractivity, which is similar to
the ordinary difference equations mentioned.

In the following, we use the triangle graphical method and the induction
method to prove that, for any double sequence {P,,}, .o the trivial solution
of (4.2) is not globally attractive, that is, we can always construct a solution of
(4.2) which does not converge to zero.

We first consider a special case of (4.2):

Am+l,n +Am,n+1 - Am,n =0, mmn=0,1,2,.... (44)
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Theorem 4.1. The trivial solution of (4.4) is not globally attractive.

Proof. Let Agp=1, from (4.4), we have

Am,n = Am+1,n + Am,nﬂ’

mn=0,1,2,.... (4.5)

From (4.5), we can make the triangle graphs (see Figures 4.1 and 4.2).
Where [-] denotes the largest integer function, the triangle

B/A\C

satisfies A = B + C and the corresponding numbers in the two graphs are equal.
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We will prove the theorem by induction.

From Figure 4.2, we see that if Aoy = 1, then each number in line 1 exists, for
example, we can select 0 and 1. Suppose each number in line 7 exists and satisfies
Alnal,n-in2) = 1, that is, there is a number equaling 1 in the middle of the line
(e.g., line 2) and if there are two numbers in the middle of the line (e.g., line 3), we
can choose the number on the right side of the middle of the line to be 1.

Next we will prove that each number in line n+ 1 exists and there is a number,
which equals 1 in the middle of the line.

When # is even, let

Ala1)2), n41-[(n41)/2] = A2l n=[m2)41 = L. (4.6)

Since there is only a number which is independent in line # + 1, the equality
(4.6) can be regarded as the initial value. From (4.4), we get

Alnt)2141, n-[(n+1)2) = Aln/2)41,n-10/2) = Apn/2),n-n/2) — Aln/2), n—[n/2)+1
= Awnln-n2] — 1,

Alr1)/2)42,n-[(n41)21-1 = A1z, n-n21-1 = A2+ 1n-[n/21-1 = A2+ 1n—[n/2]>

An+1,0 = An,O - An,l)
Al D)2~ [(n1)/2142 = A2~ 1a-[n21+2 = A2l - Ln-[n21+1 — Aln2],n-[n21+1

= Apal-1a-[n2)41 — L,

Al,n = Al,nfl - Az,nfla

Agni1 = Ao — A
(4.7)

In the above equalities, we see that the first term of the right side is just the
corresponding value of line n and the second term is known by recurrence, so each
number of the left side exists and they are just the corresponding values of line n+1
and there is a number, which equals 1 in the middle.

When 7 is odd, similar to the above proof, we can obtain the same result.

Summarizing the above discussion, for any natural number n, each number
of line n can be confirmed by the triangle graphical method and there is a number,
which equals 1 in the middle, let

000 =1,¢901 = 1,002 =0,9003 = —1,..., (4.8)
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then by the triangle graphical method we can confirm a double sequence {A,,,}
which is a solution of (4.4) and satisfies the initial condition

Aoj=gojs j=0,1,2.... (4.9)

Obviously, {A,,} does not converge to zero when m, n converges to co, respec-
tively. The proof is completed. ]

Theorem 4.2. If I and k are nonnegative integers and are not equal zero at the same
time, then the trivial solution of (4.2) is not globally attractive.

Proof. Let Aoy = 1, assume {¢; ;} is an any given real sequence defined on the free
initial value set Q,, let

Am,n = QPm,n> (m,n) € Qa. (4.10)
From (4.2), we have
Am,n = Am+l,n + Am,n+1 + Pm,nAm—k,n—l- (411)

From (4.11), we can make a triangle graph (see Figure 4.3), where

satisfies A,,, = B+ C+ Py, ,D.

From Figure 4.3, we see that each number in line (1, 1) exists or is known, so
we choose an initial function such that Ag; = 1, that is, there is a number, which
is 1 in the middle of line (1, 1).

Suppose each number exists or is known upon line (1, 7) and there is a num-
ber which is 1 in the middle of line (1, n), that is, A[,/2),n-[n2] = 1, next we will
prove that each number exists in line (1,7 + 1) and line (0,7 + 1) and there is a
number, which is 1 in the middle of line (1,1 + 1).

When # is odd, let

Als1)2), nt1-[(141)2) = Aln2)41,n-[n2) = L. (4.12)
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From (4.11), we have
Al(n+1)/2)+1, n-[(n+1)2] = Aln/2]42,n-[n/2]-1
= Appl+1n-(n21-1 = Aln/2]+1, n—[n/2]
= Plua)t1n-(n2) - 1Akt (/2] 41, Ltn—[n/2] -1
= Apl+in-(n21-1 — 1 = Pl tn- (/2] - 1Akt (n/2)+1,~ n—[n/2] - 1>
An,l = An—l,l - An—1,2 - Pn—1,1A7k+n—1,—l+1)
An+1,0 = An,O - An,l - Pn,OA—k+n,—l)
(4.13)

Al 1)2] - 1= [(n+1)/2]42
= Al n-(n21+1 = A2l n-n2] — Al2l+1,n-[n/2)
= Plus2), n-tw21A—k+[n/2), —1tn—[n/2]

= Al n-(n2) = 1 = Plusal,n-(n21A—k+[n/2), ~l+n—(n/2)>

Ay =Arn1 — Az — ProciA ki, —1in-1»
AO,rH—l = AO,n - Al,n - PO,nA—k,fl+n-
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In the above equalities, the first term on the right side is just the corresponding
number in line (1, #) and is known, the second term is also known by recurrence,
the first factor of the third term is a coefficient and is also known, the second factor
of the third term is some number of every line upon line (1, ), so each number in
line (1,1 + 1) exists and the middle number is 1 (see (4.12)).

When # is even, similar to the above proof, we can obtain the same result.

Summarizing the above discussion, we can construct a solution {A,,,} of
(4.2) by the triangle graphical method such that there exists a subsequence {m;,, n, }
such that m, — oo, n, — co when r — oo and lim,_ A, », = 1. Hence the trivial
solution of (4.2) is not globally attractive. The proof is completed. O

The above result shows that there exists great difference between the par-
tial difference equation (4.2) and the corresponding ordinary difference equation
mentioned in the global attractivity. Therefore, in this chapter, we mainly consider
the local stability of the delay partial difference equations. In Section 4.2, we con-
sider the stability and instability of scalar PDEs. In Section 4.3, the stability of the
linear PDE systems is studied. In Section 4.4, the stability of some discrete delay
logistic equations will be considered. In Section 4.5, we present a result for the L
stability of a class of the initial boundary value problem. In Section 4.6, we con-
sider the stability of the reaction diffusion systems.

4.2, Stability criteria of delay partial difference equations

4.2.1. Stability of linear delay PDEs

Consider the delay partial difference equation
Uijr1 = QijUiyj + bijuij + piiligj = (4.14)

where o and 7 are nonnegative integers, and {a;;}, {b;;}, and {p;;} are real se-
quences defined oni = 0, j = 0.

By a solution of (4.14) we mean a real double sequence {u; ;} which is defined
fori = —o,and j = —7, and satisfies (4.14) fori = 0, j = 0.

Set O = N_; X N_;\Nj X Nj. Let the initial function ¢ be given on Q. Obvi-
ously, the solution of the initial value problem of (4.14) is unique.

Let

llpll = sup |§0i,j|- (4.15)
(i,j)€Q

For any positive real number H > 0,let Sy = {¢ | ll@ll < H}.

Definition 4.3. Equation (4.14) is said to be stable if for every ¢ > 0, there exists a
0 > 0 such that for every ¢ € S5, the corresponding solution u = {u;;} of (4.14)
satisfies

|uij| <& i,j € No. (4.16)
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Definition 4.4. Equation (4.14) is said to be linearly stable if there exists an M > 0
such that every solution u = {u;;} of (4.14) satisfies

|l/l,"j| SMH(p”, l,] € Np. (417)
Obviously, (4.14) is linearly stable which implies that it is stable.

Definition 4.5. Equation (4.14) is said to be exponentially asymptotically stable if,
for any § > 0, there exist a constant M; and a real number & € (0, 1) such that
¢ € Ss implies that

| Ujj | < M(;f] or ’u,‘,j | < Mé‘fi, 1,] S N(). (418)
More general, we will adopt the following definition of the exponential as-

ymptotic stability.

Definition 4.6. Equation (4.14) is said to be strongly exponentially asymptotically
stable if, for any & > 0, there exist a constant M and two real numbers &, € (0,1)
such that ¢ € S5 implies that

luij| < Ms&'n?, i, j € No. (4.19)

Let V(u,i, j) : RXNj — R" = [0, 00). If for any solution {u; ;} of (4.14), there
exists a constant ¢ > 0 such that

V(ui,j) = cluij|, (i,j) € N3, (4.20)

then V' (u,1, j) is said to be a positive Liapunov function.
The following lemma is obvious.

Lemma 4.7. If there exist a positive Liapunov function V(u,i, j) and a constant
M > 0 such that

where {u;j} is a solution of (4.14) with the initial function {¢;;}, then (4.14) is
linearly stable (and hence stable).

Let A,',j = Iai,]-l + ‘bi,j‘ + |Pi,j| for any l,] (S N(), and

Qjj+1 = i jr1Air1,j bij+1 = bij1Aij. (4.22)
Theorem 4.8. Assume that there exists a constant C > 1 such that
|ai,o|+|bi,0{+|pi,o|ﬁc, i € Ny,
. (4.23)
|E,~,j|+|b,~,j|+|p,~,j|s1, iENo,jZl.

Then (4.14) is linearly stable.
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Proof. For a given solution {u;;} of (4.14), let
V(u)l)]):m%x|ul,1|) ]ZO) Wu(_]):V(u)l)])
1=
From (4.14), we have

|Mi,1| =< <ai,o| |Mi+1,o| + |bi,0| |ui,0| + |Pi,o| |ui—o,—‘r|

< (laio| + [bio| + | pio]) llgll < Cllgll.
Hence w,(1) < Cll¢l|. Therefore,

|Mi,2| =< |lli,1| |Mi+1,1| + |bi,1| |Mi,1| + |pi,1| |Mi—a,1—r|

=< |¢1i,1 | (|ai+1,0| |Hi+z,0| + |bi+1,0| |Mi+1,o| + |Pi+1,0| |ui+1—a,—‘r |)

+ [ bi | (laio| [wivro| + | bio| [uio| + | piol [ti-o,—< )
+ |Pi,l | |ui—a,1—1|

< (la| +bir] + | pirl) - Clioll.
Thus w,(2) < Cllgll.
Assume that for some fixed integer n > 1,
wu(j) < Clloll, j=<n.

Then we can obtain
| Ujn+1 | < |ai,n | | Uitl,n | + | bi,n | | Uin | + |pi,n | | Ui—g,n—1 |

< ([@n| + [bin| + 1 pinl) - Cligll < Cligll.
By induction, w,(n + 1) < Cl|¢|| for n = 0. Hence
luij| < wu(j) < Cligll, (i, j) € Ng.
The proof is completed.
Example 4.9. Consider the partial difference equation
Uijr1 = Gijuiv1,j + bijuij + pijtio1j-1,

where

1

1 1 |
aij= 5+ (D5, bij=g pij=g ()€ NZ.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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It is easy to see that |ay; j| + |ba; | + [ p2ijl = 1.25 > 1 for any i € Np. It is easy to
obtain

3 ..
Ai,j = Z + P > 1)] € NO)
3 (-1) .
ol + [bol + 1ol =2+ <22 iem,
(4.32)
_ 1 (=1
Qij+1 = Aij+14ir1,j = 3™t ( 8) ,
_ 3 1
bijs1 = bijnAij = 3" (_l)lré'
Then
a b _u 2, €Ny, j=0 4.33
|ai,j+1| + | i,j+1| + |Pi,j+1| = §+(— )E’ 1€ No, = 0. (4.33)
By Theorem 4.8, we can conclude that (4.30) is linearly stable.
If (4.23) does not hold, then we can obtain the following result.
Theorem 4.10. Let
do = max {[aio| + [bio| + [ pio[},
_ ) _ (4.34)
dj = I{IZ%X{W:',H +1bijl + [pijlh =1,
and d; = max(1,d;) = L +rj for j = 0. If
Z rj<oo, rj=0, (4.35)
=0

then (4.14) is linearly stable.

Proof. For a given solution {u; ;} of (4.14), let w,(j) be defined in (4.24) and
wu(j) = max |u;j|, j=-1 (4.36)
1=—0

It is easy to obtain w,(j) < w,(j) forany j = 0 and
wu(j) < llpll, —-t=<j<0. (4.37)
From (4.14), we have
[uin | < |aio| [uivro| + [bio| [uio| + [ piol | ttig, |

(4.38)
< (|a,;0| + }bi,0| + |p,',0 |) - max {Wu(O),Wu(—T)}.
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Hence in view of d; = 1 for any j = 0, w,(1) < doll¢ll. Similar to the proof of
Theorem 4.8, we have

|u,',2| < (|ﬁi,1’ + |Ei,1} + |Pi,1|) + max {WH(O),WM(I - T),Wu(*‘[')}. (4.39)

Hence w,(2) < didollll.
Assume that for some fixed integer n > 1,

j—1
wy(j) < Jl_[d,-lkpll for j < n. (4.40)
i=0
Then we can obtain
| i1 | < |@in| |tivrn] + [Oin] [tin| + | pin| | thi-gn-|
< lain| (|aiipo1 | |uG+2,n=1)| + [ bisipor | | tir1n-1 ]
+ }pi+1,n—1| |ui+1—o,n—1—‘r |)
+ | bin | ([ @in-1 | [tivrn-1 | + [Bin-1 [ [tin-1 | + | pin-1 | | tion-1-2])
+ | pin| | thizgn—|

< (|@in| + |bin| + | pinl) - max {W,(n — 1), W, (n — 1), Wu(n — 1 - 1)}

(4.41)
Hence by induction, W, (n) < [1/=, d;ll¢|l for n = 0. Thus
n—1 n—1
Inw,(n) <Inllel + Z Ind; = In|l¢ll + Z In(1+ rj)
j=0 j=0
1 (4.42)
<Inllgl+ > rj <Inligl+ > 7,
j=0 j=0
and hence,
wy(n) < |l exp ( > rj) = Mlloll, (4.43)
j=0
where M = exp(3.;Z, ;). The proof is completed. O

Letﬁ,-,j = Iai,jl + ‘b,‘,j‘ +€7T|pi)j| for any l,] € Ny and

Aij+1 = Qij+14ir1,j> bij+1 = bij+14i . (4.44)
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Theorem 4.11. Assume that ¢ = 0, T > 0, and there exist a constant C > 1 and a
constant & € (0, 1) such that

|a,‘,o| + |bi,0{ + |pi,0| <C, i€ N(), (4 45)
|@ij ] + || +E7 iy <&, i€Ny j=1, '

then (4.14) is exponentially asymptotically stable.

Proof. Let V(u,i, j) and w,(j) be defined in (4.24), then for any § > 0 and ¢ € Ss,
there exists a constant My > CE~!||¢]| > 0 such that

|ui,1| =< |€li,o| |Mi+1,o| + |bi,0| |ui,0| + |Pi,0| |ui—a,—r|
(4.46)
< (laio| + [big| + | pio]) llgll < Msé.

Hence w,(1) < Msé. Therefore,
|Mi,2| = |ai,1| |ui+1,1| + |bi,1| |Mi,1| + \Pi,1| |ui—a,1—‘r|
= |ai,1 | (<ai+1,o| |ui+2,0| + |bi+1,0| |ui+1,o< + |Pi+l,0| |ui+l—o,—r|)
+ | bin | (|aio| [uivro] + |bio| |uio| + | piol [thio—<|) + | pin | | 1i1—x |

< (@] + b | + | pir D llgll < Ms&2.

(4.47)

Hence w,(2) < M3&2. In general, we have
wu(j) < Ms€l, i€Np 0<j<t (4.48)

Assume that for some fixed integer n > 7,
wu(j) < Ms&l, i€ Np, 0<j<n. (4.49)

Then we can obtain
|tinir | < [ain| [tizin| + | bin| [thin] + | pin] |thi-gn |
~ (4.50)
< (@in| + [bin| +E ™ pin|)Ms&"H < Mp&™.

By induction, we have w,(n) < Ms&" for n > 0. The proof is completed. O

Now we consider the case 0,7 > 0.
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Let

={(,j)10<i<o0,0<j <1}

{
{Gj)lo<i<o, j>1],

(4.51)
{
{

Lj)lizo, 0<j=<1},

D,
D,
Ds
Dy GG,j)li=o0, j>1}

Obviously, D, is a finite set, D,, D3, and Dy are infinite sets, Dy, D3, D3, and Dy are
disjoint, and

NZ =Ny x Ny = Dy + Dy + D3 + Dy, (4.52)
where A + B denotes the union of any two subsets A and B of Z2.
Theorem 4.12. Assume that there exists a constant & € (0, 1) such that

laij| + |bij| +f_j|Pi,j| <& (i,j) € Dy, 453
4.53
laij| + |bij| +& 7| pij| <& (i,j) € Ds+ Dy,

then (4.14) is exponentially asymptotically stable.

Proof. For a given solution {u; it of (4.14), it is obvious that there exists a constant
6 > 1 such that

|a1‘,]‘| + |b,‘)]‘| +f77|p,‘)]‘| <0, (i,j) € D;. (4.54)

Let
B, = i 4.55
1 (I{B?f)l {ul,]} ( )

then B is a finite constant. For the given £ € (0,1), any § > 0 and ¢ € Sy, it is easy
to see that there exists a positive constant M; > B;&~""! > 0 such that

|uij| < Bi < Mi&™', (i, j) € Di. (4.56)
For j = 0 and any i = o, then (i, j) € Ds, and there exists a positive constant
M, = max {{ ' lgll, Ollpll, My} (4.57)
such that
luin | < laio| [uivro] + [biol [uio| + | piol |tio, <

(4.58)
< (laio| + [big| + | piol) llgll < MyE2.
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Assume that for some fixed positive integer 0 < n < 7 and any i > g,

luij| < MxE™, 0<j<nizo
Then (i,n) € Ds,

| Uin+l | =< |ai,n | | Uitl,n | + | bi,n | | Uin ! + |Pi,n | | Ui—gn—7 |

< (|ain] + | bin | )ME™ + | pin] llgll < MpE™2.

Hence by induction, we have
luij| < MEY for0<j<t+1l,izo0
Let My = max{0M;, OM,}, then from (4.56) and (4.61), we have
|uij| <Ms&/, (i,j) € Dy + Ds.
In view of (4.56) and (4.61), we have, for 0 <i < o,

| Uir+1 | < |ai,1 | | Uitl,r | + | bi,T | | Ujr | + |pi,'r | | Ui—0,0 |

< (lair| + | bir | )ME™ + | pic | lloll < MsE™ .

Hence
luij| <Ms¢/, 0<j<t+1,i=0.
Let

D, =1{(,j)1i=0,0<j<7t}=D;+Ds,

Di={Gj)1i=0, (k-Dr<j<kr}, k=2,3...

then from (4.62), we have
|uij| <Ms¢/, (i, j) € D.

Assume that for some fixed positive integer k > 0,

k
luij| < Ms&l, (i) € | D

s=1

In the following, we will assert that

|ui,j | = M(sfj) (11]) € 5k+1)

259

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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holds. For any i > g, we have

|”i,k‘r+l| = |6li,kr| |ui+1,k1| + |bi,kr< |ui,k1| + |pi,kr| |ui—a,(k—1)r|

§ . (4.69)
< (laige | + | bige | +E77| pike | ) MsE*™ < MsE*™1;
and forany 0 < i< g, ifk = 1, then
|ui,k‘r+l| = |ai,k1| |ui+1,kr| + |bi,kr< |ui,kr| + |pi,k‘r| |ui—0,(k—1)r|
(4.70)
< (|aige | + [Bige | +EF| pijer | ) MEFHT < MR,
if k > 1, then
Uikr+1 | = |Gikr | | Uit kr ikt | | Wikt ikt | | Yi-o,(k—1)T
| | < laik] | | + [biger | [tiee | + | piec | | |
L . . (4.71)
< (|aike | + | bike | +E5| pigr | ) Mo < MsEFT.
Hence
luij| <Ms&/, 0<j<kr+1,i=0. (4.72)

Especially, | fr+1] < MsEFT+1 for any i > 0.
Assume that for some fixed positive integer kt < n < (k+ 1) and any i > 0,

luij| <Ms&/, kr<j<n,i=0. (4.73)
Then for any i > o, (i,n) € Dy. In view of (4.67), we have

’ Uin+1 ’ < |ai,n | | Uit1,n | + | bi,n | | Uin | + |pi,n | | Ui—gn—1 |

(4.74)
< (lain| + [bin| + &7 pin|)MsE" < Mo§™.
Hence by induction, we have
luij| <Ms&/, iz0,kr<j=<(k+Dr. (4.75)
Thus we have
) k+17
luij| < Ms&, (i, j) € [JD. (4.76)

s=1

By induction, we can see that (4.67) holds for any positive integer k > 0. Since

D, (4.77)

s

N =Dy +Dy+---=

s=1
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then we can obtain
luij| < Ms&?, (i, j) € Ng. (4.78)

The proof is completed. U

If the assumption of Theorem 4.12 does not hold, then we have the following
result.

Theorem 4.13. Let T > 0 and let & € (0, 1) be a constant,
Aij = laj| +bij| +E7 i (4.79)
foranyi, j € Ny, and
aj,j = ai,jA\i+1,j—1: Ei,j = bi,jA\i,j—l (4.80)
forany i € Ny and j > 0. Assume that there exists a constant C > 1 such that
laio| + |bio| + | pio] < CE i€ Ny,
|@ij| + [bij| +E7 | pij| <&, (i,j) € Dy, (4.81)
|| + |bij| +& ™ pij| <&, (i,j) € D3+ Da.
Then (4.14) is exponentially asymptotically stable.
Proof. Similar to the proof of Theorem 4.12, for a given solution {u;;} of (4.14),
the given £ € (0,1), any § > 0 and ¢ € S;, there exists a positive constant M; >
&2l gl such that
luij| < Mi&*2, (i, j) € Dy (4.82)
It is obvious that there exists a constant 8 > C&~2 such that

|Ei,]~| + {Ei,j| +£_T+l|p,',j| SAEZ, 0<i<o, 0<jST, (483)

where A is a constant. For j = 0 and any i = o, then (, j) € D3 and there exists a
positive constant

M, = max {CE 2|, M1, E " Hlgll,0Cl ol } (4.84)
such that
|Mi,1| = <ai,0| |Mi+1,0| + |bi,0| |Mi,0| + |Pi,0| |ui—0,—r

(4.85)
< (laio| + [big| + | piol) llgll < ME.
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Therefore,
luia| < lain | {uivra |+ [bin] Juin | + | pin | |tio1—<]
< lair | (Jaio] [0 | + [bivro| [tivro| + | pivio | [tis1-0,<|)
+ 1 bi1 | (laio | [uinro] + [bio| [uio| + | piol [ti-o <)
+ | pin | | thig1 |

< (@] + [bir | + | pir ) llpll < MpE™.
(4.86)

Assume that for some fixed positive integer 1 <# < 7 and any i > o,
luij| < MxE*?, 1<j<nmizo. (4.87)
Then (i,n) € D3 and
| timer | < @in| [tivin| + |bin] [tin] + | pin| | ti-on—<]
< |ain| (@i | [tivon1 | + [biinr | [ thivin1]
+ |pi+1,n71 | |ui+1—o,n—1f‘r |)
+ | bin| (|@in-1| [tivin1 | + [Bin1 | [thin1 | + | pinr | [thimon1-1])

+ |pi,n | | Ui—gn— | .
(4.88)

Thus from (4.82) and (4.88), we have
| i1 | < |ain] (|Gisrn-1] + | bivipo1 | + &7 pivin-1|) MaE™!
+ [bin| (lain=1| + |bin—1 | +E | pin-1 | ) ME™ + | pin| ol

< (|in | + [bin| + &7 pia [)MaE™ < MpE™.

(4.89)
Hence, by induction, we have
luij| <M, 0<j<t+lizo0 (4.90)
Let Ms = max{OM;, 0M,}, then from (4.82) and (4.90), we have
|uij| <Ms&/, (i, j) € Dy +Ds. (4.91)

In view of (4.82)—(4.91), we have for 0 < i< o,

[tiger | < (|Gic| + | bic | ) M2ET + | pic | ll@ll < MsE™ < MpE™L (4.92)
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Hence in view of (4.90),
luij| <Mséi, 0<j<7+1,i20. (4.93)
Let the subsets {Dx} of Z? be defined by (4.65), then from (4.93), we have
luij| < Ms&/, (i, j) € Dy. (4.94)

Assume that for some fixed positive integer k > 0,

k
luij| <Ms¢/, (i,j) € | D (4.95)

s=1

Then from (4.88) and (4.95), for any i > g, we have
|tikest | < (|Bige | + [Bige | + E pige | ) MoEF™1 < MsEFY; (4.96)

andfor0 <i<o,ifk = 1, then

|tiker1 | < (| @ik | + | Bike | +EF pise | ) MREFTT < MsEFT, (4.97)
if k > 1, then
|tirst | < ([@ige | + [Bige | +EF piger | ) MsET < MsEFTH, (4.98)
Hence
|uij| <Ms¢/ for0<j<kr+landanyi=>D0. (4.99)

Assume that for some fixed positive integer k7 < n < (k+ 1)7 and any i = 0,
|uij| <Ms¢/ forkr < j<nandanyi= 0. (4.100)
Then for any i > o, from (4.88) and (4.95), we have
[tine1 | < (|@in| + [Din] + & pin | ) MoE" ! < MsE™ s (4.101)
and for any 0 < i < g, we have

|tiper | < (|Gipn| + i | +E pin| )MsE™! < Mg, (4.102)
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Hence by induction, we have

luij| < Msél, i=0,kr<j=<(k+Dr (4.103)
Thus we have
) k+1
|uij| < Mst/, (i) € | JD. (4.104)

s=1
Hence by induction, we can obtain
luij| < Ms&/, (i, j) € N¢. (4.105)
The proof is completed. U
Example 4.14. Consider the partial difference equation
Wije1 = @i jtist,j + bijttij + Pijuiog,j-1, (4.106)

where

1 1 1
aj=5  bij= Py = ghr

(4.107)
Since ¢ = 1 and 7 = 1, Theorem 4.11 cannot assert that (4.106) is exponentially
asymptotically stable.

But if we let & = 7/8, then for any (i, j) € D,, we have

= 1 1 777 1 43 7
|a,‘)j|+|hi,j|+fj|p,‘,j|:E+Z+§-8J+lS%<§ZE, (4.108)
and for (4, j) € D3 + Dy, we have
_ 1 1 8 1 43 7
|“i,j|+|bi,j|+£1|pi,j|:E+Z+§'8j+15%<§:£- (4.109)

Hence (4.53) holds, by Theorem 4.12, (4.106) is exponentially asymptotically sta-
ble.

Example 4.15. Consider the partial difference equation

Uij+1 = GijUit1,j + bi,jui,j + pijUi-1,j-1> (4.110)
where
1 (=1 1 1
aij =5+ bij = 3’ pij = g (4.111)
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It is obvious that

5 5 (=1)
7 = lajl b+ pijl = 5+ ==

(i, j) € N§. (4.112)

Hence (4.53) does not hold. Thus Theorem 4.12 is not applicable to (4.110). But
it is easy to see that for & = 7/8,

n _ 5 (=1) 1
Ai,j=|ai,j|+|bi,j|+f1|Pi,j|=§+ St

L ~ 1 (=1) 1 (-1 1
|“i,j| = |ai,in+l,j| =16 + 16 + 4.3 + 1.8 < -, (4.113)

T ~ 5 (=1) 1 3
[ij | = b | = G+ g 775 = 16

Hence for any (i, j) € D,

_ - s 9 7

(@l + oy [ +E7 | pijl = 1o = 3 (4.114)
for (l,]) € D3 + Dy,

_ - _ 9 7

[Gij| + |bij| +¢& 1|Pi,j|5E<§ (4.115)
It is obvious that for any i > 0,

_ - _ 9 7

@i |+ [bio| +& [ pio] = 7o = 5 (4.116)

Therefore, by Theorem 4.13, (4.110) is exponentially asymptotically stable.
Theorem 4.16. Assume that there exist &, 1 € (0, 1) such that
Elaij| + |bij| +E 0 " |pijl <n, (i) € Ng. (4.117)
Then (4.14) is strongly exponentially asymptotically stable in the meaning
luij| < MllpllE'n/, (i, ) € N§. (4.118)
Proof. Let h;; = &'n/. We consider the equation
hi,j+1ui,j+1 = ai,jhi+1,jui+1,j + bi,jhi,jui,j + pi,jhi—o',j—‘[uifg)jf‘r) (4.119)
which equals to

uijr = [Eaijuin,j + bijui;+ &0 pijuioe - (4.120)
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In view of (4.53) and Theorem 4.8, (4.119) is linearly stable. Hence

luij| < MllgllE'y’, (i, j) € Ng. (4.121)
The proof is complete. O

Example 4.17. Consider the partial difference equation

1 1/13 1 1
Ut (= m ——Jwij — ——————wi 2 2 =0, (4122
16 it T Hi 4( 8§ itj+ 1)”””‘ 64i+j+1) 22 (4.122)
where
il =1 Il =3(5-57) el - g
T 16 T a8 i+t T 64+ j+1)
(4.123)
Let{ = = 1/2. Then
1 13 1
-2, -2 _ _
E|a,',j|+|b,~,]~|+f n !pi,j|—§+§<5—ﬂ. (4.124)
By Theorem 4.16, the solutions of the above equation satisfy
luij| < Mllgll2=), (i, j) € Ng. (4.125)
Now, we consider the instability of (4.14).
Let Bij = |a; | + |b;j| for any i, j € Np, and
dij+1 = aijr1Bir) zi,jﬂ = bij11Bi;. (4.126)

Theorem 4.18. Assume that for some constant r > 1, one of the following conditions
holds.
(1) ai,j >0, bi,j >0, Pi,j > OfOT i,j € Ny, and
aio + b,‘)o >, 5,-,; + ’l;i,j > 7’2, i € Ny, ] > 0. (4.127)
(i) a;j <0, bi; =0, pi; =0,i,j €Ny, 0iseven and

—aigtbig=r, —d;+bj=r i€Ny j>0. (4.128)

(iii) aij <0, b;j =0, p;; <0, 0isodd and (4.128) holds.
(iv) a;j =0, b;; <0, p;; =0, 0+ 7isodd and

aio — b,‘,o =7, 5,»)1- - zi,]‘ = 1’2, i € Ny, ] > 0. (4.129)
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(v) aij=0, bj <0, pjj <0,0+7iseven and (4.129) holds.
(vi) a;; <0, bjj <0, p;j =0, Tisodd and

—aijo — b,‘)o =7, _5i,j - Z,;,- > 7'2, i € Ny, ] > 0. (4.130)

(vii) a;j <0, b;j <0, p;j <0, 7iseven and (4.130) holds.
Then (4.14) is unstable.

Proof. In the following, we only give the proof for cases (i), (ii), (iv), and (vi). The
other cases can be proved by the same method.
If (i) holds, we take ¢; ; = & > 0 for (i, j) € Q; from (4.14), we have
Uin = Aiplis1,0 + biolio + PioUi-o,—r = 0 (aio + bip + pio) = 6r > 0. (4.131)
Hence from (4.14), we can obtain
Uiz = aitis) + bty + pintlig1 -+

= a;1 (air1,0Uiv2,0 + biv1,0Uis1,0 + pi+1,0ui+170,71)

(4.132)
+ bi (@ioivi0 + biolhio + Piolhi-o,-7) + Pitthi-o,1-x
> §(&1 + biy) = 62 > 0.

Assume that for some fixed integer n > 0,
uyj = 8rl >0, i€Np 0<j<n (4.133)

Then from (4.14), for any i € Ny, we have
Uil = Biplhisrn + binlhin + Pinlhi-g -z = Or" (& + zi,n) > §r™tl, (4.134)

By induction, we have

uij = 0rl, i,j €Ny (4.135)

Obviously, u;j — oo as j — oo for any § > 0, then (4.14) is unstable.
If (ii) holds, we take ¢; ; = (=1)i8 for (i, j) € Q. From (4.14), we have

Uit = aiotiv1o + biothio + piothi-o,—r = (=1)'8( — aip + bio + pio), i€ No.
(4.136)

Hence (—1)'u;; > 0 for i € Ny, and

|uia | = 8( = aio + bio + pio) = 0r, i€ No. (4.137)
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Assume that for some fixed integer n > 0,

(‘Uiui,]‘ >0, i=-0,-T<j<n,
; (4.138)
|uij| =6rl, i=0,0<j=<n

Then from (4.14), we obtain

Uin+l = AinUitrin + bi,nui,n + pi,nui—a,n—‘r
= ai,n(ai+l,n—lui+2,n—l + biv1, -1 Uir1p-1 + Pi+1,n—1ui+1—a,n—1—r)

+ bi,n(ai,n—lui+1,n—1 + bi,n—lui,nfl + pi,nflui—a,n—lf‘r) + pi,nui—a,n—‘r-

(4.139)
Hence (—1)u; 11 > 0 for i > 0, and
|tiner | = 8" V(= @i+ bip) = 8™, i 0. (4.140)
By induction, we have
|uij| = 6r/, i,j € N. (4.141)

Then (4.14) is unstable.
If (iv) holds, we take ¢; j = (—=1)"/§ for (i, j) € Q. From (4.14), we have

1 )
uin = aioUiv1,0 + biolip + piolhi—g—1r = (=18 (aio — bip + Pi,o), i € No.

(4.142)
Hence (—1)™'u;; > 0 for i € Ny, and
|uin| = 8(aio — big + pig) = Or, i€ No. (4.143)
Assume that for some fixed integer n > 0,
(-D™uj>0, i=-0, -1<j<n,
(4.144)

|uij| =6r/, i=20,0<j=<n
Then from (4.14), we obtain (4.139). Hence (—1)™*"*'u; ,;; > 0 for i € Ny and
|t | = 87" (@i — i) = 07", i= 0. (4.145)
By induction, we have
luij| = dr/, i,j€No. (4.146)

Then (4.14) is unstable.
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If (vi) holds, we take ¢; ; = (—1)/8 for (i, j) € Q. From (4.14), we have

Uiy = aioUiso + biolio + pioti-o—r = —0( — aio — big + pio), i€ No.

(4.147)
Hence —u;; >0 for i € Ny, and
|uia| = 8( = aio — bio + pio) = 0r, i€ N. (4.148)
Assume that for some fixed integer n > 0,
(-Du;; >0, iz-0, -T<j<n,
(4.149)

|uij| =6r/, i=20,0=<j=<n

Then from (4.14), we obtain (4.139). Hence (—1)""u; ;41 > 0 for i € Np and

~

[tipir | = 8" (= Gy — biy) = 6™, iz 0. (4.150)

By induction, we have
luij| = 8r/, i,j€No. (4.151)
Then (4.14) is unstable. The proof is completed. O

Remark 4.19. We compare conditions of Theorem 4.8 for the stability and condi-
tions in Theorem 4.13 for the instability to find that there is a gap between them.
How do we fill this gap? That is an open problem.

Similarly, we can prove the following result. Let

1/3\,‘,]‘: |a,~,]~|+|bi,j|+r’f|p,-,j|, i,jGNo,
(4.152)

aij+1 = 4i,j+1Bis1,j bij+1 = bij+1Bi;.

Theorem 4.20. Assume that 0 = 0 and T > 0. Let for some constant r > 1, one of the
following conditions holds.
(1) aij = 0, bi,j >0, pij = OfOT’ l,] € Ny, and

|ﬂi,o| + |bi,0| + | i,0| =7,

p
B _ (4.153)
|E,~,]-|+|b,~,j|+r’”1|p,~,j| 2r2, iENo,j>0.

(ii) a;j <0, bj; =0, pij = 0fori,j € Ny, 0 iseven and (4.153) holds.
(iii) aij <0, b;j =0, p;; <0, 0isodd and (4.153) holds.

(iv) a;j =0, bi; <0, pij =0, 0+ 7 isodd and (4.153) holds.

(V) aij=0, bj <0, pij <0, 0+ 7 iseven and (4.153) holds.
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(vi) a;; <0, b;; <0, p;j =0, 7is odd and (4.153) holds.
(vii) a;j <0, b;j <0, p;j <0, 7iseven and (4.153) holds.

Then (4.14) is unstable.

Example 4.21. Consider the partial difference equation

Uij+1 = GijUir1,j + bi,jui,j + pijUi-2,j-1> (4.154)
where
3 (=1) 3 1
aij = 2 + > bij = e pij = 3 (4.155)
It is easy to see that
3 (-1
Bij = |aij| + | bij] =57( 2). (4.156)

From (4.155) and (4.156),

~ 7 ;3
aij = aijn By = — g+ (=)',

(4.157)
bij = biji1Bij = % - (—1)’%,
and hence
it b =2+ (—l)l% > Z > 1. (4.158)

Thus condition (ii) of Theorem 4.18 holds. By Theorem 4.18, (4.154) is unstable.

4.2.2, Stability of linear PDEs with continuous arguments

Consider the partial difference equation with continuous arguments of the form

u(x, y +1t) = alx, y)ulx +s,y) + b(x, y)u(x, y) + p(x, y)ulx — o,y — 1),
(4.159)

where s > 0, t >0, ¢ and 7 are nonnegative constants, a(x, y), b(x, y), and p(x, y)
are real functions defined on x > 0 and y = 0.

By a solution of (4.159) we mean a real function u(x, y) which is defined for
x = —cand y = —7, and satisfies (4.159) for x = 0 and y > 0.

Let h be a real number, R = (—o, ), Ry, = [h,+),and Q = R_; X R_; \
Ry X Ry. It is easy to construct by iterative method a function u(x, y) which equals
¢(x, y) on Q and satisfies (4.159) on Ry X Ry. Obviously, the solution of the initial
value problem of (4.159) is unique.
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For any initial function ¢(x, y) on Q, let

loll = sup |o(x,y)]. (4.160)
(x,y)EQ

For any positive real number H > 0, let Sy = {¢ | ll@ll < H}.
Stability and exponential asymptotic stability are defined as follows.

Definition 4.22. Equation (4.159) is said to be linearly stable if there exists a con-
stant M > 0 such that every solution of (4.159) satisfies

lu(x,y)| <Mllgll, x,y € Ry. (4.161)

Equation (4.159) is said to be stable, if for any given & > 0 there exists a § > 0 such
that ¢ € S implies that the corresponding solution u(x, y) satisfies

lu(x,y)| <& x,y € Ry. (4.162)

From the above definition, it is obvious that (4.159) is linearly stable which
implies that it is stable.

Definition 4.23. Equation (4.159) is said to be exponentially asymptotically stable
if, for any § > 0, there exist a positive constant M; and a real number & € (0,1)
such that ¢ € S5 implies that

lu(x, y)| < Ms&, x,y € R, (4.163)
where u(x, y) is a solution of (4.159) with the initial function ¢(x, y).

Let V(u,x,y) : RX R§ — R* = [0, 00). If for any solution u(x, y) of (4.159),
there exists a constant ¢ > 0 such that

V(ux,y) = clulxy)], (xy) €RE, (4.164)
then V' (u, x, y) is said to be a positive Liapunov function.
The following result holds obviously.

Lemma 4.24. If for any solution u(x, y) of (4.159) there exist a positive Liapunov
function V(u,x, y) and a constant M > 0 such that

V(u,x,y) <Mlgll, (x,y) €R}, (4.165)

where u(x, y) is a solution of (4.159) with the initial function ¢(x, y), then (4.159)
is linearly stable.
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Theorem 4.25. Assume that

la(x, )| + |b(x, y)| + | p(x,¥)| <1 Vx,y €Ro. (4.166)
Then (4.159) is linearly stable.
Proof. For a given solution u(x, y) of (4.159), let

V(u,x,y) = max |u(x,y)| fory=>o0, wu(y) = V(u,x, y). (4.167)
x>

Obviously, forany x = 0 and t < y < 2t, we have (x+s,y— 1), (x,y —1),(x— 0,y —
t — 1) € Q. Thus from (4.159), for any x € Ry and y € [t,2t), we obtain

lu(x, )| < lalx,y — )| |ulx+s,y— )| + |blx,y — )] |ulx,y — 1) |
+p,y -t lulx—0,y—t—1)]

< (laty -t +|bx,y—0)|+|plxy—1]) - llgll < lloll.
(4.168)

Hence |u(x, y)| < wu(y) < ll¢ll for any x € Ry and y € [0,2t). Assume that for
some fixed integer n > 1,

wu(y) < llgll  forany y € [0, nt). (4.169)

Then forany y € [nt, (n+1)t), we can obtain y—t € [0,nt) and y—t—1 € [—1, nt),
and then

lu(e,p)| < laley =] [ulx+s,y -0+ [bl,y =) ] [ulx,y - 1)
+poy =t |ulx -0,y —t-1)|
< (laloy =]+ |blxy -0+ [plxy-1)])
xmax {[u(x+s,y -1, [ulxy -] |ux-0y-t-1)}

< [loll.
(4.170)

By induction, w,(y) < |l¢ll for any y > 0. Hence by Lemma 4.24, (4.159) is linearly
stable. The proof is complete. O

Example 4.26. Consider the partial difference equation

u(x, y+3) = alx, y)ulx+2,y) + b(x, y)u(x, y) + p(x, y)u(x — 1,y — 1),
(4.171)
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where

X2+ y?
3(x2+y2+1)

X+y

— _1 >
T3xty+ 1) pley)=75 for (xy)ERG.

(4.172)

a(x,y)= b(x,y)=

It is easy to see that a(x, y)| + |b(x, y)| + [p(x, y)| < 1 for any (x, y) € R(2). Hence
by Theorem 4.25, (4.171) is linearly stable.
If (4.166) does not hold, then we can obtain the following three results.

Theorem 4.27. Forany y = 0, let

d(y) = max {la(x,y) | + [b(x, ) + [p(x,y) [}, d(y) = max (1,d(y)),
. (4.173)

and d(y) = 1 +r(y) for any y € Ry. If there exists a positive number M > 0 such
that for any y € [0, 1),

Dr(y+it) <M, (4.174)
i=0

then (4.159) is linearly stable.

Proof. Similar to the proof of Theorem 4.25, by induction we can obtain

[y/t]
wu(y) < < 1_[ d(y — kt)) llpll forany y = 0. (4.175)
k=0
Hence,
(y/t]
Inw,(y) <Inllell + Z Ind(y — kt)
k=0
(y/t]
=1Inllel| + In(1+r(y—kt)
y go 4 (4.176)

9]

<Inllell + Z r(y + kt)
k=0

<Inll¢ll + M,
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where ¥ is a certain constant in the interval [0, ). Hence,
wu(y) < llgllexp(M) = Mllg|l forany y =0, (4.177)

where M = exp(M). The proof is complete. |

Let A(x, y) = la(x, y)| + [b(x, y)| + | p(x, y)| for any (x, y) € R%, and

alx,y+1t)=alx,y+t)A(x+s,y), E(x,y +1) = b(x, y +1)A(x, y).
(4.178)

Theorem 4.28. Assume that there exists a constant C > 1 such that

la(x, )| + [b(x, y)| + | p(x,¥)| <C forany x € Ry, y € [0,1),
_ (4.179)
|a(x, y)| + |b(x, y)| + | plx,y)| <1 forx €Ry, y € [t, ).

Then (4.159) is linearly stable.

Proof. For a given solution u(x, y) of (4.159), let V(u,x, y) and w,(y) be defined
in (4.167). From (4.159), for any x € Ry and y € [t,2t), we have y — t € [0, ) and

u(x,y) < (latx,y = )| + [b(x,y = )| + | p(x,y = 1) ])

xmax{|u(x+s,y—t)], |ulx,y -0, |u(x—0,y—t—1)|} < Cllol.
(4.180)

Hence w,(y) < Cllgll for y € [0,2¢). From (4.159), for any y > 2¢, we have

lu(e,p)| < [aley =] [u(x+sy -1+ [blx,y = )| [ulx,y —1)|
+poy -0 |ux-0,y-t-1)]
< lalx,y—t)|(lalx+sy—2t)| |ulx+2s,y—2t)]
+ |b(x+s,y—20)] |ulx+s,y—2t)|
+lpxtsy 20| |ulx+s—o0,y -2t -1)[)
+ b,y = )] ([alxy —2t) | [ulx+s,y = 21)|
+ [bx, y = 20)| [ulx, y — 28) |
+ple,y =20 |ulx -0,y —2t—1)])

+poy =t |ux -0,y -t-1)]
(4.181)
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Hence from (4.181), for any x € Ry and y € [2t, 31),

lu(x,y)| < (|ate,y —t)| + |blx,y —t)| + | plx,y — ) |) - Cligll < Cligll.
(4.182)

Thus w,(y) < Cllgll for y € [0,3f). Assume that for some fixed integer n > 2,
wu(y) < Cllell, y € [0,nt). (4.183)
Then in view of (4.181), for any x € Ry and y € [nt, (n + 1)t), we can obtain

lu(x,y)| < (|ate,y—t)| + |blx,y —t)| + | plx, y — 1)) - Cligll < Cligll.
(4.184)

By induction, w,(y) < Cll¢ll for any y = 0. Hence |u(x, y)| < wyu(y) < Cll¢|l for
all (x, y) € R}, that is, (4.159) is linearly stable. The proof is complete. O

Similar to the proof of Theorems 4.27-4.28, we can obtain the following result.
Theorem 4.29. Let

d(y) = max {[a(x,y) [ + [b(x, )| + [p(x,y) [} fory € [0,),
B : B (4.185)
d(y) = max {|a(x, y)| + |b(x,y)| + | ple, p) |} fory € [t, ),

and d(y) = max(l,a(y)) = 1+7r(y) for y = 0. If there exists a positive constant
M > 0 such that for any y € [0,1),

Sr(y+it) <M, (4.186)
i=0

then (4.159) is linearly stable.

Example 4.30. Consider the partial difference equation

u(x, y +2) = alx, y)u(x +3,y) + b(x, y)u(x, y) + p(x, p)u(x — 1,y — 1),
(4.187)

where

1 1
b(x,y) = 3 plx,y) = 3 for any (x, y) € R2.
(4.188)

1
a(x,y) = 3 + ﬁ’
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It is easy to see that |a(x, y)| + |b(x, y)| + |p(x, y)| > 1 for any (x,y) € R3.
Hence by Theorem 4.25 it is impossible to assert that (4.187) is stable. But it is
obvious that

1

d(y) = max{|a(xy)}+|b(xy)|+|p(xy)| =1+ (*+1) ,

(4.189)
r(y)= (P +1)7

and for any y € [0,2),
r(y)+r(y+2)+---+r(y+2n)+-- Zizs (4.190)

Hence by Theorem 4.27, (4.187) is linearly stable.

Example 4.31. Consider the partial difference equation

u(x, y+2) = alx, y)u<x+ ,y) +b(x, y)ulx, y) + plx, y)u(x =2,y — 1),
(4.191)

where

a(x,y) =sinx, b(x,y) = plx,y) = % for (x, y) € R}. (4.192)

ﬁ)

It is easy to see that |a(x, y)| + [b(x, y)| + |p(x, ¥)| = |sinx| + 0.2 for any
X,y € Ry, then by Theorems 4.25 and 4.27, it is difficult to assert that (4.191) is
stable. But it is easy to obtain

A(x,y) = |sinx| +0.2 foranyx,y € Ry,

la(x, y)|+]b(x, y)| +]| plx,y)| = 0.2+ |sinx| <2=C foranyx€Ry, y<[0,1),

|a(xy+2)|—|a(x,y+2)|A<x+fy) |51;1x| |sn;2x|

5 forxeRy, y=t,

|b(xy+2)|—|b(x,y+2|Axy)—f \511r(1)x| for x € Ry, y € (t,+).
(4.193)

Then for x € Ry and y = 0,

_ — _3 3|sinx| |sin2x| 23

|a(x,y+2)|+|b(x,y+2)|+|p(x,y+2)|—25-1- o T 2 325<1.
(4.194)

By Theorem 4.28, we can conclude that (4.191) is linearly stable.
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Let A(x, y) = la(x, y)| + [b(x, y)| + E 7| p(x, )| for any x, y € Ry and

alx,y+t) =alx,y+ t)A(x +5,9), E(x,y +1) =b(x,y+ t)A(x,y).
(4.195)

Theorem 4.32. Assume that o = 0, T > 0, and there exist two constants C > 1 and
& €(0,1) such that either

la(x, )| + b, y) | +E 7| plx,y)| <& Vx,y €Ry (4.196)
or
la(x, )| + |b(x, »)| + | p(x,y)| <C foranyx € Ry, y € [0,1),

. (4.197)
la(x, y)| + |b(x, p) | +E T | px,p)| <& VxERy y=t,

then (4.159) is exponentially asymptotically stable.

Proof. For a given solution u(x, y) of (4.159), let V(u,x, y) and w,(y) be defined
in (4.167).

If (4.196) holds, then for any § > 0 and ¢ € Ss there exists a constant My >
CE 273 || g|| > 0 such that for any x € Ry and y € [¢,2t),

luCe, y)| < latx,y —t)| |u(x+s,y —t)| + |blx,y —t)| |u(x,y — 1) |
+lp,y -t |lu(x—0,y—t—1)]
< (lalx,y =0+ [blx,y—0)| + | plx,y = 1)]) el

< Ms&.
(4.198)
Hence wy(y) < Ms&” for any y € [0,2¢). In general, we can obtain
wyu(y) < Ms&” forany y € [0,¢+ 7). (4.199)
Assume that for any positive integer n > 0,
wu(y) < Ms&” forany y € [0,t+ 7 + nt). (4.200)

Then from (4.159), for any y € [t + 7+ nt,t + 7 + (n + 1)t), we have

lu(x, )| < (laGe,y =) + bl y = )| + &7 | pla,y — ) | ) Ms& ™" < Ms&”.
(4.201)

By induction, w,(y) < Msé” for any y > 0. Hence by Lemma 4.24, (4.159) is
stable.



278 Stability of PDEs

If (4.197) holds, then for any § > 0 and ¢ € S5 we can obtain (4.198) for any
x € Rpand y € [0,2¢), and then w,(y) < Msé” for y € [0,2¢). From (4.159), for
any y = 2t, we have

lute, y)| < lalx,y = )| [ulx+s,y =) + [blx,y = ) [ulx, y = 1)]
+pey -0 |ulx -0,y -t-1)|
< laey =) [(lalx+s,y —20)| [u(x+2s,y = 21) |
+|b(x+s,y—20)]|ulx+s,y—2t)|
+plx+s,y =20 |ulx+s—0,y—2t—1)]|)
+ by -t (lalx,y —20)] |u(x+s,y —20)|
+ b,y = 20)| [ulx, y —21) |
+|ptey =20 u(x -0,y -2t - 1)])

+pe,y—t)||ulx—0o,y—t—-1)].
(4.202)

Hence for any x € Ry and y € [2t,3t),

lu(x, y)| < (|atx,y = )| + |b(x,y = )| + | plx,y = ) ]) - llgll < Ms&?.
(4.203)

Thus w,(y) < Msé? for y € [0,3t). In general, from (4.202), we have for any
y € [0,3t+ 1),

wu(y) < Ms&” forx € Ry, y € [0,3t+ 7). (4.204)
Assume that for any fixed integer n > 0,
wu(y) < Ms&” forx € Ry, y € [0,3t+ 7 + nt). (4.205)

Then from (4.202), for any x € Ry and y € [3t+ 7+ nt,3t + 7+ (n + 1)t), we can
obtain

ux )| = (|t y = 0] +]b0xy = D] + &9 plx,y — 1)) Mst? ™ < Myt
(4.206)

By induction, we have |u(x, y)| < Ms&” for y > 0. The proof is complete. O

Let B(x, y) = la(x, y)| + |b(x, y)| for any x, y € Ry, and

a(x,y+1t) =alx,y+1t)Bx+s,y), Z(x,y +1) = b(x, y +t)B(x, y).
(4.207)
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Theorem 4.33. Assume that a(x, y) = 0, b(x, y) = 0, p(x, y) = 0 for x, y € Ry, and
there exists a positive constant r > 1 such that either

2t

alx,y)+b(x,y) =r Vx,y €Rg (4.208)

or

a(x, y) +b(x,y) = r* forx € Ry, y € [0,1),

(4.209)
2t

a(x, y) +z(x,y) =r" forx €Ry, y =t

Then (4.159) is unstable.

Proof. If (4.208) holds, we take ¢(x,y) = & > 0 for all (x,y) € Q, where § is a
positive constant. In view of (4.159), for any x € Ry and y € [t,2t), we have

u(x,y) =alx,y—tulx+s,y—t)+b(x,y — Hu(x,y — t)
+px,y—tulx—o,y—t—1)

(4.210)
=08(alx,y—t)+blx,y — 1)+ p(x,y — 1))
>8-r4=68-1>0.
Assume that for some fixed integer n > 1,
u(x,y)=6-r" >0 forx eRy, y € [0,nt). (4.211)
Then from (4.159), for any x € Ry and y € [nt, (n + 1)t), we have
u(x,y) =alx,y —tHulx+s,y—t) +blx,y — thu(x, y — t)
+plx,y—tulx—o,y—t—1)
(4.212)
> 0r’ Halx,y — ) +b(x,y — 1))
>8-r" =81 >0.
By induction, we have
u(x,y) =6 -r” foranyux,y € R,. (4.213)

Obviously, u(x,y) — 400 as y — +oo for any constant § > 0, then (4.159) is
unstable.
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If (4.209) holds, then we also take ¢(x, y) = § > 0 for all (x, y) € Q. In view of
(4.159), for any x € Ry and y € [t,2t), we can also obtain (4.210). From (4.159),
for any x € Ry and y = 2t, we obtain

u(e, y) =alx,y —tHulx+s,y —t) +b(x,y — thu(x, y — t)
+plx,y—tulx—0o,y—t—1)
=a(x,y—t)(alx+s,y — 20)u(x+2s,y — 2t)
+b(x+s,y—20u(x+s,y—2t)
+p(x+s,y—20ulx+s—0,y—2t—1)) (4.214)
+b(x,y —t)(alx,y — 2t)u(x+s,y — 2t)
+b(x, y = 2t)u(x, y — 2t)
+plx,y —20u(x -0,y — 2t — 1))
+pl,y—tulx—o,y—t—1).
Hence from (4.209), for any x € Ry and y € [2t, 3t), we get
ux,y) = 8@,y - +b(,y—1) =8-r¥ =8 >0. (4.215)
Assume that for some fixed integer n > 1,
u(x,y) =8-r" >0 forx Ry, y € [0,nt). (4.216)
Then from (4.159) and (4.209), for any x € Ry and y € [nt, (n+ 1)t), we have
ulx,y) = 8- 2@,y —t)+ z(x,y —1)=8-1r">0. (4.217)
By induction, we have

u(x,y) =6 -r” foranyux,y € R,. (4.218)

Obviously, u(x, y) — o as y — oo for any constant § > 0, then (4.159) is unstable.
The proof is complete. O

Similarly, we can prove the following result. Let

ﬁ(x,y) = la(x,y)| + |blx,y)| +r 7| p(x,y)| foranyx,y € Ry,

a0,y +t) =aley+HBx+sy),  bloy+t) =bxy+1)B(xy).
(4.219)
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Theorem 4.34. Assume thato = 0 and 1 > 0. If, for some constantr > 1, a(x, y) = 0,
b(x,y) =0, p(x,y) = 0forx,y € Ry, and

la(x, y)| + [b(x, y)| + | p(x, y)| = ** forx € Ry, y € [0,1),
_ = (4.220)
la(x, y)| + b, )| + | px,y)| = 7% forx € Ry, y > t,

then (4.159) is unstable.

Example 4.35. Consider the partial difference equation

u(x, y+1) = alx, y)u(x +2,y) + b(x, y)u(x, y) + p(x, p)u(x — 1,y — 2),
(4.221)

where

¥y +1

y2+2’

for (x,y) € R},
(4.222)

alx,y) =

1 1
b(x,y) = m + 5 plx,y) =

yr+1

It is easy to see that |a(x, y)|+ |b(x, y)| = 1.2 = (/1.2)? for any (x, y) € Rj. Hence
by Theorem 4.33, (4.221) is unstable.

4.3. Stability of linear delay partial difference systems
Consider the system of partial difference equations

N
ZAk(x’)’)Z(x—Pk(x)a)’_Qk(}’))a (x,y) EQ(),
Z(x,y) = k=1 (4.223)

o(x, y), (x,y) € Qy,
where pi : [0,00) — Ry, gk : [0,00) — Ry, and pi(-), qx(+) are both continu-

ous functions. Z,¢ € R", Ay : Q9 — R”", k = 1,2,...,N, are real continuous
functions, and

Qo= {(x,y) x>0, y =0},

QO ={(xy) Ix=-p, y=—q} (4.224)
Oy = W\ Qy,

where p >0, g > 0.
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Let

plx) = 1rgnkaglcvpk(x), x =0,

. (4.225)
= >
() 12}21(\1%()/)’ y="u

We assume that p(x), g(y) satisfy p(x) < x+p, q(y) < y+¢, wherex, y = 0.

For a given function ¢(x, y) € R" on ), it is easy to see that the initial value
problem (4.223) has a unique solution Z(x, y) on Q.

For any H > 0, let

Su={¢ | llglla, <H}. (4.226)

Similar to Section 4.2, we give the following definitions.

Definition 4.36. Equation (4.223) is said to be stable if, for every € > 0, there exists
a & > 0 such that for every ¢ € S5, the corresponding solution Z(x, y) of (4.223)
satisfies

1z, p)l <€, (xy) € Qo (4.227)

Definition 4.37. Equation (4.223) is said to be asymptotically stable in the large if
it is stable, and at the same time every solution Z(x, y) with the initial function
¢(x, ), which satisfies SUP (4 1)eq, le(x, ¥)II = ¢, c is a positive constant which
satisfies that || Z(x, y)|| — 0, as min(x, y) — +oo.

Definition 4.38. Equation (4.223) is said to be exponentially asymptotically stable,
if for any & > 0, there exists a real number r € (0, 1) such that ¢ € S5 implies that

[|Z(x, p)|| < §reminey) >0, (x, ) € Qq. (4.228)

To prove our results, we need a modified version of the Darbo fixed point
theorem.

Lemma 4.39. Let Q) be a nonempty, bounded, convex, and closed subset of a Banach
space X. If F : Q — Qs a p-contraction, then F has at least one fixed point in Q) and
the set Fix F = {x € Q | Fx = x} belongs to the ker y.

Remark 4.40. Noted set Fix F with K, it is easy to see that u(K) = u(FK) = 0.

Denote Cy = C(€1, R"), the space of bounded continuous functions on
with the norm [|Z]lq, = {sup[IZ(x, y)II : (x,y) € Q1} < . So Cj is a Banach
space.
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Denote Cp as an arbitrary nonempty and bounded subsets of Cy such that
IZlla, < H.Forany T >0, € >0, P = (x1, y1), Q = (x2,52) € [-p, ®)X[—g, ),
we denote

w (Z)
= {SupHZ(xl)yl) *Z(Xz))h)” :P)Q € [7P’T] X [7‘1) T]) ”P* Q” = 6}7

wl(Cy) = {supwl(Z):Z € Cy},
wl(Cy) = lirréweT(CH),

E—r
wo(Cy) = }im w!(Cy),

im sup {sup||Z(x1, y1)||, P € [T, 00) X [T, )},

aO(CH) - 71W“""Z C
€Cy

.“(CH) = WU(CH) +a0(CH).
(4.229)

Similar to the related result in [15], it is not difficult to prove the following
conclusion.

Lemma 4.41. The function u(Cr) is the sublinear measure of noncompactness in the
space Cy.

Theorem 4.42. Suppose the following conditions hold:
1) r= SUP,0, y>0 Zﬁ;l Ak (x, )1 < 15 Ak (x, y) is continuous, (x, y) € Qo,
(i) limy—e x — p(x) = oo,
(i) limy .y —q(y) = co.
Then for every given ¢(x, y), such that sup [lo(x, y)Il = ¢ < +00, (x,y) € Qy, the
corresponding solution Z(x, y) of (4.223) satisfies | Z(x, y)|| — 0, as min(x, y) —
+o00,

Proof. Forany M > 0,let hy = {Z € Cy : Z(x,y) = ¢o(x,¥), (x,y) € Qy, and
IZllo, = M}, and F : hyr — Cp is the map given by

N
> A ) Z(x = pr(x),y — gk (y), (%, ¥) € Qo
(FZ)(x,y) = k=1 (4.230)

o(x, ), (x,y) € Qa.
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First, we should verify F(hy) € hy. For all Z € hyy, we have
N
EZ) e )| = || > Ak, 9)Z (x = pr(x), y — qk(y))“
k=1
N (4.231)
< > A INZ(x = pre(x), y — ax)|
k=1
<rlZllq,.
Therefore, |FZlo, < IZlla, < M, thatis, F(hy) S hy.
By the similar way, we obtain
[[FZ) — FZ,|| < |21 - ZJ.. (4.232)

Hence F is continuous.

Next, we should verify p(Fhy) < u(hu).

Forany Z € hy, T = 0, x,y € [T, ) X [T, o), we can get that ag(Fhy) <
raog(har). Now, let us take P = (x1, y1), Q = (x2,2), T >0, P,Q € (0,T) x (0, T).
Since Ak (x, y) is a continuous function, so for any € > 0, there is § > 0 such that if
IP — Qll =, we have [|Ax(x1, y1) — Ax(x2, y2) |l < re/MN. Hence

[(FZ) (x15 y1) = (FZ)(x2, ) ||

> Ar(x y1) Z (= pr(x1)s y1 — k(1))
k=1

= > Ac(x2,2) Z (%2 = pr(x2), 32 — qk(32))
k=1

= Z(x; = p(x2)5 y2 — gr (y2)) ]

< > A G y) 12 (k1 = pr(x1), 31 = gr(31))
k=1

+ > Ak (2, 2) = Ak (e y)IN1Z (2 = pr(x2)5 32 — gk (32)) ]
k=1

N
< sup > [[Ax(x1, y1) || sup [|Z (x1 = pi(x1), y1 — gk (1))
k=1

—Z(x3 = pr(x2), y2 — q (2)) || + e
<r(e+sup IZ(xr = pr(xr)s y1i = qe (1)) = Z(x2 = pr(x2), y2 = qe (32)) 1)
(4.233)
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So, we have

Wg(FhM) < T(E + Wz(hM)),

4.234
Wg(FhM) = IIII(}WE(FhM) < I’Wg(hM) ( )

Since p(hp) = wo(har) + ao(har), u(Fhar) = wo(Fhat) + ao(Fhar), we can obtain

u(Fhy) < ru(hu), (4.235)

which means that F is y-contraction, and by Lemma 4.39, F has a fixed point Z €
hy. It is easy to see that Z(x, y) is a solution of (4.223).

Since Z € K, u(K) = 0, we get that ao(K) = 0, that is, |[Z(x, y)Il — 0, as
min(x, y) — +oo.

The proof is complete. O

In Theorem 4.42, we obtain sufficient conditions of the attractivity of the so-
lution of (4.223). In order to reach the conclusion that (4.223) is asymptotically
stable in the large, we need to prove that (4.223) is stable.

Theorem 4.43. Assume the conditions of Theorem 4.42 hold. Then for every given
@(x, y), such that sup l(x, y)|| = ¢ < +o,(x,y) € Qu, the solution Z(x, y) of
(4.223) satisfies | Z(x, y)Il < ¢, (x,y) € Qo. Therefore, (4.223) is stable.

Proof. First we define a sequence of sets S; in ) as follows.

For a point (x,y) € Qq, if (x — pr(x),y — qk(y)) € Qo, k = 1,...,n, then
(x,y) € S1.

And for another point (x, y) € Qo\S1, if (x — pr(x), y — q(¥)) € Qo U Sy, k =
1,...,n,then (x,y) € S,.

Step by step, we get a series of set S1, S, S5, .. .. We will show that Qg = U7 S;.

In fact, because pi(x), gk(y) are both continuous, for any arbitrary point
(x1, y1) € Qo, there exist two constants a > 0, b > 0 such that px(x) = a, qc(y) =
b, 0 <x <xand0 < y < y,. It is sure that

max([xi/al,[y1/b])+1

(xl,yl) S Si. (4236)
i=1
It is easy to see that
1ZGa )l = X [1AkGo DITIZ (x = pr(x),y = ax (). (4.237)
k=1

Therefore, sup(, ,cs, 1Z(x, y)Il < c.
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By a similar way, we have

sup ||Z(x, y)|| < max ( sup HZ(x,y)||,c> <c (4.238)
(x,9)€S, (x,y)€S81

By induction, we have

sup [|Z(x, )|l <¢, i=1,2,3,.... (4.239)
(%,y)€S;
The proof is complete. U

Combining Theorems 4.42 and 4.43, we have the following corollary.

Corollary 4.44. Assume that the assumptions of Theorem 4.42 hold. Then (4.223) is
asymptotically stable in the large.

About the exponential asymptotical stability of (4.223), we have the following
result.

Theorem 4.45. Supposer = sup,. - N Ak (x, ¥)II < 1. If there exist positive
numbers a and A such that 0 < a < pr(x), 0 < a < q(y); 1 < k < N and
p(x) <A, q(y) < A, (x,y) € Qo, then for every given ¢(x, y) € R", with ||¢llq, =
SUP(y, )0, 19(x, Y)I| = ¢ <+, (4.223) has a unique solution Z(x, y) such that

|Z(x, )| < crtminCerVAl (x, y) € Qo, (4.240)
where [ -] denotes the greatest integer function less than or equal min(x, y)/A.

Proof. For any given ¢(x, y), it is easy to see that (4.223) has a unique solution
Z(x,y).

First, we assume that x < aor y < a.

Because pr(x)=a, qr(y)=a, 1 <k <N, we have (x — pr(x), ¥ — qx(y)) €Qy,
therefore,

N
1Z G )| = Z Ak(x, 9)Z(x = pr(x), y = qk(y))H
N
= g 1Ak Cx, )| max, 1Z (x = pr(x), y — qx()|| (4.241)

r max [|Z(x = pr(x),y = q(y) |

1<k

<rllellaq, < cr.

Because min(x — p(x), y — qx(y)) < 0, (4.240) holds.
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Next, we assume for a positive integer m, (4.240) holds for x < (m — 1)a or
y < (m — 1)a, that is,

|Z(x, )| < crtminCrVAl0 x < (m—1)a, or y<(m-1a. (4.242)

For (x,y) € {(x,y) | x > (m —1)a, y > (m — D)a}\{(x, y) | x > ma, y > ma}, it
is easy to see that (x — px(x)) < (m—1)aor (y — qx(y)) < (m — 1)a.
From (4.241), we have

1ZGe Il < 7 max [|Z(x = pi(x), y = g ()]

[min(x—pk(x),y—qk(y))/A]
< r max cr
b (4.243)

< ¢ max r[min(x—pk(x),y—qk(y))/A+1].
1<k=N

Since pr(x) < p(x) < A, qk(y) < q(y) < A, and min(x — pr(x),y — qe(y)) + A =
min(x, ), from (4.243), we get

|Z(x, y)|| < crlminCey)/al (4.244)

By the induction, we obtain that (4.240) holds on Q. The proof is complete. [
By Definition 4.38, we obtain the following corollary.

Corollary 4.46. Under conditions of Theorem 4.45, (4.223) is exponentially asymp-
totically stable.

Consider the scalar partial difference equation

zZ(x+Ly+1)=alx,y)z(x+1,y) +blx, y)z(x, y + 1) + p(x, y)z(x — s,y — 1)
(4.245)

for x = 0, y = 0, where s, > 0 are constants.
Similar to the proof of Theorem 4.45, we can obtain the following result about
the attractivity of solutions of (4.245).

Corollary 4.47. Assume that |a(x, y)| + |b(x, y)| + | p(x, y)| < r < 1, then for any
o p), (6y) € O, Q={xy) |lx=-s, y=—-t}\{(x,y) [ x=0, y =0}
satisfies sup(, ,cq |9(x, y)| = ¢ < +eo, (4.245) has a unique solution z(x, y) with
|z(x, y)| — 0, as min(x, y) — +oo. Hence, (4.245) is attractive.

If we put more conditions on the initial function, then we can obtain stronger
results.
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Theorem 4.48. Suppose r = sup,., o 25:’:1 lAk(x, )|l < 1. If there exist positive
numbers a and A such that 0 < a < pp(x) + qi(y), 1 < k < N and p(x) +q(y) <
A, (x,y) € Qq, then for every given ¢(x, y) € R", with |lo(x, y)|| < cr™V4 on Q,,
(4.223) has a unique solution Z(x, y) such that

[|Z(x, p)|| < crl&EAL (x, ) € Qo, (4.246)
where [ -] denotes the greatest integer function less than or equal (x + y)/A.

Proof. For any given ¢(x, y), it is easy to see that (4.223) has a unique solution
Z(x, ).

First, we assume that x + y < a.

Because pi(x) + qk(y) > a, 1 <k < N, we have (x — pr(x), y — qx(y)) € Qa,
therefore,

N
12 )l = Z Ak, y)Z (x = pi(x), y = qk(y))H
N
< 2 1Akt )l max [1Z(x = peto),y —acOl (4247)
k=1 <ks

< rlrgr}i)l(\rHZ(x - pr(x),y — qr()||
<rlellq, < cr.

Because [(x + y)/A] = 0, (4.246) holds.
Next, we assume for a positive integer m, (4.246) holds for x + y < (m — 1)a,
that is,

[|Z(x, p)|| < crl&ALL x4y < (m - 1a. (4.248)

For (im — 1)a < x+y < ma, (x — pr(x)) + (y — qx(y)) < (m — 1)a, from (4.247),
we have,

1ZGe )l = 7 max [|Z(x = pe(x), y = k()]

[Cety—pr(x)—qi(y))/A]
<r max cr
1<k<N (4.249)

< ¢ max rl&ty=Px)=qe(y))/A+1]
1<k<N

By the induction, we obtain that (4.246) holds on Q. The proof is complete. [

Example 4.49. Consider the system of delay partial difference equations

Z(x,y) = A1 9)Z(x — p1(x), y — i () + As(x, ¥)Z(x — p2(x), ¥y — q2(¥)),
(4.250)
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where Z € R?,
smgxy) 0 0 51n(x3+ y)
Ai(x, y)= . ~sin(xy) , Ar(x,y)= ~sinx+ y) .
3 3
(4.251)
It is easy to check that
1
HAIH = HAzH = g,
(4.252)
2
r=llAdf+flAqfl = 5 <1
First, we suppose pi(x) = 2, q1(y) = 3, pa(x) = 1, q2(y) = 4.
Leta=0.5,A=4,and
Qo ={(x,y) x>0, y>0},
Ql = {(x»)’) | X = 72) )’ = 74}) (4253)

Qy = 01\ Q.

From Theorem 4.45, we obtain the following conclusion.
Given any initial function ¢(x, y) € R% and [[¢||, = ¢ < +oo, there exists a
solution Z(x, y) of (4.250) with

[|Z(x, y)|| < crtminen/Al 5 (x ) y) € Q. (4.254)

Next, we suppose pi(x) = 0.5x +2, qi(y) = Iny — 3, pa(x) = (13/x) +1,
q2(y) = 4, where p1(x), p2(x), q1(y) are unbounded on Q.

From Theorem 4.42, for any given function ¢(x, y) € R?, and ll¢llq, = ¢ <
+00, there exists a solution Z(x, y) of (4.250) with

l|Z(x, y)|| — 0, when min(x, y) — +oco. (4.255)

4.4. Stability of discrete delay logistic equations
4.4.1. Stability of 2D discrete logistic system

In engineering applications, particularly in the fields of digital filtering, imaging,
and spatial dynamical systems, 2D discrete systems have been a focal subject for
investigation.

Consider the delayed 2D discrete logistic system

xm+1,n + am,nxm,n+1 = Hm,nxm,n(l - xm—o,n—r)’ (4256)
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where {a,,,} and {g,,} are two double sequences of real numbers, o and 7 are
nonnegative integers, and m,n € Nj. The stability and exponential stability of
system (4.256) are important properties; in this section, some sufficient conditions
for the stability and exponential stability of system (4.256) are derived.

First, observe that in the special case where a,,, = a, Y, =pando =7 =0,
system (4.256) becomes

Xm+1,n + AXmn+1 = UXmn (1 - xm,n) (4257)
and, when a = 0 and n = ny, system (4.257) further reduces to

Xm+1,mg = UXm,ng (]- - xm,no)a (4258)

which is just the familiar simple case of the 1D logistic system. Therefore, system
(4.256) is quite general.

Let Q@ = N_s X N_; \ N; X Ny. Obviously, for any given initial function ¢ =
{@mn} defined on Q, by iteration, it is easy to construct via induction a double
sequence {x,,,} that equals initial conditions ¢, , on Q and satisfies (4.256) for
m,n =0,1,2,.... Indeed, one can rewrite system (4.256) as

xm+1,n = ,um,nxm,n(l - xm—a,n—r) - am,nxm,n+l (4259)

and then use it to calculate, successively, x1,0, X1,1, X2,0, X1,2, X2,1, X3,05- - - -
Let [l@ll = sup{l@my | (m,n) € Q}, § a positive constant, and

Ss = 1o | llgll < &} (4.260)

The definitions of the stability, linear stability, and exponential asymptotical sta-
bility of system (4.256) are similar to those in Section 4.2. Now we give a more
general stability definition as follows.

Definition 4.50. If there exists a positive number M > 0 such that for any constant
8 € (0,M), there exists a constant £ € (0, 1) such that for any given bounded
function ¢ = {@m,,} defined on Q,¢ € S5 implies that the solution {x,,,} of
system (4.256) with the initial condition ¢ satisfies

[ X | < ME™™, (m,n) € Ny X Ny, (4.261)

then system (4.256) is said to be double-variable-bounded-initial exponentially
stable, or D-B-exponentially stable.

Obviously, if system (4.256) is exponentially asymptotically stable, then it
is stable. If system (4.256) is D-B-exponentially stable, then it is exponentially
asymptotically stable and thus it is also stable.
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Theorem 4.51. Assume that there exist two constants, « > 0, C > 0, and a positive
integer k such that

|@mn| + |phmn| <C Vm € {0,1,2,...,k} and any n € Ny, (4.262)
| @mn | + |pmn| (1 + @) <1 V(m,n) € Nkp1 X No. (4.263)
Then system (4.256) is stable.

Proof. In view of (4.262), it is obvious that there exist two constants D > C and
M > D**1 > 1 such that

|amn| + |pmu|(1+a) <D Vme {0,1,2,...,k} and any n € Np. (4.264)

For any small constant ¢ > 0, without loss of generality, assume that ¢ < a/M, and
let § = e and let ¢ € S5 be a bounded function defined on Q. We claim that the
solution {x,,,} of system (4.256) with the initial condition ¢ satisfies x| < €
for (m,n) € NZ.In fact, from (4.256), (4.259), and (4.264), we have

[x10] = |#00%00(1 = x-g—7) — aooxo1| < (Jaoo| + |poo|(1+a))d < De < a,
[xi1| = lpoxo1 (1 = x61-+) —aoix02| < (a1 | + [po1|(1+@))d < De < .
(4.265)

Assume that for a certain integer m € {1,2,...,k},
|xin| <De<a Vi<i<m n=D0. (4.266)

Then, from (4.259) and (4.264),

|-xm+1,n | = |ﬂm,n-xm,n(1 - -xm—cr,nff) - am,n-xm,n+l |

(4.267)
< (|amn| + |tmn| (1 + a))D™e < D™,
Hence, x| < Meforallm € {0,1,2,...,k+ 1} and all n € Nj.
Assume that for a certainm > k + 1,
|xin| <Me<a V1i<i<m n=0. (4.268)
Then, from (4.256) and (4.263),

{merl,n | = |[4m,n-xm,n(l - xm—o,n—r) - am,nxm,nJrl |

(4.269)

< (lampn| + |ttmn| (1 + a))Me < Me < a.

Hence, by induction, |x,,| < Me for all (m,n) € Ny X Ny, that is, system (4.256)
is stable. The proof is complete. O
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Next, let Ay = |@mnl + |fm,nl for all (m,n) € N, and
Amn = AmpAm—1n+1> B = UmpAm—1,n ¥ (m,n) € Ni X Ny. (4.270)
Theorem 4.52. Assume that there exist constants « > 0 and C > 0 such that
laon| + |pon| <C,  |a@1n| +|E,| <C VneN, (4.271)
and for any (m,n) € N, X Ny,

|am,n | { |am—1,n+l | + |Hm—l,n+l | (1 + 0‘)}
(4.272)
+ [ | { [ am—tn | + [pm-1| A+ )} (1 +a) < 1.

Then, system (4.256) is stable.

Proof. From (4.271) and (4.272), there exists a constant M € [1 + C, o) such that

[aon| + [pon|(1+a) <M,

lain | {] a0 | + |poner | (L4 )} + | g | {|don| + |phon | (1 + )} (1 +a) <M
(4.273)

for all n € Ny.

For any small constant ¢ € (0,a/M), let § = e and ¢ € S5 be a bounded
function defined on Q. Let {x,,,} be a solution of system (4.256) with the ini-
tial condition ¢. Then, |x,,,| < & for all (m,n) € Q. In view of (4.256), for any
nonnegative integer #, we have

|x1,ﬂ| = |/40,nx0,n(1 - xfa,nfr) — a0,nX0,n+1 |
(4.274)
< (laon| + (1 +a)|pon|) -6 < Me < a.

From (4.256), for all m > 1 and all n € Ny,

Xm+l,n = .um,nxm,n(l - xmfa,nfr) = Am,nXm,n+1
= ,um,n( - am—l,nxm—l,tﬁl + Mm—l,nxm—l,n(l - xmfl—o,nf‘r))
X (1 - xm—a,nf‘r) - am,n( = Am—1,n+1Xm—1,n+2 + Hm—l,n+1xm—1,n+1

X (1 - xm—l—a,nﬂ—r))-
(4.275)



Stability of discrete delay logistic equations 293

Then, from (4.275),

|x2,n ! < |.ul,n( = AonXo,n+1 T HO,nxO,n(l - xfa,nfr)) (1 - xlfa,nfr) |
+ | apn( = aopr1x0,m+2 + popr1Xon1 (1 — X_gpr1-7)) |
< A{lural(laon| + [pon| (1 +a))(1+a) (4.276)

+ lain| (Jaomer | + [ponsr | (L+ @)} - 8

<Me<a VnéeN,.
Assume that for some integer m > 2,
|xin| <Me<a V1<i<mandalln e N,. (4.277)
Then, from (4.272) and (4.275),

}xm+1,n| =< |[4m,n|(|am—l,n| + |/"m—1,n|(l +(X))(1 +(X) - Me
+ |am,n { ( | Am—1,n+1 | + |,“m—1,n+1 | (1 + (X)) - Me (4278)
<Me<a VnéeN,.

By induction, |x,,,| < Me for all (m,n) € Ny X Np, that is, system (4.256) is stable.

The proof is complete. O
Now, let
Dy ={(mn)|1<m=<o,0=<n<t}, Dy ={(mmn)|m>0,0<n<rt},
Ds;={(mn)|1<m<o, n=rt}, Dy = {(m,n) | m>o0, nx=rt}.
(4.279)

Obviously, Dy, D, D3, Dy are disjoint of one another, and Ny X Ny = D; U D, U
D3 U Dy.

Theorem 4.53. Assume that there exist constants M > 0 and & € (0,1) such that

|a0,,,| +(1+M)|‘u0,n| SEVHI VI’IEN(),
(4.280)
|G| + |phmn |1+ M)ETT <1 V(m,n) € Dy UD,UDs,

| @ | + | ppomgn | (1 + ME™="T)E1 <1 ¥V (m,n) € Dy. (4.281)

Then, system (4.256) is D-B-exponentially stable.
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Proof. For any constant § € (0, M) and any bounded function ¢ € Ss, let {x;,,}
be a solution of system (4.256) with initial condition ¢. From (4.256) and (4.280),
for the given constant £ € (0, 1), we have

|x1,n | = |[40,nxO,n(1 - x*ﬂ,fl*‘l’) — 40,nX0,n+1 }
(4.282)
< pou|6(1+8) + |aon |8 < ME™,  n e N,.
Assume that for a certain m € {1,2,...,0},
|xij| <ME" V1<i<mandalljeEN,. (4.283)

Then, forall n > 0, onehas (m—o,n—1) € Q and (m,n) € D; U D, U D5. Hence,
from (4.256) and (4.281), we have

|xm+1,n | = |,um,n | " |xm,n | (1 + |xm—0,n—‘r | ) + {am,n | ) {xm,nJrl |

(4.284)
< M€m+n+l{ |#m’n | (1 + 5)5_1 + |am)’1 {} < Mfm+"+l.
By induction, |x,,,| < MEM™ forallm € {1,2,...,0+ 1} and alln > 0.
Assume that for a certain m € Ny,
|Xin| < ME*" <M V1<i<mandallne N, (4.285)

Then,ifn € {0,1,...,7—1},onehas (m,n) € DiuD,UD;and (m—o,n—1) € Q.
From (4.256) and (4.281),

|xm+1,n | =< |,‘4m,n | . |xm,n } (1 + |xm—0,n7‘r | ) + {am,n | ) {xm,n+1 |
(4.286)
< M&'m+n+1{ |/4m,n | (1 + 8)571 + |am,n H < M€m+n+1)

if n > 7,then (m,n) € Dyand (m—o0,n—1) € N1 X Ny. From (4.256) and (4.281),
by the assumption of induction, we obtain
|xm+l,n| = |.”m,n| : |xm,n | (1 + |xm—o,n—r |) + |am,n| . |xm,n+l |
< M£m+n+1{ |,um,n| (1 +M€m+n—a—r)£—1 + |am,n | } < M£m+n+1.
(4.287)
By induction, [xp,,| < M&™™ for all (m,n) € Ny X Ny, that is, system (4.256) is
D-B-exponentially stable. The proof is complete. O

In the following, let Dy = {(m,n) | m =1, n = 0},

Do ={mm) [m=0+1,0<n<r} Do={(mn) Im=0+1, n=rt},
Di={mn)|2<m<o,0<n<t}, Dy={(mmn)|m>c+1,0<n<t}
Dy={(mn) |m>0+1, n>r}.

D;={(mn)|2<m=<o,nzrt},
(4.288)
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Obviously, Dy, Dy, D,, D3, Dy, Do, Dy are disjoint of one another, and
N1XNO=DOU51U52U53 UEO Uﬁ0U54. (4289)
Theorem 4.54. Assume that o > 0, and there exist constants M > 0 and &€ € (0,1)
such that
(i) foralln € Ny,
lao | + (1+M)|pon| <&, (4.290)

(ii) for all (m,n) € Dy,

|am,n| (|am—l,n+1 | + |,um—1,n+1 | (1 +M))

(4.291)
+ |t | (| @m1n | + -1 | (1 + M))(1 + M) < &2,
(iii) for all (m,n) € Dy U D, U D3 U Dy,
|am,n { ( | am—l,n+1 | + “’lm—l,n-%—l | (1 +M)£_1)
(4.292)

+ |/"m,n| (‘amfl,n| + |.um*1,ﬂ | (1 +M)£71)(1 +M)£71 =1L
(iv) forall (m,n) € Dy,

!am,n | ( | Am—1,n+1 | + |ﬂm—l,n+1 |(1 +M)£71)

+ |,um,n | (|am—1,n| + “/lm—l,n | (1 +M)£_1)(1 +M£m+n—o—‘r)£—l = 1)

(4.293)
(v) forall (m,n) € Dy,
|am,n | (|am71,n+1 | + |,“m—1,n+1 | (1 + Mé’m+n—a—1)£—l)
+ |//lm,n | ( | Am—1,n | + |[4m71,n | (1 + MgmﬂklioiT)Eil) (4.294)

x (1+MéEmn=o-m)E=1 <,
Then system (4.256) is D-B-exponentially stable.

Proof. For any constant § € (0, M) and any given function ¢ € Ss, let {x,,,} bea
solution of system (4.256) with initial condition ¢. From (4.256) and (4.290), for
the given & € (0, 1) and any n € Ny, we have

|x1,n | = |[10,nx0,n(1 - x—a,n—r) — A0,nX0,n+1 |
(4.295)
< | pon|8(1+8) + |ao, |8 < ME™! < M,
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that is, |xy,,| < MEM™ for all (m,n) € D,. Hence, from (4.256), (4.275), and
(4.291),

| %00 | = 1,0 ( = aonXone1 + ponXon (1 = x—gn—r)) (1 = X1-gn—7) |
+ [ a1n( = aope1Xoms2 + popr1Xone1 (1 — X_gni1-7)) |
< {lprn| - M(|aon| + [po,|(1+8))(1+6) (4.296)
+ an| - M(|aoner | + |ponn [ (1+6))}
< ME&™2  Vn e N,.

Assume that for a certain m € {2,3,...,0},
|xij| <MET V1<i<m, andall j € Ny. (4.297)
Then, for all n > 0,

(m—-1,n),m—-1,n+1),(m—-1,n+2) € DyuD, UDs;, (m,n) e D;uUDs,
m-1-on-1),(m-1-0,n+l-1)€Q, (m-o,n—1) el
(4.298)
Hence, from (4.256), (4.275), and (4.292), we obtain

| Xmstn | < Tt | (J@m-rn ] = [ %m-rner |+ [m-rn | [ X1 | (T [ X100 ]))
X (L+ [%m-gnr ) + [@mn | (@101 | = | Xom-1,02 |
+ | pm-vaet | | %mermen | (L4 [Xno1-omer—c [)
< ME™ |t | (| @] + [ttm10 [ (1 +8)E) (14 6)
+ ME™ | (|am-1ni | + | m-rner | (1+8)E7")

< MEMTL gy >0,
(4.299)

By induction, |x,,| < MEM" forallm € {1,2,...,0+ 1} and alln > 0.
From (4.256), (4.275), and (4.292), for alln € {0,1,...,7 — 1}, one has (¢ +
1,n) € Dy and
|x0+2,n | = M€U+n+1 |ﬂ0+1,n | (|ao,n | + |Ha,n | (I+ 6)571)(1 +6)
+ Mfo+n+2 | Ao+l | ( | Ag,n+l | + |[40,n+1 | (1 + 8)5_1) (4300)

< M£a+n+2.
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From (4.256), (4.275), (4.293), and (4.295), for any n > 7, one has (6 + 1,n) € Do
and

| Xor2n | < MET  pgrin| ([agn| + | o | (1 +8)ET) (1 +ME™T)

+ M£U+n+2 | aa+1,n | ( | aU,ﬂ+1 | + ’[/la,nJrl | (1 + 6)6_1)

< M£a+n+2.
(4.301)
Hence, for all n € Ny, |x542,0| < METT2,
Assume that for a certain m > o + 1,
[xij| <ME <M V1<i<mandallje N, (4.302)
Then, if n € {0,1,...,7 — 1}, one has (m,n) € D, and
m-1-on—-1),(m—0o,n—1) €Q,
(4.303)

(m-1-o,n+1-1)€QU{{1,2,...,m} x No}.
Hence, from (4.256), (4.275), and (4.292), we have

|xm+1,n | < M£m+n }Mm,n | ( | am—l,n | + |[4m71,n | (1 + 8)571)(1 + 6)
+ M£m+n+1 |am,n | (!amfl,nﬂ | + |[4m71,n+1 | (1 +M)Eil) (4.304)

< MEmTH,
if n > 7, then

m-1-on—1),(m—o,n—1),(m—1-—0,n+1—1)EQ. (4.305)
From (4.275) and (4.294), one has (m, n) € D4 and

| X1 | < ME™ |!4m,n | (lam-1n| + |/"m71,n | (1+ MEmimemn) g
X (1 +M£m+n—o—r) +M£m+n+1 |am,n|
X ( |am—l,n+1 | + |,um—1,n+l | (1 + M§m+n—a—1)f—l)
< MEernJrl.
(4.306)

Hence, by induction, |x,,,| < ME™™ for all (m,n) € Ny X Ny. The proof is com-
plete. O
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Corollary 4.55. Assume that o > 0, and there exist constants M > 0 and & € (0,1)
such that

laon| + (1 +M)|pou| <& Vn e Ny,
[ avn | ([aouer | + [poner [ (1 +M)) (4.307)
+ o | ([aon | + [pon|(1+M))(1+ M) < &
foralln € Ny, and
|G| + |H | <& V(m,n) € Ny X Ny, (4.308)

where @y, and @, are defined in Theorem 4.52. Then, system (4.256) is D-B-
exponentially stable.

Similar to the proof of Theorem 4.54, we can prove the following results.

Theorem 4.56. Assume that ¢ = 0, and there exist constants M > 0 and &€ € (0,1)
such that
(i) foralln € Ny,

laon| + (1+M)|pon| <&, (4.309)
(ii) foralln € {0,1,...,7 — 1},
|a1,n | (|aO,n+1 | + |[40,n+1 | (1 +M))
(4.310)
+ |[41,n | (|a0,n| + |.uO,n|(1 +M))(1 +M) < £n+2’
(iii) foralln = T,
|al,n| (|a0,n+l | + |[40,n+1 | (1 +M))
(4.311)
+ |/41,n | (|a0,n| + |P‘0,n|(1 +M))(1 +M5n+177) < &2
(iv) forallm =2 andalln € {0,1,...,7 — 1},
|am,n| (|am71,n+1 } + |,“m—1,n+1 | (1 +M)f_l)
(4.312)
+ Lt | (Jam—rn | + [tm—10 | L+ ME) 1+ ME! <1,
(v) forallm =2 andalln = T,
|am,n | ( | Am—1,n+1 | + |#m—1,n+1 | (1 + Mf"””_a_f)f_l)
+ | ([@m-10 | + [ppm-r0 | (1+ ME™TI7O7T) T (4.313)
X (1 + MEMm=o-T)E=1 <

Then system (4.256) is D-B-exponentially stable.
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Theorem 4.57. Assume that there exists a constant r € (0, 1) such that

|aon| + |yo,n| <r Vn=Ny,
(4.314)
|am’"|+|ym,n| =r v(m)n)eleNo,

where @y, and W, , are defined in Theorem 4.52. Then, system (4.256) is exponen-
tially asymptotically stable.

Proof. 1t is obvious that there exist constants « > 0 and R € (0,1) such that
(1+ a)?r < R%. In view of (4.314), one has

laou| + |pon|(1+a) <R Vn= Ny, (4.315)
and for all (m,n) € N7 X Ny,
|am,n | { |‘1mf1,n| + |.“m71,n | 1+a)}
(4.316)

+ i | { | @m-rn | + tpm-12| (1 + @)} (1 + ) < R2.

Let ¢ € S, be a bounded function defined on  and let {x,,,} be a solution of
system (4.256) with initial condition ¢. Then, from (4.256) and (4.315), for all
nonnegative integer #, one has

|x1,n| = |,“O,nx0,n(1 ~ X-gn-1) = B0,nX0n+1 |
(4.317)
< (laou| + (1 +a)|poul) - <aR < a.
Also, from (4.275) and (4.316),
[xX20 ] < ph1,n( = @ouX0n11 + ponX0n (1 = X-g,n-2)) (1 = X1-,n—1)
+ | ain( = aope1Xone2 + pone1Xone1 (1 = X g ni1-1)) |
< {lmnl(laon] + |pon| 1+ ) (1 +a) (4.318)
+av | (Jaoner | + [poner [(1+ @)} - a
<aR’><a VneN,.
Assume that for some integer m = 2,
[xij| <aR'<a V1<i<mandallj€ N, (4.319)
Then, for all n > 0, from (4.275) and (4.316),
| Xmirn | < Lttmn | (l@m-10] + [pgm-1n| A+ @) (1 + @) - aR™!
+ [ amn | ([ am-1ms1 | + [thm-rne1 | (1 + @) - aR™! (4.320)

<aR™' <a VneN,.
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By induction, [x,,,| < aR™ for all (m,n) € N; X Ny, that is, system (4.256) is
exponentially asymptotically stable. The proof is complete. |

Corollary 4.58. Assume that there exists a constant r € (0, 1) such that
|G| + | ppmn| <7 forany (m,n) € Nog X Np = N§. (4.321)
Then system (4.256) is exponentially asymptotically stable.
In fact, (4.321) implies (4.314). Hence, the proof is complete.

Example 4.59. Consider the delayed 2D discrete logistic system

Xm+1n T AmnXmp+l = Hm,nxm,n(l - xm—Z,n—l)> (m, T’l) S Ng, (4322)
where
1/7 n+l1
1/7\"" ,uOn—*(*) Vn € Ny,
o = 7(7) , 4\38
2
_1\m+n 7
ann = e =33 Wmm) € DiUD,UDs, (4.323)
a . = é (—1)mn
" 7’ Wmpn = v V(H’l,l’l) € Dy,

2(1+ (7/8)min=3)

in which Dy, D,, D3, and D, are defined in Theorem 4.53.

Obviously, 0 = 2 and 7 = 1. Let £ = 7/8 and M = 1. Then, it is easy to
see that all the conditions of Theorem 4.53 hold. Hence, system (4.322) is D-B-
exponentially stable.

Example 4.60. Consider the delayed 2D discrete logistic system

Xm+1n T OmnXmpn+l = ﬂm,nxm,n(l - xm—l,n—2)> (m,n) € Né, (4.324)
where
o = 1= — 2 - V(m,n) € N} (4.325)
e m+2 P T 0 ’ 0 ’

Clearly, there exist two constants, « = 1 and C = 1, and an integer k = 1, such
that all the conditions of Theorem 4.51 hold. Hence, system (4.324) is stable.

4.4.2, Stability of generalized 2D discrete systems

Consider the delayed generalized 2D discrete systems of the form

Xmtln = f(m) 1, Xm,n» xm,rﬁ—l,xm—a,n—r)) (4.326)
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where o and 7 are positive integers, m and n are nonnegative integers, and f : Z2 X

R® — Ris a real function containing the logistic map as a special case. Obviously,
if

fm,n,%,9,2) = pmux(l — X) — amny, (4.327)

or
fm,n, %, 9,2) = pmux(1 — 2) — amny, (4.328)

or
flm,n,x,y,2) = 1 —ux* - ay, (4.329)

or
fimyn,x,,2) = bpnX — mny — PmnZs (4.330)

then system (4.326) becomes, respectively,

Xt + AmnXmns1 = PmnXmn (1 = Xmn), (4.331)

or
i T GmnXmns1 = UmnXmn (1 — Xm—g.n—1)> (4.332)

or
Xt i + ApXms = 1= i (Xn) s (4.333)

or
Xm+1,n T GmnXmni1 = OmnXmn + PmnXm-on-1r = 0. (4.334)

Systems (4.331), (4.332), and (4.333) are regular 2D discrete logistic systems of
different forms, and particulary system (4.334) has been studied in the literature.

If apu = 0, Yhmn = W, and n = ny is fixed, then system (4.331) becomes the
1D logistic system

Xm+1,ng = WXm,ng (1 — Xm,ng )) (4.335)

where p is a parameter. System (4.335) has been intensively investigated in the
literature. Hence, system (4.326) is quite general.

This section is concerned with the stability of solutions of system (4.326),
in which some sufficient conditions for the stability and exponential stability of
system (4.326) will be derived.
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Let O = N_; X N_; \ N} X Nj. It is obvious that for any given function ¢ =
{@mn} defined on Q, it is easy to construct by induction a double sequence {xy,,,}
that equals initial conditions ¢ on ) and satisfies (4.326) on N; X Nj.

Definition 4.61. Let x* € R be a constant. If x* is a root of the equation
x — f(m,n,x,x,x) =0 forany (m,n) € N3, (4.336)

then x* is said to be a fixed point or equilibrium point of system (4.326). The set
of all fixed points of system (4.326) is called a fixed plane or equilibrium plane of
the system.

It is easy to see that x* = 0 is a fixed point of systems (4.331), (4.332), and
(4.334),and x* = (—(a+1) =/(a+1)2 + 4u)(2u)~! are two fixed points of system
(4.333).

Let x* be a fixed point of system (4.326) and let ¢ = {¢,,»} be a function
defined on Q, and let

ol = sup{|@mn —x*| | (m,n) € Q}. (4.337)

For any positive number § > 0, let S5(x*) = {@ || @l < J}.

Definition 4.62. Let x* € R be a fixed point of system (4.326). If for any ¢ > 0,
there exists a positive constant § > 0 such that for any given bounded function
@ = {@Pmn} defined on Q,¢ € Ss(x*) implies that the solution x = {xy,} of
system (4.326) with the initial condition ¢ satisfies

| Xmn —x*| <& V(m,n) € Ny X Ny, (4.338)

then system (4.326) is said to be stable about the fixed point x*.

Definition 4.63. Letx* € Rbea fixed point of system (4.326). If there exist positive
constants M > 0 and & € (0, 1) such that for any given constant § € (0, M) and
any given bounded function ¢ = {¢,,,} defined on Q, ¢ € Ss(x*) which implies
that the solution {x,,,} of system (4.326) with the initial condition ¢ satisfies

| Xmn — x* | < ME™™, (m,n) € Ny x No, (4.339)

then system (4.326) is said to be double-variable-bounded-initially exponentially
stable, or D-B-exponentially stable, about the fixed point x*.

Definition 4.64. Letx™ € Rbe a fixed point of system (4.326). If there exist positive
constants M > 0 and ¢ € (0,1) such that for any given bounded number § €
(0, M) and any given bounded function ¢ = {@.,,} defined on Q,¢ € Ss(x*)
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which implies that the solution {x,,,} of system (4.326) with the initial condition
¢ satisfies

[Xmn — x* | < ME™,  (m,n) € N1 X Ny, (4.340)

then system (4.326) is said to be exponentially asymptotically stable about the fixed
point x*.

Obviously, if system (4.326) is D-B-exponentially stable or exponentially
asymptotically stable, then it is stable.

Definition 4.65. Let f(m,n,x,y,z) be a function defined on 72 x D and let
(%0, ¥0,20) € D be a fixed inner point, where D C R>. If, for any positive con-
stant € > 0, there exists a constant § > 0 such that for any [x — x| < §, |y — yol < 6,
lz = 2] <6,

| f(m,n,x,y,2) — f(m,n,xo, y0,20) | <& forany (m,n) € NZ, (4.341)

then f(m,n,x,y,z) is said to be uniformly continuous at the point (xo, yo,20o)
(over m and n). If the partial derivative functions f(m,n,x, y,z), f;(m,n,x, y,z),
and f; (m, n, x, y,z) are all uniformly continuous at (xo, ¥, z0), then f(m, n,x, y,z)
is said to be uniformly differentiable at (xo, yo, z0).

Let D be an open subset of R>. If f(m,n,x, y,z) is uniformly continuous at
any point (x, y,z) € D, then it is said to be uniformly continuous on D.

Obviously, if f(m,n,x, y,z) and g(m, n,x, y,z) are uniformly continuous at
(x, y,2), then

af(m,n,x,y,2), | f(m,n,x,y,2)|, f(m,n,x,y,2)+g(m,n,x,y,z) (4.342)
are also uniformly continuous at (x, y,z) for any constant « € R.

Lemma 4.66. Let D C R® be an open convex domain and (xo, yo,z0) € D. Assume
that the function f(m,n,x, y,z) is continuously differentiable on D for any fixed m
and n. Then for any (X,%,2) € D and any (m,n) € Ng, there exists a constant
ty = t(m,n,X,y,2) € (0,1) such that

f(ma n,%,},%} - f(ma n)xOIyO)ZO)
= fi(m,n,x0 + to(X — x0), Yo + to(¥ — ¥0),20 + 0 (2 — 20) ) (X — x0)
+fy,(m,1’l,X0+to(%—Xo),yo+to(y—yo),ZO‘f'to(E—Zo))(;—y())

+ f, (myn,x0 + to (X — x0), yo + 1o (¥ — y0)>20 + to(Z — 20) ) (Z = 20).
(4.343)

Proof. Letg(t) = f(m,n,xo+t(X—x0), yo+t(¥—y0),z0+t(Z—2p)). Then, from the
given conditions, the function g(t) is continuous differentiable on [0,1]. Hence,
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from the mean value theorem, there exists a constant ¢y € (0, 1) such that g(1) —
g(0) = g'(ty), that is, Lemma 4.66 holds. The proof is completed. O

Theorem 4.67. Assume that x* is a fixed point of system (4.326), the function
f(m,n,x, y,2) is both continuously differentiable on R® for any fixed (m,n) € N§
and uniformly continuously differentiable at the point (x*,x*,x*) € R®, and there
exists a constant r € (0, 1) such that for any (m,n) € Né,

|fi (mym, o, x5, 67 ) [+ ] fy (myn, x5, x7%) |+ | f) (mym, %, 6%, x%) | <.
(4.344)

Then system (4.326) is stable.

Proof. Since the function f(m, n, x, y,z) is uniformly continuously differentiable
at the point (x*,x*,x*), there exists a positive number M > 0 such that for any
(m,n) € N§ and any (x, y,z) € R’ satisfying |x — x*| < M,|y — x*| < M and
|z — x*| < M,

| fimon,x, p,2) | + | fy(myn,x, y,2) | + | f (mym,x, p,2) | < 1. (4.345)

In view of the given conditions and Lemma 4.66, for any m > 0 and n > 0, and any
point (x, y,z) € R® which satisfies |[x — x*| < M, |y — x*| < M and |z — x*| < M,
there exists a constant t, = t(m, n,x, y,2z) € (0, 1) such that

flm,n,x,y,2) — f(m,n,x*,x*,x*)
= fi(m,n,An,0)(x — x*) + f;(m,n, A, 1,0) (y — x*) (4.346)
+ f,(m,n, A, 1,0)(z — x*),
where A = x* +1y(x —x*), n = x* +t,(y —x*), and 0 = x* +1y(z — x™). Obviously,

A=t < x=x"[,  n-x"[=|y-x"[,  |0-x"]<[z-x"].
(4.347)

For any sufficiently small number ¢ > 0, without loss of generality, let ¢ < M
and & = ¢, and let ¢ = {¢,,,} be a given bounded function defined on Q which
satisfies [@m,, — x*| < & for all (m,n) € Q. Let the sequence {x,,,} be a solution
of system (4.326) with the initial condition ¢. In view of (4.326) and the following
inequalities:

|x00 —x*| <8 <M, |x01 —x*| <8 <M, [x s —x*| <6< M,
(4.348)

it follows from (4.345), (4.346), and Lemma 4.66 that there exists a constant

to = t(O) O)xO,O)xO,laxfﬂ,fT) € (0) 1)1 (4349)
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such that

|x10 — x*| =] £(0,0,00, %01, X—0,—r) — f(0,0,x*,x*,x*) |
= |fx,(0)0)/1)77)6)| |x0,0 —X*| + |f):(070>/\)7776)| |x0,l _-x*|
+ | £,00,0,A,7,0) | | x—6—r — x| <8 <e< M,
(4.350)

where A = x* + to(x0,0 — x™), 1 = x™ + to(x01 — x*), and 0 = x™ + fo(x_¢,—r — x).
Similarly, from (4.326), (4.345), and (4.346), one has

[x1,0 —x*| = | £(0,1,x0,1, %02, X—5,1-7) — f(0, L, x*,x*,x*| <e <M.
(4.351)

In general, for any integer n = 0, |x;, — x*| < e < M.
Assume that for a certain integer k > 1,

|xin —x*| <e<M foranyie {1,2,...,k}, n>0. (4.352)
Then, it follows from (4.326), (4.345), and (4.346) that there exists a constant
to = t(k, 1, Xk,ns Xken1> Xk—0,n-7) € (0, 1), (4.353)
such that

|Xk+1,n - x* | = |f(ka 1, Xiey> Xkt 1> Xk—g,n—7) — f(k’ n,x*, x*, x*) |
< [ kn O] | xin —x*| + | f; (A1, 0) | | e — x* |
+ £ (k,n, A, 0) | | Xk—gyper — X |
< ([LfUendn0)| + | filondn0)| + | f(kndn0)|) e

<¢€

=

(4.354)

where A = x™* +to (X0 —x*), 1 = x* +to(Xp 1 —x*), and 0 = x™ +1o(Xk—g,n—r — ™).
Hence, by induction, |x,,, — x*| < € for any (m,n) € N; X Ny, that is, system
(4.326) is stable. The proof is completed. ]

Similar to the above proof of Theorem 4.67, it is easy to obtain the following
result.

Theorem 4.68. Assume that x* is a fixed point of system (4.326), and the function
f(m,n,x,y,2) is continuously differentiable on R® for any fixed m and n. Further,
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assume that there exists an open subset D C R® such that (x*,x*,x*) € D, and for
any (m,n) € Ng and any (x, y,z) € D,

| fi(m,n,x,y,2) | + |fy'(m, mx,y,2)| + | f,(mn,x,y,2)| <1 (4.355)
Then system (4.326) is stable.
From Theorems 4.67 and 4.68, one obtains the following results.
Corollary 4.69. Assume that there exists a constant r € (0, 1) such that
l|tmp | + |amn| <7 Ym=0,n=0. (4.356)
Then system (4.331) and (4.332) are both stable.
In fact, system (4.331) is a special case of system (4.326) when
flm,n,x,9,2) = phmux(1 = X) — dpmpuy. (4.357)

In view of (4.356), it is obvious that the function f(m,n,x, y,z) is both continu-
ously differentiable on R* for any fixed (m,n) € N§ and uniformly continuously
differentiable at the point (0,0, 0). Since x* = 0 is a fixed point of system (4.331)
and (4.332), one has

Sfo(m,n, x™, x*,x%) = i,
fy (myn, x*,x%,x%) = —am, (4.358)
fr (myn, x*, x*,x*) = 0.

Hence, (4.356) implies (4.344). By Theorem 4.67, system (4.331) and (4.332) are
both stable.

Corollary 4.70. System (4.333) has fixed points
xf = (= (a+1) =\(a+1)2+4u)2u) " (4.359)
Assume that there exists a constant r € (0, 1) such that
2lp-x*|+lal <7 (4.360)
Then system (4.333) is stable about x*.
Corollary 4.71. Assume that
|Gmn| + [bmn | + | pmn| <1 Vm =0, n>0. (4.361)

Then system (4.334) is stable.
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Define four subsets of Ny x Ny as follows:

Bi={(i,j):0<i<o0,0<j<t}, B,={(i,j):0<i<o, j>1} 362
By=1{(i,j):i>0,0<j<1}, By={(ij):i>0, j=1}. '

Obviously, B; is a finite set, B,, Bs, and By are infinite sets, By, B, B3, and B, are
disjoint of one another, and N{ = B; U B, U B; U B,.

Theorem 4.72. Assume that x* is a fixed point of system (4.333), the function
f(m,n,x, y,2) is both continuously differentiable on R® for any (m,n) € Né and
uniformly continuously differentiable at the point (x*,x*,x*) € R, and there exists
a constant r € (0, 1) such that for any (m,n) € By U By,

|fi (mym, %, 67%) [+ | fy (myn, x5, %) |+ 7™ | f) (myn, 6%, 6%, x%) | <,
(4.363)

and for any (m,n) € B3 U By,

| fi Gy, x*,x%, x7%) |+ | fy (myn, 6, x5, 6) | + 77| f) (im0, 6%, x%) | <.
(4.364)

Then system (4.326) is exponentially asymptotically stable.

Proof. From the given conditions, there exist two positive constants, M > 0 and
& € (r,1), such that (4.346) holds and for any (m,n) € By U By,

| fi(mym x5, x%) [+ | fy (myn, ¥, %) |+ 67| f) (myn, 0%, x%,x%) | <&,
(4.365)

and for any (m, n) € B3 U By,

| fi (mym o, x5, %) [+ | fy (mym, ¥, %) |+ 877 f) (myn, %, 6%, x%) | < €
(4.366)

for [x —x*| <M, |y —x*| < M, and |z — x*| < M.

Let § € (0,M) be a given constant and let ¢ = {¢,,} be a given bounded
function defined on Q which satisfies [@p,, — x*| < & for all (m,n) € Q. Let the
sequence {x,,} be a solution of system (4.326) with the initial condition ¢. In
view of (4.326) and the following inequalities:

|x00 —x*| <8 <M, |x01 —x*| <8 < M, |x_¢-7| <8 <M,
(4.367)
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it follows from (4.346), (4.366), and Lemma 4.66 that there exists a constant
to = t(O) 0) X0,0> xO,l)xflT,fT) € (0) 1)1 (4368)
such that

|X1,0 - x* | = |f(0>0>x0,0>x0,1:x—0,—1) - f(O, O’x*’X*>X*) |
< | fi(0,0,4,1,0) | [x00 — x* | + [ £7(0,0,A,1,0) | [ 0,1 — x* |
+ [ £0,0,A,7,0) | [x-g,-7 —x* | < ME,
(4.369)

where A = x™* +to(xo0 — x*), § = x* + ty(x0,1 —x*), and 0 = x* + to(x_,—r — x™).
Similarly, from (4.326), (4.346), and (4.366), one has

|x1»1 —X*| = |f(0: LxO,l’xO,Z:x—J,l—r) _f(o; 1,X*,x*,x*)| < Méf (4.370)

In general, for any integer n > 0, |x;,, — x*| < ME.
Assume that for a certain integer k € {1,...,0},

Xip —x*| < ME foranyie {1,2,...,k}, n=0. (4.371)
; y

Then, (k,n) € B; UB; and (k — 0,n— 1) € Q. From (4.346), (4.365), and Lemma
4.66, there exists a constant ty = t(k, 1, Xk > Xk n+1> Xk—on—7) € (0, 1) such that
| xke1,0 — 2% | = | f (ks 10, X > Xkt 1> Xkeon—r) — f (Ko 1, %, 2%, %) |
< | flkm A, 0)| [ 3 — x| + | £ (ks A 1, 0) | | xmin — x*
+ |fz,(k’ A, UB 0) | \xkfa,nff —x* |
< MEX| £ (k,m A, 0)| + MEF| £ (k,m, A7, 0) |
+ MEX| £ (k,m A, 0)| < MEK,
(4.372)

where A = x* +to(xk,n —x*), 1 = x* + 1o (X pe1 —x™), and 0 = x* +1o(Xk—g,n—7 —X™).
Hence, by induction, |x,,,, — x*| < M&™ for any (m,n) € {1,2,...,0 + 1} and
n=0.

Assume that for a certain integer k > o + 1,

|xin —x*| < ME foranyie€ {1,2,...,k}, n=0. (4.373)
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Then, (k,n) € B3 U By, (k — 0,n — 17)¢Q. Hence, from (4.326), (4.346), (4.366),

and Lemma 4.66, there exists a constant ty = t(k, 1, Xk u> Xk n+1> Xk—on—7) € (0,1)
such that

|k —x* | < | fL(ksn, A1, 0) | - MEF + | f; (kym, Ay, 0) | - MEF

+ | 1 (k,n,A,1,0) | - Mk
(4.374)
= ME(| f(kum, o, O] + | £ (kum, A, 0)

+E| f (k,m A0, 0)|) < MEM,

where A = x™* +1 (X, —x*), 1 = x* +1o(Xp p1 —x™), and 0 = x™* + 1o (Xk—g,n—r —x™).
By induction, |x,, — x*| < ME&™ for any (m,n) € Ny X Ny, that is, system (4.326)
is exponentially asymptotically stable. The proof is completed. |

From Theorem 4.72, it is easy to obtain the following corollaries.

Corollary 4.73. Assume that there exists a constant r € (0, 1) such that
|t | + |@mn| <7 Ym=0,n=0. (4.375)

Then systems (4.331) and (4.332) are both exponentially asymptotically stable.

Corollary 4.74. System (4.333) has fixed points

2= (= (a+1) £ (a+ 12 +4pu) )" (4.376)
Assume that there exists a constant r € (0, 1) such that
2{u-x*| +lal <. (4.377)

Then system (4.333) is exponentially asymptotically stable.

Corollary 4.75. Assume that there exists a constant r € (0, 1) such that for (m,n) €
B; U B,,

| @mpn | + [y | + 17 pun| <1, (4.378)
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and for (m,n) € B3 U By,
[amu| + [bmn| +177| pinu| < 1. (4.379)

Then system (4.334) is exponentially asymptotically stable.

Let

D ={(mn):1l<m=<o,0<n<t}, Dy={(mmn):m>0,0<n<rt}

D;={(mmn):1<m<o, n=rt} Dy = {(mn):m>o0, n>1}
(4.380)

Obviously, Dy, D,, D3, D, are disjoint of one another, and N; X Ny = D; U D, U
D5 U Dy.

Theorem 4.76. Assume that x* is a fixed point of system (4.326), f(m,n,x, y,z) is
both continuously differentiable on R? for any (m,n) € N§ and uniformly continu-
ously differentiable at the point (x*,x*,x*) € R>. Further, assume that there exist a

constant r € (0,1) and an open subset D C R with (x*,x*,x*) € D such that for
any (x, y,z) € D and any n = 0,

| £ 0, n,x,y,2)| + | £,(0,n,x,9,2) [ + | £, (0,m,x, p,2)| <7, (4.381)
and for all (m,n) € D, U Ds,

| S (m, 6%, 6%, x7) |

(4.382)
+rl fy (mynx™, x5, x%) [+ 7" £ (myn, x*, x5, x%) | <1y
and for all (m,n) € Dy U Dy,
| fo (myn,x™, x*,x*) |
(4.383)

+r| fy (mn, x5, ) | + 1707 | f (myn,x x5, x%) [ <

Then system (4.326) is D-B-exponentially stable.
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Proof. From the given conditions, and from (4.381), (4.382), and (4.383), there
exist positive constants M > 0 and & € (r, 1), such that (4.346) holds and for all
n =0,

|0, n,x,y,2) | + [ £,(0,n,x,9,2) [ + [ £,(0,m,x,y,2) | <&, (4.384)
and for all (m,n) € Dy U Ds,

| £ (mymy x*, 2%, x7) |

(4.385)
+&[ fy (myn, x*, 5, x%) | + &M f (myn,x*, 6%, x%) | < &,
and for all (m,n) € D, U Dy,
| £ (mym, 6%, 6%, x%) |
(4.386)

+E&[ fy (myn, x*,x*, x*) | + €077 f) (myn, 6%, x%,x%) | <&

for |[x —x*| <M, |y —x*| < Mand |z — x*| < M.

Let § € (0,M) be a constant and let ¢ = {¢,,,} be a given bounded func-
tion defined on Q which satisfies @, — x*| < & for all (m,n) € Q. Let the
sequence {x,,,} be a solution of system (4.326) with the initial condition ¢. In
view of (4.326) and the following inequalities:

| x0, — x| <8 <M, | X011 —x*| <8 <M, | x| <8 <M,
(4.387)

it follows from (4.346) and (4.384) that there exists a constant
tO,n = t(o) 1,y X0,n> X0,n+1> xfa,rt*‘l') € (0) 1) (4388)
such that for any n € Ny,

|x10 — x* | = | £(0, 1, X015 X0,01> X—an—z) — f (0,1, x%,x*,x*) |
< |fx, (0$ n, AO,n: No,n» eo,n) | |x0,n —x* |
(4.389)
+ |f): (0) n)AO,I’l) nO,rH 00,11) | |x0,n+1 - x* |

+ |f2, (0> n:AO,m 710,n> 6O,n) | |x—u,n—‘r - X* | =< M{nﬂj
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where Ao, = x* + to (X0 — X*), Hon = X* + tou(Xop1 — x*), and Oy, = x* +

ton (xfa,nfr - x*).
Assume that for some m € {1,...,0},

xii—x*| < MEY V1<i<m, jeN,. (4.390)
J J

Then, forall n = 0, one has (m—o,n—1) € Q and (m,n) € D; UDs. Hence, it fol-
lows from (4.346) and (4.385) that there exists a constant t,, ,, = t(m, 1, Xy, 1> Xm,n+15
Xm—on—1) € (0,1) such that
| Xme1n — x* | = | £ (M, 10 Xon> Xt 1> Xm—on—z) — f (11,1, x7%, 5%, x*) |
< | i (my 1, Ay Qomgns Omon) | | X — x|
+ |fy’ (m, 1 A N em,n) | |xm,n+1 —x* |
+ |f;(m, ”)Am,mnm,mem,n) | |xm70,nfr - x* |
< | £ (my 1, X Homs ) | - ME™"
+ | fy (my 1, Aoy Ny Omn) | - METE
+ £ (M, 1, Ay s Omon) | - M < ME™HTL,

(4.391)

where Ay = X* + Ly (Xpn — X*), fimn = X5 + tyu(Xmner — x*), and 0,,, =
X* + tn(Xm-on-r — x*). By induction, |x,,, — x*| < M&M™ for all (m,n) €
{1,2,...,0+ 1} andalln = 0.

Assume that for some m > 0 + 1,

|xin — x*| < MEH" V1 <i<m, andalln e N,. (4.392)

Then, for all n > 0, one has (m — o,n — 7)&Q and (m,n) € D, U D,. Hence, it
follows from (4.346) and (4.386) that there exists a constant

tm,n = t(m) n, xm,mxm,n+l)xm—0,n7‘r) € (0) 1) (4393)
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such that

|xm+l,n —X*| = |f(m> n:xm,mxm,nJrl)xme,n*T) - f(m> n,x*,x*,x*)|

< [ £ (m 10, dons s Omn) | | X = x|

+ [ f5 (1, Awos Howns Omn) | | X — X |

+ | £ (s 11 Asus Himns Omn) | | Xm-gnx = %™ |
< | £ (mym Awins Nms Omn) | - ME™T

+ | fy (11 Aoy T O) | - ME™HH

| £ (1, 1 Aoy Hnns Omn) | - MET 7077
= ME™ (] £ (m, 11 A Hiins O |

+ &1 £ (m, 1, A N> O |

+ &7 £ (my 1, A N O | )
< MEmn

313

(4.394)

where Ay, = X* + by (Xn — X*)s fimn = X + tyn(Xmnn — x*), and 0, = x* +
tmn(Xm—o.n—r — x*). By induction, |x,,, — x*| < M&M*" for any (m,n) € Ny X Ny,

that is, system (4.326) is D-B-exponentially stable. The proof is completed.

From Theorem 4.76, it is easy to obtain the following corollaries.

O

Corollary 4.77. Assume that there exist two constants r € (0,1) and C € (0, 1) such

that
lto| + |aoa| < Cr™™' Vn=0,

| b | + 7| @mu| <1 forany (m,n) € Ny X No.
Then, system (4.331) and (4.332) are both D-B-exponentially stable.

Corollary 4.78. Assume that there exists a constant r € (0, 1) such that

" foranyn > 0,

|aon| + [bonl| + [pon| <7
r|amn| + |bmn | + 777" | pmu| <1 forany (m,n) € D; U D3,

r|amn| + [bmpn| + 77| pmpn| < v forany (m,n) € D, U Dy.

Then, system (4.334) is D-B-exponentially stable.

(4.395)

(4.396)
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4.5. [, stability in parabolic Volterra difference equations

Consider the linear parabolic Volterra difference equation

AZ (um,n - Z qum,nrj> + Zpium,n—k, = CA%um—l,rHl (4397)
j=1 i-1
form=1,...,Mandn =0,1,... with homogeneous Neumann boundary condi-

tions (NBCs)

Aoy = Mup, =0 forn=0,1,... (4.398)

and initial conditions (ICs)

Umi = pm; form=1,...,M,i=...,-1,0, (4.399)

where A, A%, and A, are defined as Section 3.7, Pinqj € R, ki,rj € Ny fori,j =
L2,..., 4mi € Rform =1,...,Mandi = ...,-1,0, ¢ = 0. Throughout this
section, we assume that P=>", p; > 0, P* = X7, [pil, P’ = X2 kil pil, P =
Z;; k12|P1|a Q* = Z;ozl |q]|a Ql = Z;O:I rj|qj|a and PaP*:P,>P”>Q*> Q, < o0 and
that

lull = sup { |pmi| form=1,....M,i=...,—-1,0} < co. (4.400)

For the sake of convenience, in proving the (unique) existence of solutions of
(4.397) with the initial boundary conditions (4.398) and (4.399), we let u,,; = 0
form<0,m>M+1,andi=0,1,....

By a solution of (4.397)—(4.399), we mean a sequence {u,,,} which is defined
form=1,...,Mand n = 0,1,... and which satisfies (4.397), NBCs (4.398), and
ICs (4.399).

By using the method similarly to Chapter 2 or simply by successive calcula-
tion, it is easy to show that (4.397) has a unique solution for given boundary and
initial conditions which satisfies (4.400).

In the sequel, we only consider the solutions of (4.397) with the initial condi-
tions satisfying (4.400).

We now give some definitions which will be needed in this section.
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Definition 4.79. The zero solution of (4.397) is said to be attractive if every solu-
tion {uy,,} of (4.397) with ICs satisfying (4.400) has the property

lim uy, =0 form=1,...,M. (4.401)
n—o00

Definition 4.80. The zero solution of (4.397) is said to be L? stable if every solution
{ttmn} of (4.397) with ICs satisfying (4.400) has the property

[

ul,, <o form=1,..,M. (4.402)

n=0
It is easy to see that L? stability implies the attractivity.
Theorem 4.81. Assume that

+-+P <L .
Q* 1;) P’ (4.403)

Then the zero solution of (4.397) is L? stable.

Proof. Itis easy to show that

e} oo n
Z Pilmpn—k; = Pum,n+l Ay < Z pi Z um,s). (4404)
i=1

i=1 s=n—k;

Hence, we can rewrite (4.397) as follows:

]

o0 n
A2 (um,n - Z qum,n—rf - ZPt Z um,s) = _Pum,n+1 + CA%umfl,;ﬁl-
j=1 i=1  s=n—k;
(4.405)

Define a Liapunov sequence as follows:

2

(”m,n - Z qjUmn-r; sz Z um,s) . (4.406)
j=1 1

1 i= s=n—k;

Mz

Vil =

m
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Then we have

Mz

1 2
AV,(l ) = (- Py piq + CAlumfl,nJrl)
m=1
X (um,n+1 + Umpn — Z ‘Zjum,n+1—rj - Z qjum,n—rj - Pum,n+1 (4407)
j=1 j=1
(o) n (o)
-2 pi Z Um,s — Z pium,nki) .
i=1  s=n+l—k; i=1

Here, we define that 3/, % = 0if m > n.
For the estimation of the right-hand side of the above equality, let us consider

M ) 00
-P Z Um,n+1 <um,n+1 t Umpn — Z qjum,n+l—rj - Z qjum,n—rj
j=1

m=1 j=1
o] n o]
- Pum,nJrl -2 pi Z Um,s — Z pium,n—k,-)
i=1  s=n+l-k; i=1

M 00 )
=-P z Um,n+1 (“m,nﬂ + Umpn — Z qjUmn+1-r; — Z qjUmn—r;
= f

m=1
) n
- Pum,n+1 -2 pi Z Um,s + Umn+l — Umn
i=1  s=n+l-k;
0 0
2
- Z qjum,n+1—rj + Z q;‘um,nfrj - CAluml,rHl)
j=1 j=1
M o
2 2,2
= Z ( = 2Pujy 4 +2P Z qjUmni1 Umpt1—r; T P Uy 4 (4.408)
m=1 j=1

n

[o]
2
+2P z pi Z Umpn+1Um,s + Pcum,n+lA1um1,n+l>

i=1  s=nt+l-k;

Mz

00
|: - 2Pu2m,n+1 +P Z |q1 | (uzn,n+1 + u%n,n-%—l—rj) + qufn,rﬁl

<
m=1 j=1
o0 n
+ PZ |Pi| Z (”%n,nﬂ + ”ﬁqs) + Pcum,nHA%“ml,nH]
i=1 s=n+1-k;
M 1 0
= Z { _ZP[I - E(Q* +P+p,)]u$n,n+l +PZ |qj|u$n,n+l—rj
m=1 j=1

n

0
+P Z |p1 | Z M%n,s + Pcum,n+lA%um—l,n+l}~

i=1 s=n+1—k;
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Similarly, we have the following inequality:

M

o] o]
c Z (um,nﬂ t Umn — Z qjUmn+i-r; — Z qjUmpn—r; — Ptiyyne1
j=1 j=1

[ n [
2
-2 Z pi Z Um,s — Z pium,n—kf)Alum—l,nJrl
i=1 s=n+1-k; i=1
M o
2 2
<2 Z um,n+lA1um—1,n+l z Z Umn+1— r}Alum 1,n+1
m=1 j=1 m=1
M o0 n M
2
- Pc Z U1 ATUm— 1,001 — zczpi Z Z 1um Ln+l-
m=1 i=1 nt+l—k; m=1

(4.409)

Therefore, we obtain

M M
1
AVJSI)S_2P|:1_2(Q*+P+P ]Zumn+l+PZZ|q]|umn+l rj
m=1 m=1 j=1
M oo n M
+P Z Z |Pz| Z ufn,g +ZC Z Z4m,n+1A%um—l,rﬁl
m=1i=1 s=n+1-k; m=1

M

0 M
_Cij Z Um,n+1— r]A%um 1,n+1 —ZCZPz Z Z ums 1um 1,n+1-
m=1 i=1  s=n+l-k;m=1
(4.410)

By using a summation by parts formula and NBCs (4.398), (here we define
A, =0fori<0andi> M+ 1), we obtain

M M

2

2¢ > tp1 A -1 001 = =20 Y. (Atthmnsr)
m=1 m=1

o0 M
2
-2 Z qj Z um,n+1—rjA1um—1,n+1
j=1 m=1

ZCZq Z Alumnﬂ rJAluanrl

j=1 m=1
M
=c Z Z | Al”m,nﬂ)z + (Alum,rﬁ—l—rj)z]
m=1 j=1
M M
= Z (Alum’”ﬂ)z te Z Z |q] | (Alum,nﬂ—rj)z;

m=1 m=1 j=1
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0 n M
- 2C2pi Z Z um,sA%”mfl,rH—l

i=1  s=ntl-k; m=1

0 n M
= 2c Z Di Z Z Alum,sAlum,rHl

i=1 s=n+l1-k; m=1

n

|Pi| Z [(Alum,s)2 + (Alum,nﬂ)z]

s=n+1-k;

8

IA

M
¢
m=1

i

n

il > (M)’

Mz
Me

M
=cP’ Z (Alum,nﬂ)z +c

m=1 m=1 i=1 s=n+1-k;
(4.411)
Using the above inequalities, we obtain
1 M
AV < —2P[1 - 5(Q* +P+P’)] > n

M o
z |qj|u%n,n+l—rj +P Z Z |pl| Z ufn,s

1j=1 m=1 i=1 s=n+1-k;

Mz

+P

m

n

M M o
+c Z Z |QJ | (Alum,n+1—rj)2 +c Z Z |p1| Z (Alum,s)z-

m=1 j=1 m=1i=1 s=n+1-k;
(4.412)
Now, define another Liapunov sequence as follows:

M 00 n 0o n n
Vé2)= Z |:PZ|q]| Z Mzn’s+PZ|Pi| Z Zufn,t
J

m=1 j=1 s=n+l-r; i=1 s=n+l—k; t=s

oS lal 3 @ X lnl Y3 ]
j=1

s=n+l-r; i=1 s=n+l—k; t=s
(4.413)
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Then, we obtain

n
AVr(IZ) = Z {PZ |‘JJ mn+1 %nn+l r +PZ |pl ( mn+1 Z uf’”)

m=1 s=n+1-k;

te Z |q1 | [(Alum,n-¢—1)2 - (Alum,nﬂ,,j)z]

+CZ |P1 |: Aluanrl)2 - i (Alum,s)21|}

s=n+1-k;

[\/]2

’ 2 ’ 2
|:PQ* m n+1 + PP uzn,nJrl + CQ* (Alum,rH—I) +cP (Alum,n-H)

m=1

n

_PZ |‘Jj|”%1,n+1frj_PZ|Pi| Z ”3;1,5
j=1 i=1

s=n+1-k;

n

oS g Bt =S ]S (Alum,ﬂ.

j=1 i=1 s=n+1-k;
(4.414)

Finally, we take the Liapunov sequence as V,, = ViV + v, By using (4.403), we
finally obtain

M
P
AV, < —2P(1 -Q* - 5 P’) DIRT-A (4.415)
m=1

Therefore, {V,} is decreasing and there exists a nonnegative limit Vo = lim,—« V.
Now, summing both sides of (4.415) from n = 0 to n = oo, we have

o M
P
2P(1 -Q* - 5 P’) > > k0 < V. (4.416)
n=0 m=1
Hence,
o M M VO
2 2ot : 4.41
2, 2 = 2 et SR g - P) < a7
The proof is complete. O

Remark 4.82. Let u,, be independent of m, writing x, = ., 4; = ki = 0 for
i,j=1,2,... and ¢ = 0. Then (4.397) becomes an ordinary difference equation

Ax,+Px, =0 forn=0,1,... (4.418)
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and (4.403) becomes

P <L (4.419)
2

One can easily prove that the condition (4.419) is a necessary and sufficient con-
dition for L? stability of (4.418). In fact, its solutions {x,} with IC x; = y; for
i=...,—1,0satistying ||ull = sup{|y| fori = ...,—1,0} < oo has the property
> o 1xa| < 0. Therefore, in this sense, the condition (4.403) is a “sharp” condi-
tion.

As a special case, we consider a linear parabolic Volterra difference equation

A2un1,n + Z Pilmn—k; = CA%Um—l,rHl (4420)
i=1

form=1,...,Mandn =0,1,...,with NBCs (4.398) and ICs (4.399). By Theorem
4.81, we have the following conclusion.

Corollary 4.83. If
g +P <1, (4.421)

then the zero solution of (4.420) is L?* stable.

The above argument can be used to the nonlinear parabolic Volterra differ-
ence equations.

4.6. Systems of nonlinear Volterra difference equations with
diffusion and infinite delay

We consider the r-dimensional Euclidean space R". For x = (x1,%2,...,%,)T € R,
we define its norm ||x|| = max;e; |x;|, where I = {1,2,...,r}. In R", we introduce
acone P = {x | x; = 0,i € I'}. Then it is a solid cone in R". It is easy to show that
P is normal, regular, minimal, strong minimal, and regenerated (see Amann [9]).
For two elements x and y = (y1, y2,. .., y,)T in P, we introduce a partial ordering
< such thatx < (or =)y ifand only if x; < (or =)y; for i € I and x < y means that
x; < yifori € I.So, (R", <) becomes a partial-ordered Banach space. In R", we also
define an operation of multiplication ® by x ® y = (x1y1,X2)2,. .. ,x,y,)T. In this
way, (R",+, ®) will be a partial ordered commutative ring by installing both this
operation ® and the ordinary addition + with the zero element 0 = (0,0,..., 0)T
and the unit element u = (1,1,...,1)T. Define an ordered interval [-, -] in R" by
[x,y] ={z€eR |x <z <y}
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In the r X r-dimensional matrix space R™", we also introduce a partial or-
dering <. If X = (x;;);xr and Y = (y;j)rx, are two elements in R™", then define
that X < (or =)Y if and only if x;; < (or =)y;; fori,j € I and X < Y means
that x;; < y;; for i, j € I. Therefore, R also becomes a partial-ordered Banach
space.

Consider the systems of nonlinear Volterra difference equations of the popu-
lation model with diffusion and infinite delays

Aty = AN Uy 1 i1 + Uy ® (b — Clpp — zDium,ni> (4.422)
i=0

for (m,n) € QX Ny = {1,2,..., M1} X -+ - X {1,2,..., M} X {0, 1,... }, where A,
and A, are forward partial difference operators, A} is discrete Laplacian operator,
A, C > (0),x, are diagonal matrices, b € R", and b > 0, u.. € R" is a double vector
sequence (only in form), Dy = (0),x, and D; € R"™" for i € Np.

Together with (4.422), we consider homogeneous Neumann boundary con-
dition

ANtm—14+41 =0 for (m,n) € 0Q X Ny (4.423)
and initial condition
Umj = ¢m; for (mn) € QX NP £ Qx{..,-1,0}, (4.424)

where Ay is the normal difference, o) is the boundary of €, and ¢,,; € P for
(m,n) € Q x NO,

By a solution of (4.422)—(4.424), we mean a double vector sequence {um,,},
which is defined on (m,n) € Q x N £ Q x Ny U N satisfies (4.422), (4.423),
and (4.424), respectively, when (m, n) € Q X Ny, (m,n) € 0Q X Ny, and (m, j) €
QxNO,

For any given initial and boundary condition (4.423) and (4.424), we can
show that the initial and boundary value problem (4.422)—(4.424) has a unique
solution.

We suppose that

i |D,| =D< 0,
=0 (4.425)

0< ¢l = Sup  @m,j < 0.
(m,j)eQXN©
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We write throughout this section that

n n
D,=>|Di|, 8, =>D; Di= for n € Ny. (4.426)
i=0 i=0

Then D, D;; are all nonnegative, nondecreasing, and bounded above by D.
Since P is regular, we can let D* = lim,_., D; . It is easy to see that

D} + D, = D,, D} — D, =6y,

- 4.427
D*+D =D, D'-D =§8=> D (4.427)

Assume that
Cu>D"u. (4.428)

From Berman and Plemmons [20], we know that C — D~ is a nonsingular and
inverse-positive Metzlerian matrix, that is, C—D~ is invertible and det(C—D~)~! >
0. Then (C—D~)~'b > 0. Since C+ 6 > C — D™, we know from Metzlerian matrix
theory that C + ¢ is invertible and det(C + §)! > 0.

In addition, we let

b-D"(C-D) 'b>0, (4.429)

p=max {(C—D")"'b,l¢l}. (4.430)

It is obvious that the nonlinear Volterra difference equation of the population
model

Ax, = x, (b — Xy — Z dixn_i> forn € Ny (4.431)
i=0

is a special case when r = 1 and without diffusion, where A is the forward differ-
ence operator.

It is easy to show that (4.422) has only two equilibrium points u,,, = 0 and
tmn = (C+ 8)~'b. The purpose of this section is to give a sufficient condition for
the attractivity of the positive equilibrium solution u,,, = (C+8)~'b of (4.422) by
using the method of lower and upper solutions and monotone iterative techniques.

Lemma 4.84. Let (4.425), (4.428), (4.429), and (4.430) hold. Suppose that {um,,}
is the unique solution of (4.422)—(4.424). Then

Umn € [0, p]  for (m,n) € Q X Ny. (4.432)
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Proof. Consider the initial boundary value problems

AV < ANV | i1+ Vi ® <b— CVmn— . Divm,n,—) for (m,n) € Q XNy,

i=0

ANVim—1041 =0 <0 for (m,n) € 0Q X Ny,

Vimj =0 < ¢; for (m,n) € QxNO;
(4.433)

0
AWy = AN W1 i1+ Wiy ® (b— CWin— Z Diwm,ni> for (m,n) € QX Ny,
i=0

ANWm-10+41 =0 =0 for (m,n) € 0Q X Ny,

Wmj =P = m; for (mn) € Qx N,
(4.434)

Since

b—(C+8)p<b-Cp+D p=b-(C-D7)p =<0, (4.435)
it is easy to see that v = 0 and w,,, = p are, respectively, solutions of (4.433) and
(4.434), that is, a pair of lower and upper solutions of (4.422)—(4.424). Therefore,

(4.432) holds. This completes the proof. |

Lemma 4.85. Assume that (4.425), (4.428)—(4.430) hold. Suppose that {pﬁ,”} is the
unique solution of the Cauchy problem

ApY = pV e (b—CpV+D p) forne Ny,

0 (4.436)
p;'=p forjeN©.
Then { pﬁ,l)} is nonincreasing and
pVe[C T (b+D p),p] forne N. (4.437)
Proof. Consider the Cauchy problems
MY <viV ® (b—CviY + D p) forn e Ny,
(4.438)
v =C ' (b+Dp)<p forjeNO;
Awl) = wil ® (b— Cwl) + D™ p) forn € Ny,
(4.439)

w}” =p>p forjeNO.
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It is easy for one to know that v =Ccl(b+D- p) and wi) = p are, respectively,

solutions of (4.438) and (4.439), that is, a pair of lower and upper solutions of
(4.436). So, (4.437) holds.

By (4.437), we have that A pi,l) < 0. Hence, { pill)} is nonincreasing. The proof
is thus complete. O

Lemma 4.86. Let (4.425), (4.428)—(4.430) hold. Suppose that {uip, » } and {pill)} are,
respectively, the unique solutions of (4.422), (4.423), (4.424) and (4.436). Then

Umn € [0, pV]  for (m,n) € Q X Ny. (4.440)

Proof. Let J* satisfy that J* U]~ = Ny andlet J* N ]~ = &, the empty set, and be
such that

D; > (0),«, forie]™, D; < (0),x, forie] . (4.441)
Write §* = >;c;: D;. Then we must have
8t =D, -6 =D (4.442)

Hence, from (4.437), we have

= 1 1 1 1 _ _
~>Dipi == > Dip\i = > Dipli <= > Dipl; < -8 p=Dp,
i=0

ie]*t S €]~

b_Cpgll) _ZDiPSJ,' < b_CPg)‘l‘D—p for n € Nj.
i=0

(4.443)

Therefore, wy,, = p,(f) is a solution of (4.434), and (4.440) holds. Thus the proof
is complete. U

For the regularity of P, we can let p()) = lim,,_.« pS". By virtue of (4.436), we
can obtain p() = C~1(b+ D~ p). It follows that

lim sup max uy,, < p(l). (4.444)
nooco MEQ
So, for any € = (€,...,€)T >0, there exist n; > 0 and n; > n; such that
Umn < pV +€ forn e N, (4.445)

(0)yxr <D™ =D,_, 1 <(€)rxr forn € Np,. (4.446)
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Lemma 4.87. Let (4.425), (4.428)—(4.430) hold. Suppose that {pff)} is the unique
solution of the Cauchy problem

Ap? = pP o (b—CpP +D (p1+€) +e®p) forn€N,,

(4.447)
p}z) =pi+e forje N™,
where N = { . n, — 1,n,}. Then p;z) is nonincreasing and
Umn € [0, pP]  for (myn) € QX Ny,. (4.448)

Proof . If (4 448) is not true, then there exist m; E Q and n3 > n, such that
Um.n _pn fornz <n< n3 and m € Q and up, >pn .
Let Xpn = Umpy — pn ) Then Xmu < 0forny; <n<nzandm e Qand

Xppyms > 0. (4.449)
We can derive, from (4.447),
AN X101 — DaXon + Yinn ® Xmn = Zmpn  for (m,n) € Q X N, (4.450)

where

Ymn = b — Clhyyp — ZD,-um,n,,' - Cp,(f) for (m,n) € Q X N,,,
i=0

Zmn = PP ® (D(p1 +€)+ D Ditlyp-i +€® p) for (m,n) € Q X N,,.
i=0
(4.451)

It is easy to show that y,,,, is bounded. We will see in the following that z,,, > 0.
Indeed, from (4.445) and (4.446), we have

[«

- ZDium,nfi = Z A umn i= = Z (AD?—l)”m,nfi + Z (ADi__l)um,nfi
s =

i=0 i=0

n—n;—1

IA

(ADi Umn—i T Z AD; 1 umn i

i=0 i=n—m

<D, ,_1(pr+€) + (D" =D, _1)p <D (p1+€)+(E)rxsp.
(4.452)

So, by (4.451) and (4.452), we have

Zmn = 0 for (m,n) € QX Ny,. (4.453)
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It follows, from (4.450),

DNoXmn < AN X1 a1 + Vi ® X (4.454)
Consider the initial boundary problems

AoV = AN Vi 1011 + Yinn ® Vi for (m,n) € Q X Ny,
ANVm-1441 = 0 for (m,n) € 0Q X N, (4.455)
Vi, =0 form e Q,
AoXmpn < AN X141 + Yiun ® Xy for (m,n) € QX N,,,
ANXp-1001 <0 for (m,n) € 0Q X N,,, (4.456)
Xmu, <0 form e Q.
Obviously, vy, = 0 is the unique solution of (4.455). Comparing (4.455) with
(4.456), we know that x,,, < 0 for (m,n) € Q X N,,. But, this contradicts (4.449).
Therefore, (4.448) holds.

Similar to the proof of Lemma 4.85, we can easily know that pﬂz) is nonin-
creasing, which completes the proof. g

Remark 4.88. In fact, we can directly use the maximum principle (see Cheng [29])
to obtain the contradiction.
We can obtain from (4.447) and the regularity of P that

lim PP =C 1 (b+D (p1+€)+e®p). (4.457)
Therefore,
limsupma())(um,n <C ' b+D (p1+e€)+e®p). (4.458)
oo ME

Because € is arbitrary, we have

lim sup Max iy, <C Y b+D p)) = py. (4.459)

n—oo ME
Define a sequence {p,} as follows:
pe=C (b+D p,y) foreeZ™(1), Po = p. (4.460)

Lemma 4.89. Let (4.425), (4.428)—(4.430) hold. Suppose that {p¢} is defined by
(4.460). Then {p¢} is nonincreasing and

(C-D) 'be0,p] foreeN,. (4.461)
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Proof. We rewrite (4.460) as follows:
Ape=C 'D Ap,-y fore e Ny. (4.462)

We know from Apy = p1 — p < 0 that Ap, < 0 for all ¢ € Ny. That is, {pe} is
nonincreasing.

Noting that p > (C — D7), we have from the equations in (4.460) and
(4.437) that Cp; = b+D~p > b+ D™ py. Hence, p; > (C— D~)~'b. By induction,
we obtain (4.461). This completes the proof. |

Because P is regular, we let y = limy_o pe. From (4.460), we have y = C~1(b+
D™y). We can solve y = (C — D7)~ !b.
Repeating the above procedure, we can show that

lim sup max uy,, < y. (4.463)
meQ)

n—oo

From (4.429), we have that b > D*y. So, we can select an € > 0 such that
b>D"(y+¢€) + € ® p. (4.464)
Let 0 < € < €. By (4.452), there exist ny > n3 and n5 > ny such that

Ump <y +e€ for(m,n) € QXN,,
R (4.465)
(0);xr = D" =Dy 1 < (€)rxy forn € Ny,.

From (4.423), Lemma 4.84 and the maximum principle (see Cheng [29]),
we know that u,,, > 0 for (m,n) € Q X Ny and can select an # > 0 such that
MiNy,eq Umps = 24.

Consider the Cauchy problem

Agn=¢qu® (b—Cqg,—D"(y+€)—€®p) forneN,,

(4.466)
qgj =n forj € Ny,.
Repeating a similar argument of the above, we can obtain that
Gn < Umyu for (m,n) € QX Ny,
lim g, = C'(b—D*(y +€) —€) ® p. (4.467)
Consequently, we have
lim inf min w,,, > C"'(b — D*y) (4.468)

n—o  meQ)

for € > 0 being arbitrary.
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Define a pair of coupled sequences {ux} and {vx} as follows:

Cuk =b—D"v_1 + D -y fork € Ny,
Cvi=b+D v_; — D+‘uk,1 fork € Ny, (4.469)
1

Vo = (C —Di)i b, Mo = C71 (b —D+V0).

Lemma 4.90. Let (4.425), (4.428)—(4.430) hold. Suppose that the pair {yx} and
{vk} is defined by (4.469). Then

[to-vol 2 [p,vi] 2 -+ 2 [uksvk] 2 -+ fork € Ny, (4.470)
Ilim k. = }lim vie=(C+68)'b. (4.471)

Proof. Because

C[/ll >b- D+V() = Cﬂo, CVO = (C— Di)Vo +D vy = b+D7V0 = CV],

Cvg > (C - Di)V() =b>b- D+Vo = Cﬂo,
(4.472)

so we have
(1o, vo] 2 [u1,v1]. (4.473)
We can get (4.470) by induction.
By virtue of the regularity of P, we can let g = limj_.. g and v = limg_. o v%.

Then we get

Cu=b-D"v+Dy,

(4.474)

Cv=b+Dv-D'u

Subtracting the two equalities in (4.474), we obtain
Clu—v)=(D*+D )(u—v) =D(u—v). (4.475)

So, (C—=D)(u—v)=0.
Since

(C-—D)vy=(C-—D"-D)(C-D)'b=b-D(C-D) 'b>0
(4.476)

from (4.429), we have from the properties of Metzlerian matrices that det(C —
D)~! > 0. Therefore, y = v.
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It follows from (4.474) that

Cu=b-D'uy+D uy=b-90u or (C+&)u=>0. (4.477)

This leads to (4.471). The proof is thus complete. |

Lemma 4.91. Let (4.425), (4.428)—(4.430) hold. Suppose that the pair {yr} and
{vk} is defined by (4.469). Then

[ liminf mig U, lim sup max um,n] < [uk,vk]  fork € Ny. (4.478)

n—o  me H—oo ME

Proof. From the above, (4.478) holds for k = 0.
Take an €; > 0 such that €, < yp and

b>D+(V0+€1)—D_(M0—€1)+2€1®p. (4479)
For 0 < € < €3, there exist ng > ns and ny; > ng such that

Uo — € < Uy < Vo + € for (m,n) € QX N,

(4.480)
(0)rxr <D — Dypg—1 < (€)rxr forn Ny, .

Now, we consider the Cauchy problems

Ap,=p,®(b—-Cp,+D (vo+€) —D"(up—€) +2€ ® p), ne€N,,

pj=w+e, jeN";
(4.481)

Ag,=7q,®(b—-Cq,-D"(vg+€)+D (g —€) —2€®p), n€N,,

g =po—€, jeN™.

(4.482)
Similar to the above argument, we can obtain
q, < Umn < p, for(mn) e QxXN,,
limp, = C'(b+D (v+€) —D* (o — €) +2€ ® p), (4.483)
limg, = C'(b-D'(vo+€)+D (4o —€) —2€®p).
Letting € — 0, we know that (4.478) holds for k = 1.
Again, by repeating the above process, we have that (4.478) holds. O

Using the above seven lemmas, together with the property that P is normal,
we have the following main result.
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Theorem 4.92. Let (4.425), (4.428)—(4.430) hold. Assume that {upm,,} is the unique
solution of (4.422), (4.423), and (4.424). Then

lim o Ymn = (C+8)'b. (4.484)

n—oo,me

Remark 4.93. Tt is well known that (4.422) describes the growth of r-species alive
in Q that the densities of the r-populations at place m and time »n are u,,, and
the summation represents the effects of the past history on the present growth rate
in mathematical ecology. Therefore, we can only consider the case [[¢|| > 0. If it
is not the case, this will mean these species do not exist. The condition [|¢]| < o
means that the densities of these species should be finite in practice. Equation
(4.484) means that the growth of these species will go to an equilibrium state under
ordinary conditions.

4.7. Notes

Theorems 4.1 and 4.2 are taken from Tian and Zhang [140]. Theorems 4.8,4.10,
4.11, 4.18, and 4.20 are taken from Tian et al. [138]. Theorems 4.12 and 4.13 are
adopted from Tian and Zhang [142]. Theorem 4.16 is taken from Zhang and Deng
[166]. The material of Section 4.2.2 is taken from Tian and Zhang [139]. The ma-
terial of Section 4.3 is adopted from Zhang and Deng [165]. Lemma 4.39 is based
on Bana$ and Goebal [17]. The material of Section 4.4 is taken from Tian and
Chen [134, 135]. The material of Section 4.5 is taken from Shi et al. [127]. The
material of Section 4.6 is adopted from Shi [124]. The global attractivity of a class
IBVP of delay partial difference equations can be seen from Zhang and Yu [191].



5.1. Introduction

In 1975, Li and Yorke introduced the first precise mathematical definition of chaos
and obtained the well-known result, that is, “period 3 implies chaos.” The theory of
chaos of dynamic systems has grown at an accelerated pace in the past thirty years.
There are several different definitions of chaos in the literature. In this chapter,
we will describe some of the recent developments in chaos of partial difference
equations.

The iteration problem of spatially multivariable sequence is not only a heart
problem of spatial orbits of the motion in research progress but also an important
concept. In Section 5.2, an iterative method of the spatial sequence is given. Then,
spatially k-periodic orbit is produced and a basic criterion of spatially chaotic be-
havior in the sense of Li-York is obtained.

In Section 5.3, we establish the relation between chaos of certain partial differ-
ence equations and chaos of discrete dynamical system in complete metric spaces
in the sense of Devaney.

In Section 5.4, we discuss discrete dynamical systems governed by continuous
maps in complete metric spaces and present some criteria of chaos.

5.2. On spatial periodic orbits and spatial chaos

In this section, we introduce a constructive technique for generating spatial peri-
odic orbits and then give a criterion of spatial chaos for the following 2D nonlinear
system:

Xm+1n T OXmn+1 = f[(l + a)xmn]: (5.1)

where a is a real constant, and f is a nonlinear continuous function, m,n € Nj.
Let QO = Ny X Ng\Np X Nj. As in Section 1.2, for a given function ¢(i, j) defined
on (), it is easy to construct a double sequence {x;;} that equals ¢(i, j) on Q and
satisfies system (5.1) for i,j = 0,1,2,.... Such double sequence is a solution of
system (5.1) and is unique.
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One can see that system (5.1) can be regarded as a discrete analog of the partial
differential system

%+a§—;+av:f[(l+a)v]. (52)

In fact, system (5.2) is a convection equation with a forced term, which is quite
classical in physics. Therefore, qualitative properties of system (5.1) should provide
some useful information for analyzing this companion partial differential system.

5.2.1. Spatial period orbit
First, we introduce a basic definition.

Definition 5.1. Let V < R, let Vi be a nonempty subset of V, and take I < Vj,
and I C R. Assume that f : I — I is a continuous map, with f*(x) = f(f*1(x))
and f°(x) = x. Then, f is said to be a continuous self-map in I if f € C°(I,I) and
f(I) c I. Also, xo is said to be a spatial periodic point of period k if xy € I such
that

¥ (x0) = xo, (5.3)

and xo # f*(xp) for 1 < s < k, where k is called the prime period of xy. Moreover,
the sequence

X05X15X25+«+ 5 Xk X05 X155 (54)

is called a spatial period orbit of f(x) with period k.

Theorem 5.2. For any given sequence of nonzero real functions
Xmn + Ay X1, T AXmnt1s - -+ > Xt (—1)n + AXmnt (k=15 (5.5)
if they satisfy
Xmtipn + Wmnti F Xmijon + mntjs 1 F o bj=1,2,...,k (5.6)
for m,n € Ny, then the map

flx+y) = al(x-i-y)k -i—az(x+y)k_1 + s tar(x 4 y) (5.7)
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has a periodic point Xpy, + aXm, with prime period k, where a; = AD/A G =
1,2,...,k, in which

ré‘ ré‘_l <o )
r{‘ r{"l s r
A = , (5.8)
k k-1
Teer Te-1 777 Th=1

where, for simplicity, let Xpyipn + AXmpsi = ti(m,n) = 1, i = 0,1,2,...,k — 1, and
determinant A is obtained from A\ by replacing the ith column of A with the fol-
lowing vector:

(rlrrb---ark—l;rO)T; i= 1,2,...,](. (5.9)

Proof. Given a nonzero real sequence (5.5) satisfying (5.6) for m,n € Ny, suppose
that the map

flx+y) = al(x-i-y)k + az(x+y)k_1 +tar(x+y) (5.10)
satisfies

f(xmn + axmn) = Xm+1n + AXmn+1,
f(xmﬂ,n + axm,nﬂ) = Xm+2,n T AXmn+25
(5.11)

f(xm+(k71),n + axm,n+(k—1)) = Xmn + AXmpn-

By our simplistic notations, (5.11) is equivalent to the following system:

am’f +azr(]§_1 + - tagrg =11,
alr{‘ + azr{"l + - tagr, =1,
(5.12)
k k-1
ATy T ol _y + -+ AkTk-2 = Tk-1,
k k-1
Mty T axr_y + -+ agt-1 = 1o,

which determines the unknown a;, i = 1,2,..., k.
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It is easy to check that the determinant of the coefficients of system (5.12) is
the kth Vandermonde determinant, and

r(’)‘ r(’,‘_l cee 70
k k-1 k
rl rl - e rl _
A- ~ o ()| T mn|
R, 0 k-12i>jz1
k k-1
Te-1 Thk=1 777 Tkl

(5.13)

Since (5.6) holds, one has A # 0, so that there exists a unique solution of system
(5.12) given by

af = i=1,2,...,k (5.14)

Now, substituting a; = a;° into (5.10),i = 1,2,...,k, one has
flx+y)=af(x+y)f+af(x+ )+ +af(x+y). (5.15)
It is easy to see that the function f in (5.15) is continuous and
F5(mn + @Xmn) = F5(r0) = 10 = Xonn + A%y (5.16)
but
Xonn + A%mn F [ (Xpn + aXmp)  forl <s<k. (5.17)

Hence, the function f in (5.15) is a continuous map with a spatial periodic point
Xmn + aXmp of period k. ]

5.2.2. Spatial chaos

To consider chaos of (5.1), we introduce the definition of chaos in the sense of Li
and Yorke.
Consider the following system:

Xn+1 = F(xn)) n= 0) (518)

where F : X — X is a map and (X, d) is a metric space.
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Definition 5.3. Let (X, d) be a compact metric space and let F : X — X be a con-
tinuous map. A subset S of X is called a scrambled set of F if, for any two different
points x, y € S,

(i) liminf, . d(F"(x),F"(y)) = 0;

(ii) limsup,_ . d(F"(x),F"(y)) > 0.
F is said to be chaotic in the sense of Li-Yorke if there exists an uncountable scram-
bled set S of F.

For (5.1), the following result for the 1D dynamic system will be used.

Theorem 5.4 (Li-Yorke theorem). Let I C R be an interval and let f : 1 — I be a
continuous map. Assume that there is a point a € I satisfying

fa)<a< f(a)< fXa) or f(a)=a> f(a)> f*(a). (5.19)

Then
(1) foreveryk = 1,2,..., there is a k-periodic point of f;
(2) thereis an uncountable set S C I, containing no periodic points such that
(A) forevery p,q € Swithp # g,

limsup [ f"(p) = f*(@)| >0, liminf [ f"(p) = f*(@)| =0,  (5.20)
(B) for every p € S and periodic point q € I with p # g,

limsup | f*(p) - f"(q)| >0. (5.21)

n—oo

From Definition 5.3 and the above Li-Yorke Theorem, the 1D dynamical sys-
tem x4 = f(x;) is chaotic in the sense of Li-Yorke if (5.19) holds.

Remark 5.5. It is known, (A) implies (B).

The following is the definition of chaos in the sense of Li-Yorke for system
(5.1).

Definition 5.6. Let V < R3, let Vi be a nonempty subset of V, and take I < Vj,
and I C R. Then, f is said to be chaotic on Vj if it is chaotic on I, and f is said to

be chaotic on V if it is chaotic on Vj, both in the sense of Li and Yorke.

Theorem 5.7. Let V. < R3, let Vyy be a nonempty subset of V, and let I C R be an
interval in V. Denote

ri = ri(m,n) = Xopsin + Ampris i =0,1,2, (5.22)
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and assume the following conditions:
(i) ri(m,n) #0,i=0,1,2, and ri(m,n) # rj(m,n) ifi # j for allm,n € Ny,

i,j=0,1,2
(ii) ro(m,n) < ri(m,n) < ry(m,n) or ro(m,n) > ri(m,n) > ry(m,n) for all
m,n € No;
(iii) let
fAx+y)=af(x+y’+ai(x+y)?+af(x+y), (5.23)

where a} = DV/D,i=1,2,3,

3 2

ro 1’0 r()
D=\ r nf, (5.24)
Boron

and the determinant D' is obtained from D by replacing the ith column of D with
the following vector:

T .
(xm+1,n + AXmn+1> Xm+2,n T AXmn+2> Xmn + axmn) , 1=1,2,3 (525)

(iv) f*(I)C 1.

Then, system

Xt + WX = (1 + a)Xmn) (5.26)
is chaotic on V in the sense of Li and Yorke.
Proof. Without loss of generality, consider system

Kol + A%Xmpe1 = [ (Xon + aXimt), (5.27)

where s,t,m,n € Ny. Then, one can compute and obtain the above ri(m,n), i =
0, 1,2, where ro(m, n) = Xpy + axmmn. Next, by Theorem 5.2, we obtain

3 2
Kol + AXmpe1 = af (Xgn + aXont)” + a5 (Xen + a%e) ™ + a5 (X + axpe).  (5.28)
Since s, t,m,n € Ny, letting s = m and ¢t = n gives

* 3 * 2
Kmiin + AXmpi1 = 7 (X + %)™ + 5 (X + AXpn)
. . (5.29)
+ af (Xmn + axmn) = [F[(1+ a)Xmn].
Note that

£ (%mn + axn) = 72 (ro(m, n)) = ro(m,n) = Xy + aXpn>

¥ (ro(myn)) # ro(m,n), i=1,2. (5.30)

Therefore, the map f* has a periodic point ry(m, n) of period 3.
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Since r;(m, n) are distinct points and r;(m, n) # 0 for m,n € Ny, i = 0,1, 2, it
follows immediately from Theorem 5.2 that D # 0, that is, a;* are uniquely deter-
mined. Therefore, f* (X, + axmn) = f*[(1 + a)xmn] is uniquely determined. In
addition, since r;(m, n) € I and f*(I) C I, one concludes that f* is a continuous
self-map in I C V.

On the other hand, it follows from (ii) that

F*3(ro(m,n)) = ro(m,n) < ri(m,n)

= f*(ro(m,n)) < f**(ro(m,n)) (5.31)

= ry(m,n)
for m,n € Np.

Thus, by Li-Yorke Theorem, system (5.26) is chaotic on I, from Definition 5.6,
which implies that system (5.26) is chaotic on V, in the sense of Li and Yorke. [

5.3. Method of infinite-dimensional discrete dynamical systems
In this section, the following 2D discrete systems are studied:

Xm+1ln = f(xm,nyxm,nJrl)) (532)

where m,n € Ny and f : R> — Ris a function.
System (5.32) includes the following equations as special cases:

Xmatn = PXmn (1 = Xmn) > (5.33)
Xmitn = 1= U, s (5.34)
Xt = X (1 = Xomne1), (5.35)
AXmi1 g + X + Xyps1 = 0. (5.36)

Systems (5.33)—(5.35) are regular 2D discrete logistic systems in different forms.
Let 1 be a fixed integer. If n = ny, then systems (5.33) and (5.34) become

Xm+1,ng = UXmyng (1 - xm,n0)>

Xpmrtg = 1= Uy 537
Systems (5.37) are the standard 1D logistic systems.

Hence, system (5.32) is quite general.

Let O = {(0,n) | n € No} = {(0,0),(0,1),...,(0,n),...}. For any given
sequence ¢ = {@m,,} defined on Q, it is easy to construct by induction a double-
indexed sequence x = {Xn}, =0 that equals the initial condition on Q and sat-
isfies (5.32) on N; X Np, which is said to be a solution of system (5.32) with the
initial condition ¢.
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In order to introduce Devaney’s definition of chaos for discrete dynamical
systems, several preliminary concepts are first presented.

Definition 5.8. Let (X, d) be a metric space, and let g : X — X be a map on (X, d)
with xp € X. The (positive or forward) orbit O(xo) of the point xj is defined to the
following set of points:

O(x0) = {g"(x0) } g = {x0,8(%0), 8% (x0),8> (%0)5... } (5.38)

where g%(xp) = xo and g"*! = g(g"(xo)) for all n € Np.
Let x,, = g"(xo). Then, the orbit O(xy) of the point xy € X is a 1D sequence,

O(x0) = {xu},o = {%0, x1,%25... }. (5.39)

Obviously, O(xp) is a solution of the 1D system x,+1 = g(x,), n € Nj.

Let x € X and let ¢ be a positive number. Then, an e-open ball B.(x) at x is
defined as B;(x) = {y € X | d(x, y) < €}. A subset U of X is open if for any x € U
there exists a § > 0 such that Bs(x) < U.

Let x € X and let G be an open subset of X. If x € G, then G is called a
neighborhood of the point x. Let U € V be two subsets of X. If, for any x € V
and any small ¢ > 0, B,(x) N U # &, where @ denotes the empty set, then the set
U is said to be dense in V. Especially, if V = X, then U is a dense subset of X.

The definition of chaos in the sense of Devaney contains three important in-
gredients, that is, dense periodic points, transitivity, and sensitive dependence on
initial conditions, defined as follows.

Definition 5.9. Let g : X — X be a continuous map on a metric space (X, d) and
x € X. If there exists a positive integer n such that g"(x) = x, then x is called a
periodic point of g and 7 is called a period of x. If g"(x) = x and g¥(x) # x for all
k=1,2,...,n— 1, then x is called a primitive n-periodic point and n is called the
prime period of x. In particular, if n = 1, then x is called a fixed point of the map
g

If, for any point a € X and any neighborhood U of the point 4, there exist a
point x € U and an integer n € N; such that g"(x) = x, then it is said that system
(5.32) has a dense set of periodic points (in X).

If, for any two nonempty open subsets U and V of X, there is an integer k > 0
such that g5(U) N V # @, then the map g is said to be (topologically) transitive
on X.

If there is a § > 0, called a sensitivity constant such that, for each point x € X
and each neighborhood G of x, there exist a point y € G and a positive integer
n such that d(g"(x),g"(y)) > 6, then it is said that system (5.32) has sensitive
dependence on initial conditions.

The above sensitivity condition captures the idea that in chaotic systems a tiny
difference in initial value eventually leads to a large-scale divergence.
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Definition 5.10. Let F : X — X be a continuous map on a metric space (X, d). The
map F is said to be chaotic in the sense of Devaney on X if

(1) F is transitive on X;

(2) the set of periodic points of F is dense in X;

(3) F has sensitive dependence on initial conditions.

It was pointed out that if F is continuous, then condition (3) is implied by

other two conditions (1) and (2), which shows that the sensitive dependence is
redundant in Devaney’s definition of chaos for a continuous map F.

Remark 5.11. Huang and Ye [71] point out that under some conditions, chaos in
the sense of Devaney is stronger than that in the sense of Li-Yorke.

Let R™ be a set of all 1D real sequences, that is,
R® = {{an}::(, = (ag,a1,...,an,...) | a, € R, n € Ny} (5.40)

Obviously, different metrics can be defined on R%. For example, for any two
sequences, X1 = {X1,4)p-0>X2 = {X2n} neo € R, one may define

> x, — x
dl (xl,X2) = z w, (541)
n=0
or
dy(x1,%2) =sup { |x10 — %20 | | n=0,1,2,... }. (5.42)

Then, it is easy to prove that d; and d, define two metrics on two subsets of R*. For
simplicity of notations, use (R%,d;) and (R®, d,) to denote the two metric spaces
defined by these two metrics, respectively. Note that both (R®, d;) and (R, d,) are
complete metric spaces.

In the following, for convenience, (R*,d) is used to denote a metric space
with any metric d including d; and d, defined above.

Let I be a subset of R and denote

I®° = {{a,,};o:o = (ag,a1y...,8n,...) | an €I, n € Ny}. (5.43)

It is obvious that (I*, d) is also a metric space and I is a metric subspace of R®.

Let f : I X I — I be a function and let x = {x,u},, =0 be any solution of
system (5.32) with the initial condition ¢ = ¢¢ = {¢n = Po,n}neg, Where ¢, € I
for all n € Ny, and denote

X = {x,,,,n};f:0 = (Xm0 Xm,1>Xm2,-..) foranym =0,1,2,.... (5.44)
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Note that x,,,, € I for all (m,n) € Ny X Ny, and for any m € Ny, x,, is a 1D
sequence, xg = $o, X € I°, and for all m € Ny, denote

Xm+1l = (xm+1,0)xm+1,1:~~~) = (f(xm,O)xm,l))f(xm,laxm,Z))---) = F(-xm)~
(5.45)

System (5.32) is equivalent to the following system defined in the metric space
(I*,d):

Xmi1 = F(xm), m € Ny. (5.46)

The map F defined in (5.45) is said to be induced by system (5.32) and (f, F) is a
pair of maps associated with the two systems.

Obviously, a double-indexed sequence {Xy .}, =0 is @ solution of system
(5.32) if and only if the sequence {x;,},,—, is a solution of system (5.46), where
Xm = {xm,n};f:O’ me NO-

Definition 5.12. Let I be a subset of R, let f : I X I — I be a function, and let
F : I® — I® be a map on the metric space (I°,d) induced by system (5.32). If
system (5.46) is chaotic on I*® in the sense of Devaney (or Li-Yorke), then system
(5.32) is said to be chaotic on I* in the sense of Devaney (or Li-Yorke).

In the following, an example is given to illustrate that system (5.32) indeed is

chaotic in the sense of Devaney under the given conditions.
Consider a 2D discrete system of the form

Xm+l,n = f(-xm,n: xm,n+l): m,n = 0) 13 2) e (547)

where f : I x I — I is a function defined f(x,y) = (x+ y) foranyx,y € I, in
which (a) denotes the decimal part of the real number a, and I = [0, 1).
LetaeI=[0,1),be[0,1],and

(a,b), 0<a<bzsl,
[a,b] = (5.48)
(a, 1)U [0,b), O0<b=<a<l.

Denote a set A by

A={labllacl belo,1]}ui{0,1)} (5.49)
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Lemma 5.13. Let[ay, b1 1,[az, b1 € A. Then, f([a1,bi] X [az,b;1) € A and
| f([a1,b1] x [az, b2]) | = min {1, |[a1,b1]] + |[a2, b2]]}, (5.50)

where |[a, b]| denotes the Lebesgue measure for any [a,b] € A.

Proof. (1) If [a1,b11 = [0,1) or [az, b, ] = [0, 1), then the conclusions of Lemma
5.13 hold obviously.

2)If0 <a; <by <1and0 < a, < by < 1, then [a;,b;1] = (a1,by) and
[a2,b:] = (a2, b2).

Ifa1 +a2,b1 +b2 S [0, 1],then f([al,bl] X [az,bz]) = (a1 +a2,b1 +b2) e A.
Hence (5.50) holds.

If a +a; € [0,1] and b1 + bz S [1,2], then f([al,bl] X [az,bﬂ) = (a1 +
ax,1) U [0,b; + by — 1) € A. Hence (5.50) holds.

If611+612,b1+b2 S [1,2],thenf([a1,bl]X[az,bz]) = (a1+a2—1,b1+b2—1) S
A. Hence (5.50) holds.

(3) Ifo < b] <a <1 and 0 < a; < bz =< l,then |'a1,b1—| = (al,l) U [O,bl)
and [az,bz] = ((12,1’72).

Ifb; +ax, by + by,a; + az,a; + by € [0, 1), then f([al,bll X [az,bz]) = ((11 +
az, 1) U [0,b,) U (a2, b1 + by) = (a1 +az,1) U [0,by + by) € A. Hence (5.50) holds.

If b] + az,b1 + bz,al +a; € [0, 1), and a; + bz S [1,2], then f([al,bl] X
[az,bz]) = (Lll + ap, 1) U [0, bz) U (az,bl + bz) = ({11 + ap, 1) U [O,bl + bz) e A.
Hence (5.50) holds.

If by + a, by + b, € [0,1) and a; + az,a; + by € [1,2], then f([al,bl] X
[ar, b2]) = (a1 +a, —1,by) U (as, by +by) = (a1 +ar —1,b1+by) € A. Hence (5.50)
holds.

Ifby +axy,a +a, € [0,1) and by + by,a, + b, € [1,2], then f([al,bl] X
[az,bz]) = (a1 + ap, 1) U [0, bz) U ([lz, 1) ] [0,171 + bz - 1) = ((lz, 1) ] [0, bz) e A.
Hence (5.50) holds.

If by +a, € [0,1) and by + by, a; + az,a1 + by € [1,2], then f([al,bl] X
[az,bz]) = (611+612—1,b2)U(a2, 1)U[0,b1+b2—1) = (611+612—1,1)U[0, b]‘l‘bz—l) S
A. Hence (5.50) holds.

Ifb] + az,ln + bz,al +ap,a; + bz S [1,2), then f([al,bl] X [az,bz]) = ((ll +
a—1,b,)U[az, 1)U [0,by+by—1) = (a1 +a, —1,1) U [0,b; + b, — 1) € A. Hence
(5.50) holds.

(4)If0<by,<a,<land0 < a; < b; < 1, then [ay,b,] = (ay,1) U [0,b;)
and [ay, b1 ] = (a1, by). Similar to the proof in (3), the conclusions of Lemma 5.13
hold.

(5) Ifo < b] <aq <1 and 0 < bz <a =< l,then [al,bl] = (al,l) U [O,bl)
and [az,bz] = (az, 1) U [0, bz)

If a; + a3, b1 + by € [0,1], then f([ay,b1] X [a2,b21) = [0,1) € A. Hence
(5.50) holds.

Ifb] +b2 S [0, 1] and at+ap € [1,2],then f([al,bl] X [az,bz]) = (a1 +a; —
1, I)U[al, I)U[O, bz)U(az, I)U[O, b])U[O,brf’bz) = ((l1+d2—1, 1)U[O, b1+b2) e A.
Hence (5.50) holds.



342 Spatial chaos

If by + by,a1 +a, € [1,2], then f([ay,bi] X [a2,b2]1) = [0,1) € A. Hence
(5.50) holds.

From the proof for cases (1)—(5), one can see that the conclusions of
Lemma 5.13 hold. The proof is thus completed. ]

Let F : I® — I® be a map in (I”,d) induced by system (5.47). Then, from
Lemma 5.13, the following result holds.

Corollary 5.14. Let e > 0 be a constant and (a;, b;) C I = [0,1), withb;—a; = & > ¢
forall i € Ny. Then there exists an integer n > 0 such that

F”(ﬁ (ai,bi)> = F"((ao,bo) X (a1, b1) x - -+) =1I>. (5.51)

i=0

Proof. From the given conditions, (a;, b;), (ai+1,bi+1) € A for all i € Ny. Hence,
from Lemma 5.15, one has

(T 0060) = (G Ganb)) (a0 b))
=0 (5.52)

e

[ai, b1,

1

Il
o

where [a},b}1 = f((ai,b;) X (ai+1,bir1)) for all i € Ny. Thus, in view of Corollary
5.14 and the given conditions, [[a},b} 1| > min{1,2¢} for all i € Np. By the iter-
ative method, it can be verified that there exists an integer n > 0 such that (5.51)
holds. The proof is completed. O

Now, one can prove that F induced by (5.47) is chaotic on (I, d;) in the sense
of Devaney, where d, is defined by (5.41).

First, it is to prove that F is transitive on [*.

Let U and V be two nonempty open subsets of I°. Since d; is a metric of I,
there exist a number ¢ > 0 and a set [[;_(a;, b;) < U with |b; — a;| > . Hence,
from Corollary 5.14, there exists an integer k > 0 such that F¥(U) = I*. Therefore,
FK(U) NV =V # @. Thus, the map F is transitive in .

Second, it is to prove that F has a dense set of periodic points.

Lemma 5.15. For any integer n € Ny, let A, be a set of all solutions of the following
equations:

F(xy) = x1,F(x1) = x2,...,F(x4_1) = x, F(x,) = xo. (5.53)

Then, the set A = U,_o Ay of periodic points of F is dense in I® on the metric space
(I*,dy), where d, is defined by (5.41).
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Proof. Since (f, F) is pair of maps, (5.53) is equivalent to the following equations:

x10 = (X00 + X01)s-+ s X1k = (Xok + Xokt1)s--.» k=0,1,...,
X20 = (X10 +X1,1 )55 X0k = (X1 g+ X1js1)5e0.> k=0,1,..., (5.54)
%00 = (X0 + Xn1)ser s Xok = (Xnk + Xngs1)seror k=0,1,...,
which implies that
n+l
Xox = < > Cnm+1x0,k+m>, k=0,1,.... (5.55)
m=0

Leta = {a;}_, be any point of I**, let & be any small positive number, and let
B:(a) < I® be any open ball at the center a. Define a sequence of sets as follows:

VMZ{bE I® | |b0—ao|<§,..., |bM—aM|<§, bje [0,1), j=M+1,M+2,...},
(5.56)

where M € Ny. Then, from the definition of the metric d; in (5.41), one can
see that there exists an integer My > 0 such that for any b = {b;}72 € Vi,
di(a,b) < ¢, thatis, Vi, S Be(a) = I*.

Take a sufficiently large integer p > 0 such that for any point y € I = [0,1)
there exists an integer g € {0, 1,..., p — 1} satisfying |q/p — y| < /6. Then, there
exist integers qo,q1,...,qm, € {0,1,...,p — 1} such that |q;/p — a;| < /3 for
i =0,1,..., M.

Let n = p. In view of (5.55), it is obvious that there exist integers q; €
{0,1,...,p — 1} such that g;/p € I forall j € {My+ 1,My +2,...} and (5.55)
holds for the point xo = {xo; = q;/p};o. It is easy to verify that the point
xo = {x0; = qj/p}i>e € I” is a periodic point of F with period p + 1 and
Xo € Be(a). Hence, the set A = |J;_, A, of periodic points of F is dense in I*.
The proof is thus completed. U

In view of Lemma 5.15 and its proof, it is clear that F has a dense set of peri-
odic points.

Third, it is to prove that F has sensitive dependence on initial conditions.

Let§ = 0.1,1leta = {a;};2, € I° be any point, and let U be any neighborhood
of a. In view of Corollary 5.14 and the proof of Lemma 5.13, it is obvious that there
exist a constant & > 0, a point b € B, (a) with b # a, and an integer n € Ny, such
that Be,(a) < U and d,(F"(b), F"(a)) > 6, that is, F has sensitive dependence on
initial conditions.

Therefore, F induced by system (5.47) is chaotic on (I*,d,;) in the sense of
Devaney. Then system (5.47) is chaotic in the sense of Devaney.
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5.4. Criteria of chaos in complete metric spaces

Consider the following discrete dynamical system:
Xne1 = F(xq), n20, (5.57)

where F: X — X isa map and (X, d) is a metric space.

Definition 5.10 about chaos is for the space X. Since chaos of F often appears
on a subset of X, it is necessary to give a corresponding definition of chaos of a
map on a subset. Let V be a subset of a metric space (X, d). A continuous map F :
V — V is said to be chaotic on V in the sense of Devaney if F satisfies properties
(1) and (2) in Definition 5.10 on V.

At first, we give some definitions and prepare several lemmas. For the conve-
nience of the following discussion, we first introduce some notations.

Let (X, d) be a metric space, x € X, and let A, B be subsets of X. The boundary
of A, denoted by dA, is the set of all x € X such that each neighborhood of x
intersects both A and X \ A; the distance between the point x and the set A is
denoted by

d(x,A) = inf {d(x, y) | y € A}; (5.58)
the distance between two sets A and B, respectively, is denoted by
d(A,B) = inf {d(x,y) | x € A, y € B}; (5.59)
the maximal distance between two points in A and B is denoted by
dy(A,B) = sup{d(x,y) | x € A, y € B}; (5.60)
and the diameter of the set A is denoted by
d(A) =sup{d(x,y) | x,y € A}. (5.61)
Definition 5.16. Let (X, d) be a metric space and let F : X — X be a map. A point
z € X is called an expanding (or repelling) fixed point (or a repeller) of F in B,(z)
for some constant r > 0 if F(z) = z and there exists a constant A > 1 such that

d(F(x),F(y)) = AMd(x,y) Vx,y € B,(2), (5.62)

where B,(z) is the closed ball centered at z, that is, B,(z) = {x € X | d(x,2z) < r}.
The constant A is called an expanding coefficient of F in B, (z).

Definition 5.17. Assume that z is an expanding fixed point of F in B,(z) for some
r > 0. Then z is said to be a snap-back repeller of F if there exists a point xo € B,(z)
with xg # z and F™(x,) = z for some positive integer m, where B,(z) is the open
ball centered at z.
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Definition 5.18. Assume that z is a snap-back repeller of F, associated with an xo,
an m, and an r as specified in Definition 5.17. Then z is said to be a nondegenerate
snap-back repeller of F if there exist positive constants y and 7y < r such that
By, (x0) C B,(z) and

d(F™(x), F™(y)) = ud(x,y) Vx,y € By (xo). (5.63)
Next, we study the expansion of sets near an expanding fixed point. In general, a
map may not expand the sets near its expanding fixed point. However, we have the
following result.
Lemma 5.19. Let (X,d) be a metric space and let F : X — X be map with an ex-
panding fixed point z in B, (z) for some r* > 0. If F is continuous on B« (z) and z is
an interior point of F(B,+(z)), then there exists a positive constant ry < r* such that
for each positive constant r < ro, F(B(2)) is closed set, F(B,(z)) is an open set, and

F(B/(2)) 2 B/(z),  F(B.(2)) D B.(2). (5.64)

Proof. Suppose that A > 1 is an expanding coefficient of F in B,+(z), then

d(F(x),F(y)) = Ad(x,y) Vx,y € By(2). (5.65)

By the assumption, z is an interior point of F(B,+(z)). So there exists a con-
stant 8 > 0 such that Bs,(z) C F(B,+(z)). It follows that F~!(Bs,(z)) is open
from the continuity of F. Then there exists a positive constant ry < r* such that
B,,(z) € F71(Bs,(z)) C By+(2). It is evident that

F:F ' (Bs,(2)) — Bs,(2) (5.66)

is bijective and continuous. Now, we show that the inverse
F~':Bs,(2) — F'(Bs,(2)) (5.67)
is continuous. If it is the case, then F is homeomorphic on F~!(Bg,(z)) and then
F(B,(z)) is open and F(B,(z)) is closed for each positive constant r < ry. In fact,

for any x, yeBs, (z), F'(x), F~(y) € F~'(Bs,(2)) and then
d(F'(x),F () <A 'd(x,y), (5.68)

which implies that F~! is continuous on Bj, (z).

For each positive constant r < 7y, it follows from the above discussion that

0F(B,(z)) C F(9B,(z)) and F(B,(z)) C F(B,(z)). For each x € 9B,(z), we have

d(E(x),2) = Ad(x,2) = Ar, (5.69)



346 Spatial chaos

which implies that d = d(z,dF(B,(z))) > Ar > r. Hence, it follows that

B,(2) C Ba(z) CF(B:(2)),  Bi(2) C Ba(z) C F(B,(2)) C F(B,(2)), (5.70)

which implies that (5.64) holds. This completes the proof. ]

Definition 5.20. Let (X, d) be a metric space and let F : X — X be a map.

(1) Assume that z € X is an expanding fixed point of F in B,(z) for some
constant r > 0. Then z is called a regular expanding fixed point of F in B,(z) if z
is an interior point of F(B,(z)). Otherwise, z is called a singular expanding fixed
point of F in B, (z).

(2) Assume that z is snap-back repeller of F, associated with xo, m, and r as
specified in Definition 5.17. Then z is called a regular snap-back repeller of F if
F(B:(z)) is open and there exists a positive constant &y such that Bs,(x,) C B,(z) and
for each positive constant § < &, z is an interior point of F™(Bs(xp)). Otherwise,
z is called a singular snap-back repeller of F.

Remark 5.21. (1) In (2) of Definition 5.20, the condition “F(B,(z)) is open” en-
sures that z is a regular expanding fixed point of F in B,(z).

(2) Suppose that z is a nondegenerate snap-back repeller of F, associated with
Xo, M, 1, 1y, and y as specified in Definitions 5.17 and 5.18. If F(B,(z)) is open, z
is an interior point of F™(B,,(xo)), and F™ is continuous on By, (), then for each
positive constant & < ry, z is an interior point of F™(Bs(x)) by a similar argument
to the proof of Lemma 5.19 and consequently, z is a regular nondegenerate snap-
back repeller of F.

Next, we extend the concepts of homoclinic point and heteroclinic point and
the concept of local unstable set of a repeller of a differentiable function on R,
to that of a continuous map on a metric space. Before that, we first establish the
following results.

Lemma 5.22. Let (X, d) be a metric space and let F : X — X be a map with a regular
expanding fixed point z in B, (z) for some r* > 0. If F is continuous on B,«(z), then
there exists an open neighborhood U of z such that
(1) for each x € U with x # z, there exists an integer k> 1 such that F*(x) & U;
(2) foreach x € U with x # z, F~"(x) is uniquely defined in U for alln = 1,
and F~"(x) — zasn — oo,

Proof. By Lemma 5.19, there exists a positive constant r < r* such that

F(B,(z)) is open and F(B,(z)) D B,(z). Set U = B,(z). By Definition 5.16, there is
a constant A > 1 such that

d(F(x),F(y)) = Md(x,y) Vx,y € B,(2). (5.71)
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Then, for each x € B,(z) with x # z, there exists an integer k > 1 such that
F¥(x) ¢ B,(z). Otherwise, there exists a point xy € B,(z) with xy # z such that
Fk(xy) € B,(z) for all k > 1. It follows from (5.71) that

d(F*(xo),z) = M(F*"'(x0),2) = A*d(x0,2) Vk =1, (5.72)
which implies that
Md(xp,z) <r Vk=1. (5.73)

Since d(x9,z) >0and A > 1, this is impossible.

Let x be any point in U. Since F(U) D U and F is injective in U, F~"(x) is
uniquely defined in U for all n > 1. In addition, by using the fact that F is expand-
ingin U = B,(z), it is easily concluded that F~"(x) — z as n — co. Therefore, the
proof is complete. O

Based on Lemma 5.22, we now introduce the following definitions.

Definition 5.23. Let (X, d) be a metric space and let F : X — X be a continuous
map with a regular expanding fixed point z € X. Let U be the maximal open
neighborhood of z such that for each x € U with x # z there exists an integer
k > 1 with F¥(x) ¢ U and for each x € U with x # z, F~"(x) is uniquely defined
in U with F~"(x) — z as n — oo, This set U is called the local unstable set of F at z
and is denoted by W .(z).

Clearly it is possible that Wi (z) = X.

Definition 5.24. Let (X, d) be a metric space and let F : X — X be a continuous
map with a regular expanding fixed point z € X.

(1) A point x is called homoclinic to z if x € W (2z), x # z, and there exists
an n > 1 such that F"(x) = z. The homoclinic point x, together with its backward
orbit {F’f(x)};?‘;l and its finite forward orbit {F/ (x)};?;ll, is called a homoclinic
orbit from z.

(2) A homoclinic orbit is called nondegenerate if, for each point xy on the
orbit, there exist positive constants ry and y such that

d(F(x),F(y)) = ud(x,y) Vx,y € By, (x0). (5.74)

(3) A homoclinic orbit is called regular if, for each point x; on the orbit, there
exists a positive constant r; such that, for each positive constant r < ry, F(xp) is an
interior point of F(B,(xp)). Otherwise, it is called singular.

(4) A point x is called heteroclinic to z if x € W}’ (z) and there existsan n > 1
such that F”(x) lies on a different periodic orbit from z.
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We next establish a fixed point theorem for an expanding continuous map in
a complete metric space. Here, F : V — X is expanding in V C X if there exists a
constant A > 1 such that

d(F(x),F(y)) = Md(x,y) Vx,ye V. (5.75)

Lemma 5.25. Let (X,d) be a complete metric space and let V be a nonempty closed
subset of X. If F : V. — X is continuous, satisfies F(V) D V, and F is expanding in
V, then F has a unique fixed pointin V.

Proof. Itis clear that F: V — F(V) is bijective. Consider its inverse F~! : F(V) —
V. We first show that F~! has a unique fixed point in F(V). With a similar argu-
ment to that in the proof of Lemma 5.19, it is easily concluded that F(V) is closed.
On the other hand, from (5.75) it follows that

d(F'(y),F Y(2)) <A 'd(y,z) Vy,zeFV), (5.76)

which implies that F~! is contractive on F(V) since A > 1. Hence, by the Banach
contraction mapping principle in complete metric spaces, F~! has a unique fixed
point y* € F(V). It is clear that y* is also a fixed point of F in V. The uniqueness
of the fixed point of F in V is easily derived from (5.75). This completes the proof.

O

All the criteria of chaos obtained in this section are related to Cantor sets in
metric spaces and a symbolic dynamical system, which has plentiful dynamical
structures. As a matter of convenience, we introduce the concept of Cantor set
in a general topological space. We also present some relevant results of symbolic
dynamical systems.

Definition 5.26. Let X be a topological space and let A be a subset in X. Then A is
said to be a Cantor set if it is compact, totally disconnected, and perfect. A set in X
is totally disconnected if each of its connected component is a single point; a set is
perfect if it is closed and every point in it is an accumulation point or a limit point
of other points in the set.

Let
+
Di={s=(sos152- ) s =0or1} (5.77)
2
and define a distance between two points s = (sps152 + - - ) and t = (tot1t, - - - ) by
C s —t:
pls,t) = > |27| (5.78)
i=0

Foranys,t € Z;,p(s, t) < 1/2" of s; = t; for 0 < i < n. Conversely, if p(s, ) < 1/2",
thens; =t;for0 <i<n.
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Lemma 5.27. (33, p) is a complete, compact, totally disconnected, and perfect metric
space.

Proof. The completeness of (3, p) can be easily proved. By Devaney [52, Part
1, Theorem 7.2], (33, p) is homeomorphic to a Cantor set A in the real line R.
It is well known that A¢ is compact, totally disconnected, and perfect. Since the
compactness, total disconnectedness, and perfectness are topological properties,
this lemma is proved. |

The shift map o : Z;’ - z;’ defined by o(sps1s2 - - - ) = (s182 - - - ) is contin-
uous. The dynamical system governed by o is called a symbolic dynamical system
and it has the following properties.

Lemma 5.28 (see [52]). (1) Card Per,(c) = 2",
(2) Per(c) isdensein > ;,
(3) there exists a dense orbit of o in >.,, where Card Per,, (o) denotes the num-
ber of periodic points of period n for o.
It is clear that property (3) implies that o is transitive. Hence, this symbolic dy-
namical system is chaotic in the sense of Devaney.

There is a well-known theorem in the topology theory: a topological space X
is compact if and only if each collection of closed subsets of X having the finite
intersection property (i.e., every finite subset has a nonempty intersection) has
nonempty intersection. If X is not compact, the finite intersection property of
closed subsets of X does not imply nonempty intersection in general. However, we
have the following result for a complete metric space, which will be used in the
proof of Theorem 5.30.

Lemma 5.29. Let (X, d) be a complete metric space and let {A,} be a sequence of
bounded and closed subsets of X which have the finite intersection property. If the
diameter d(A,) — 0 asn — oo, then {A,} has a nonempty intersection, that is,

(An# ¢ (5.79)

n=1

Furthermore, (,=1 An contains only one point.

Proof. Let

B, = Ay, n=z=1. (5.80)

l<m=n

Then {B,} forms a nested sequence of nonempty, bounded, and closed subsets of
X. Further, B, C A, for all n > 1 and consequently,

d(B,) — 0 asn— oo, (5.81)
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Choose a point x, € B, for each n > 1. Then we get a sequence {x,} which satisfies
Xn €B, form=n (5.82)

by the nestedness of {B,}. Then, from (5.81), we have
d(xp,xm) <d(B,) — 0 asn — oo, (5.83)

which implies that {x,} is a Cauchy sequence in X. Since X is complete, {x,}
converges. Suppose x, — x* as n — co. Then, x* € B, for all n = 1 by (5.82)
and by the closeness of B,,. This implies that

x* € ()BuC()An (5.84)

n=1 n=1

and consequently, (5.79) is proved. In addition, by using the condition that d(4,)
— 0asn — oo, it follows that (,.; A, contains only one point. Thus, the proof is
complete. O

In the following, we establish two criteria of chaos generated from continuous
maps in complete metric spaces and in compact subsets of metric spaces, respec-
tively.

Theorem 5.30. Let (x,d) be a complete metric space and let Vi, V be nonempty,
closed, and bounded subsets of X with d(Vy, V1) > 0. If a continuous map F : Vi U
Vi — X satisfies
(1) F(V]) DVouV; fOT’j =0,1;
(2) F is expanding in Vo and V,, respectively, that is, there exists a constant
Ao > 1 such that

d(F(x),F(y)) = Aod(x,y) Vx,y € Vo, Vx,y € Vi3 (5.85)
(3) there exists a constant o > 0 such that
d(F(x),F(y)) < uod(x,y) Vx,y € Vy, Vx,y € Vi, (5.86)
then there exists a Cantor set A C Vo U V| such that F : A — A is topologically
conjugate to the symbolic dynamical system o : >, — >, defined in the above.
Consequently, F is chaotic on A in the sense of Devaney.

Proof. The proof is divided into three steps.

Step 1. Construct an invariant set A of F.
Let K := Vi U Vi. Define the set A as

A:={x€K:F'x) €K, n=0}. (5.87)
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By Lemma 5.25, F has a unique fixed point in Vj and in V}, respectively. Thus A
is nonempty. Obviously, A is an invariant set of F. We will show that A is a Cantor
set in Step 3.

Step 2. F : A — A is topologically conjugate to the symbolic dynamical system
EDFEDIS

Defineamap T : A — >, as follows:
T(x)=s= (sos1---) forx € A, (5.88)

where s; = 0 if F/(x) € V,y and sj=1 if Fi(x) € V. The sequence T(x) is called
the itinerary of x. We now show that T' is homeomorphicand T o F = ¢ o T. Since
the proof is long, it is divided into four parts.

(1) T is bijective. As a matter of convenience, for a subset Q of K and n > 1, define
the following set:

F"(Q) = {x € K | F'(x) € Q}. (5.89)

Lets = (sos1 - - - ) € >.5. Wecan find x € A such that T(x) = s, thatis, F/(x) € Vs,
for j = 0. Consider the sets

U5, = IX EK | FI(x) € Vi, 0 < j < n} (5.90)
for n = 0. It is clear that Uy, = V,, and

Uspsi-os, = Vg NFH (V) 0 - n F(V)

=V, NEF Y Uy,..s,) = Ugsyoos,, NF(V5,) (591)
for n > 1. This implies that {Usy,...s,} form a nested sequence of bounded and
closed subsets of K. Now, we show by induction that they are nonempty. Obvi-
ously, Uy, = V,, is nonempty. From (5.91), it follows that Uy, = V, N F~1(Vy,).
By assumption (1), we see that F~}(V,) = Vg U Vi;, where Vy; and Vy; are
nonempty closed subsets of Vj and Vi, respectively, and F(Vy;) = F(Vy;) = V.
Hence,

U5031 = Vsol (592)

is nonempty. Next, suppose that Uj,...;, is nonempty. It follows from (5.91) that
Ussy--s, C Vs . Similarly, F"'(Uss,...s,) = Vou U Vi, where Vi, and V), are
nonempty close subsets of Vi and Vi, respectively, and F(Vy,) = F(V1,) = Uys,..., -

Then, from (5.91), it follows that
Usosl---s,, = Vson (593)

is nonempty. By induction, Uy, ...s, is nonempty for all #n = 0.
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By Lemma 5.29, in order to prove that

() Uspsi-oos, # 6 (5.94)
n=0
it suffices to show that
d(Usps;--s,) — 0 asn — oo, (5.95)

By assumption (1), Vj and V; contain infinitely many points, respectively. Let
y = max{d(Vy),d(V1)}. Then y > 0 and

d(U,) =d(Vy,) < 7. (5.96)

It follows that for all x, y € Uy, F(x), F(y) € V;, and then by assumption (2),

d(F(x),F(y)) = Aod(x, y), (5.97)
which implies that
d(x,y) < Ay d(F(x),F(y)). (5.98)
Hence,
d(Usys,) < Ag'd(Vy,) < Aty (5.99)

By induction and by the definition of Uy, ...,
d(Uss,-s,) < A"y (5.100)

which implies that (5.95) holds. Therefore, (5.94) holds and (),»¢ Usys,---s, only
contains one point.

Let Ny20 Usys--s, = 1x}. Then x € A and T(x) = s by the definition of
Usys,---s,- Hence, T is surjective. In addition, if T(y) = s = (sps1 - - - ) for some
y € A, then, by the definition of T, Fi(y) € Vs, for j = 0, which implies that y €
(My20 Usys, - --s,- Therefore, y = x and consequently, the injectivity of T is proved.

(ii) T is continuous. Fix a point x € A and let T(x) = s = (sos1 - - - ). For each
€ > 0, there exists a positive integer # such that 27" < e. Consider the closed set
Uy, -1, for all possible combinations fot; - - - t,,. It is clear that the number of these
closed sets is finite and they are all disjoint by the definition of Uy, ...;,. Now, we
first show

d(Uss,.s» Upyooot,) >0 (5.101)
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for all sos; - - - s, # oty - - - t,. Let sps; - - - s, # toty - - - £,. Then, there exists 0 <

j <nsuchthats; = t;for0 <i< j—1lands; # t;. In the case of j = 0, 5o # to.
Since Ugys,...s, C Vi, and Uyy,...s, C Vi, it follows that

A(Usys, 50> Ungty--1,) = d(Vsy, Vi) > 0. (5.102)
If j = 1, then Usyg...s, € V N F (Vi) and Uyy,...r, € V N F7I(V,,), where V =
Ussi---s;, and sj # tj. Forany u € Usg,...s, and v € Uyy,..q,,, F'(u), F'(v) € Vg, for

0<i<j—1and F/(u) € Vi, Fi(v) € V. By assumption (3), we have

d(w,v) = pg ' d(F(u), FW)) = -+« = pg  d(Fi(u), FI (v)) = po’ d(Vo, V1),

(5.103)
which implies that
A(Ussy.os Utyoot,) = o d(Vo, V1) >0, (5.104)
namely, (5.101) holds. Let
0= min {d(Ugs,- 5,0 Utoty---1,) }- (5.105)

S0S1- = SuFloty - 1ty
Then § > 0 and for each y € A with d(x, y) < §/2, it follows that y € Ug,...s,.

Therefore, the first n + 1 terms of T(x) and T(y) are the same, that is, s; = ¢; for
0 < j < n,where T(y) =t = (tot; - - - t,). This implies that

p(T(0), T(y) < ~ < (5.106)

Therefore, T is continuous.

(iti) T-' = >3 — A is continuous. Fix a point s = (sps;---) € >, and let
T71(s) = x. Then x € Ugy,...s, for all n > 0. For each ¢ > 0, from (5.95), it
follows that there exists a positive integer N such that

d(Ugys,..s,) <€ VYn=N. (5.107)

Setting 8 = 1/2N for all t € Z;r and p(t,s) < &g, we see that tot) - - -ty =
081+ - - sy and so y = T7L(t) € Usy,...sy- This implies that

A(T1 1), T71(s)) = d(y,%) < d(Ugs,..s,) < €. (5.108)

Hence, T is continuous.
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(iv) ToF =00 T. Foreachx € A,let T(x) =s = (sos1 - - - ). Then F*(x) € V,
for n = 0. By (), {x} = 20 Usys;---s,- From (5.91) and F(Vy,) 3 Vs, we get

F(USOSI"'Sn) = F(Vso mF*l(VSI) n--- m1'7‘7’1(‘75,1))
=F(Vy,) nVyn-eon FTH(V) (5.109)
=V ﬁF_l(VsZ) ARES mF_nH(VSn) = Ussyoose

Hence,

T(F(x)) = ( (ﬂ Uss, . )) = T( N U) = (s152--+). (5.110)

n=0 nx=1

On the other hand, o(T(x)) = o(s) = (sys2 - - - ). This implies that (T o F)(x) =
(0 o T)(x) for all x € A. Therefore, F and ¢ are topologically conjugate.

Step 3. A is a Cantor set.
From Step2, T : A — Y, is homeomorphic. Hence, by Lemma 5.27, A is
compact, totally disconnected, and perfect, namely, A is a Cantor set.

By combining Steps 1-3 and by Lemma 5.28, the proof of Theorem 5.30 is
completed. ]

Next, we consider chaos generated from a continuous map in two compact
subsets of a metric space. Recall from the fundamental theory of topology that
a compact subset of a metric space is closed, bounded, and complete as a sub-
space; a closed subset of a compact space is compact; and the distance between
two disjoint compact subsets of a metric space is positive. Therefore, if V and V;
are compact subsets of a metric space (X, d), (5.94) and (5.101) in Step 2 of the
proof of Theorem 5.30 can be easily concluded by the compactness of Uy, ...,
and therefore assumption (3) in Theorem 5.30 can be dropped.

Remark 5.31. By a known result, if all assumptions of Theorem 5.30 are satisfied,
then F is chaotic in the sense of Li-Yorke also.

The following is the corresponding result for chaos from a continuous map
in two compact subsets of a metric space. Since the proof is trivial, based on the
above illustration, it is omitted.

Theorem 5.32. Let (x,d) be a metric space and let Vy, V1 be two disjoint compact
subsets of X. If the continuous map F : Vo U V| — X satisfies that

(1) F(VJ) > Vyu V1f0rj =0,1;

(2) there exists a constant Ay > 1 such that

d(F(x),F(y)) = Ad(x,y) Vx,y € Vo, Vx,y € V), (5.111)
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then there exists a Cantor set A € Vo U Vi such that F : A — A is topologically
conjugate to the symbolic dynamical system o : >, — >.5. Consequently, F is chaotic
on A in the sense of Devaney.

Next, we establish two criteria of chaos by means of snap-back repellers.
Theorem 5.33. Let (x,d) be a complete metric space and let F : X — X be a map.
Assume that

(1) F has a regular nondegenerate snap-back repeller z € X, that is, there exist
positive constants ry and Ay > 1 such that F(B,,(z)) is open and

d(F(x),F(y)) = hid(x,y) Vx,y € B, (2), (5.112)
and there exist a point xo € By, (2), xo # z, a positive integer m, and positive constants

01 and y such that F™(xy) = z, Bs, (x0) C By, (2), z is an interior point of F™(Bs, (x0)),
and

d(F™(x),F™(y)) = yd(x,y) Vx,y € Bs,(x0); (5.113)

(2) there exists a positive constant y, such that
d(F(x),F(y)) <md(x,y) Vx,y € B, (2); (5.114)

(3) there exists a positive constant y, such that
d(F™(x), F™(y)) < wad(x,y) Vx,y € Bs, (x0). (5.115)

Further, assume that F is continuous on B,, (z) and F™ is continuous on Bs, (xo).
Then, for each neighborhood U of z, there exist a positive integer n > m and a Cantor
set A C U such that F" : A — A is topologically conjugate to the symbolic dynamical
system a1 >, — >5. Consequently, F" is chaotic on A in the sense of Devaney.

Proof. We prove this theorem by Theorem 5.30. According to Theorem 5.30, it
suffices to show that for each neighborhood U of z, there exist a positive integer
n > m, two constants g > 1 and yy > 0, and two bounded and closed subsets
Vo, Vi of U with Vi N V; = ¢ such that F" is continuous on V, U V| and

Fn(V]) D Vyu Vy, j=0,1; d(V(),V]) >0, (5116)
d(F"(x),F"(y)) = Md(x,y) Vx,y € Vo, Vx,y € V3, (5.117)
d(F"(x),F"(y)) < pod(x,y) Vx,y € Vo, Vx,y € V1. (5.118)

From assumption (1) and by an argument similar to the proof of Lemma 5.19,
one can easily conclude that F(B,(z)) D B,(z) and F(B,(z)) D B,(z) for each
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positive constant r < r; and F(D) is open for each open subset D C B, (z). We
remark that this conclusion is repeatedly used in this proof.

Without loss of generality, we can suppose that B,, (z) C U. Otherwise, we can
choose an integer 1, a point Xy € B, (z) N U, and positive constants 7 < ri, 51, 7
and i, such that assumptions (1)—(3) hold with m, xo, 71, 81, y, 2 replaced by
M, X0, T1» 31, ¥, ta, respectively. In fact, F"(xo) € B, (z) C W (2) is uniquely
defined for each n > 1 and F"(xy) — z as n — oo by Lemma 5.22. Then there
exist a positive integer ng and a positive constant 7; < r; such that Xy := F~"(x,) €
B, (z) € UnN B, (z). It follows that F™ (%) = xo, F™ (%) = z with m1 = m+ny, and
there exists a sufficiently small positive constant 51 such that Bj, (%) C B, (z) and
F"(Bgl (X0)) C By, (2) for1 <i<mng—1and F™ (B, (X0)) C Bs, (x0). Obviously, z is
an interior point of F ,%(B& (x0)) by (2) of Remark 5.21 and by referring to the fact
that F'(Bj, (X0)) is open for 1 < i < ng. From (5.112)—(5.115), it follows that for all
x,y € Bj, (%),

d(F™(x), F"(y)) = 7d(x, y), = pAl",

o A A ) (5.119)
d(F"(x), F"(y)) < fhad(x, y), 2 = pop’’.
Obviously (5.112) and (5.114) hold in B;, (z) since 7| < ry.
The following proof is divided into three steps.

Step 1. Construct the closed set V; as a closed neighborhood of xj.
Since A; > 1, there exists a large integer j > 1 such that

A < d(zx) (5.120)

My > 1,
1Y B

From F™(xy) = z and assumption (1), it follows that there is a small positive
constant 8, < §; such that

ro = d(z,Bs, (x0)) > @, (5.121)
F™*(Bs,(x0)) C By (2), 0<i<j, (5.122)
F™(Bs,(x0)) N Bs,(x0) = ¢, 0 <i<j (5.123)

and z is an interior point of F"™"/(Bg,(xy)). From (5.112), (5.113), and (5.122), it
follows that for all x, y € Egz (x0),

d(F™ (x), F™I(y)) = Md(F™(x), F"(y)) = Myd(x, y), (5.124)
which implies that F™*/ is expanding on B, (xo). Then F™*/(By;(xy)) is open for

some positive constant §;< 8, by Lemma 5.19. So we can suppose that F"**/ (B, (x))
is open. It follows that dF"*/ (Bs, (x0)) C F"(9Bs,(x0)).
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Let dy = d(z, F™(9Bs,(x0))) and Iy = [In(r1dy1)/In ] + 1, where dy < 1 by
(5.122) and [a] is the integer part of a. From (5.124), it follows that /\{y(?z <d<
.

In addition, from (5.122), it follows that

By,(z) € F™J(Bs,(x0)) C By, (2). (5.125)

Setting V{ = F~"+1)(B,, (z)) N Bs, (x0), we see that V7 is a closed subset of B, (xo),
Xo 1s an interior point of V|, and

F™i(V]) CB,(z) for0<i<j—1,
F™i(V}]) = Ba,(2) C By, (2), (5.126)
F"™i(Vi)nVi=¢, 0<i<]j,

from (5.122) and (5.123). Let d; = d(z, 9F™*1(V])). Since By, (z) C F(Bg,(2)) =
Fmi+1(V]), it follows from (5.112) that

di > A]do. (5127)

To choose a suitable set Vi, the following discussion is divided into two cases of
dl =1 and d] <Tr.

Case 1. dy = r;. We have

F™it1 (V) o Ba, (2) D By, (2) D Bs, (x0) D V. (5.128)
So, we set V| = V] in this case.
Case 2. dy < r1. We can continue to apply the above procedure, that is, set V; =
F~(m++D (B4 (z)) N V7. It is clear that V; is closed, V; C V| C Bs,(x0), Xo is an

interior point of V;, and
F™i(V;) C B, (z) for0<i<j,
F™*Y(Vy) = By (z) C By, (2), (5.129)
F™(V))nVy,=¢, 0<i<j
Let d, = d(z, 0F™"1*2(V3)). Since By, (z) C F(By,(z)) = F"i*2(V3), we get
dy = Midy = Ad,. (5.130)
Ifd, > r;, then

F™i*2(V3) D By, (z) D B, (2) D Bs,(x0) D V|, D V. (5.131)
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Hence, we set Vi = V; in this case. If d; < r1, the above procedure will be contin-

ued. From (5.127) and (5.130), we see that the procedure may be continued for at
most [y times. Suppose that the procedure is continued exactly I times, that is,

di=d(z,0F" 7 (V])) =, diy<r, (5.132)
V) C V/, C-+-CV{CBs(x), % is an interior point of V/, and

F"™i(V]) C B, (z) forO<i<j+1-2,
Frotitl-1 (V/) = B4 ,(2) C B, (2), (5.133)

F"i(V)nV/=¢, 0<i<j
Then, we get
E™it(V]) 5 Bg(z) D B, (z) D Be, (x0) D V. (5.134)

By setting k = j +land Vi = V], we can see that V; C By, (x0) is a closed neigh-
borhood of xy, and F™** satisfies the following on V;:

F™i(V}) CB,(2), O0<i<k-1,
F™i(Vi)nVi=¢, 0<i<j, (5.135)

F™k (V1) 2B, (z) D V1.
Furthermore, from (5.112), (5.113), and (5.135), it follows that for all x, y € V7,

d(Fm+k(x)’Fm+k(y)) > Ald(Fm+k—1(x))Fm+k—l(y))

> o2 AR (E(x), F™(y) = Myd(x, y) = Myd(x, y),
(5.136)

where A{y > 1.

Step 2. Construct Vj as a closed neighborhood of z.
As a matter of convenience, define the following set for a subset A of B, (z):

FY(A) = {x € B, (2) : F(x) € A}. (5.137)
Let

Wo=F (B, (2), W;,=F'(W_)), l<i<m+k—1. (5.138)
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Then
W;CB,(z), 0<i<m+k-1,
F(Wy) C By, (2), (5.139)
F(W)c Wiy, 1<i<m+k-1.

It follows that

F*Y(W;) c F(W;_y) C - -+ C F(W,) C B, (2). (5.140)
We claim that
F*Y(W;) =B,(2), O0<i<m+k-1 (5.141)
From (5.140), it suffices to show that
F*'Y(W,) >B,(z2), 0<i<m+k—1. (5.142)
For i = 0, we have B,,(z) C F(B,,(z)). Then, for each x € B, (z), there exists
y € By, (z) such that x = F(y). It is evident that y € Wy and x = F(y) € F(W,),
which implies that B,, (z) C F(W,), so that (5.142) holds for i = 0. With a similar
argument, one can easily show that (5.142) holdsfor1 <i <m+k — 1.
On the other hand, from (5.112) and (5.139), it follows that for each x € W;,
d(F(x),z) = Ad(x,2) (5.143)
so that
d(x,z) < A 'd(F(x),2z) < A 'ds(z, Wisy), (5.144)
which implies that
di(z W) <Mz Wisy) < <"V, 0<i<m+k-1. (5.145)

Especially, from (5.139), (5.141), and (5.145), it follows that

F'(Wpik-1) CBr(2), 0<i<m+k-—1, (5.146)

F™ (Wysko1) = Br(2),  di(z, Woker) < A7, (5.147)

It is clear that z is an interior point of W;, 0 <i < m+k — 1, and so W4, is a
closed neighborhood of z.
Setting Vo = Wy,4k—1, we see that Vy is a closed neighborhood of z.
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Step 3. Prove that Vj and V satisty all the conditions (5.116)—(5.118).

It is clear that V and V) are closed subsets of B,,(z) and, consequently, they
are bounded and closed subsets of U. Set n = m + k. Then, we have

F"(V\) D> VouVy,  F'(Vy) D VouV, (5.148)

by using the third relation in (5.135) and the first relation in (5.147). Therefore,
the first relation in (5.116) follows. We now turn to show that

Von Vi = ¢, d(Vo, V1) > 0. (5.149)
From (5.147), we see that
di(z, Vo) = ds(z, Winre1) < AT < A", (5.150)

which, together with (5.120) and (5.121), implies that Vo NV} C Vo N Bs, (x) = ¢
and

d(Vo, Vi) = d(Vo, Bs, (x0)) = d(2,Bs, (x0)) — ds(2, Vo) = 10 = A, "y > 0.

(5.151)
Therefore, (5.149) holds.
Next, consider (5.117). From (5.146), we have
F{(Vy) CB,(2), O0<i<m+k—1. (5.152)
Then, for any x, y € V), by (5.112), we have
d(F"(x), F"(y)) = AI"*d(x, y) = Mid(x, y). (5.153)

Set Ay = min{)tl,/\{y}. Then, Ay > 1 and (5.117) follows from (5.136) and (5.153).
Finally, consider (5.118). From (5.114) and (5.152) for any x, y € V;, we have

d(F"(x),F"(y)) < pid(x, y). (5.154)

On the other hand, from (5.114) and (5.115), and the first relation in (5.135), it
follows that

d(F"(x), F'(y)) < dhd (F"(x), F"()) < phpnd (x, ). (5.155)
By setting po = max{/,t’f,‘ulfm}, (5.118) follows from (5.154) and (5.155). There-

fore, (5.116)—(5.118) hold. By the constructions of V, and V;, we see that f" is
continuous on Vy U V;. Hence, the proof is completed. 0]
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By Theorem 5.32 and with an argument similar to the proof of Theorem 5.33,
the following result for metric spaces with a certain compactness can be estab-
lished.

Theorem 5.34. Let (x,d) be a metric space in which each bounded and closed subset
is compact. Assume that F : X — X has a regular nondegenerate snap-back repeller z,
associated with xo, m, and r as specified in Definition 5.20, F is continuous on B, (z),
and F™ is continuous in a neighborhood of xo. Then, for each neighborhood U of z,
there exist a positive integer n and a Cantor set A C U such that F" : A — A is topo-
logically conjugate to the symbolic dynamical system o : >3 — >5. Consequently, F"
is chaotic on A in the sense of Devaney.

In recent years, there is growing interest in research on chaotification of dy-
namical systems. Now, we investigate the chaotification of partial difference equa-
tion (5.32).

Consider the controlled system

Xm+1,n = f(xm,n: xm,nﬂ) + sawe (,uxm,n): m,n € Ny, (5.156)
where saw, is the classical sawtooth function, that is
saw,(x) = (-1)"(x —2mr), (2m-1Dr<x<(2m+1)r, meLZ (5.157)

y > 0 is controlled parameter. We want to show the condition on controlled pa-
rameter 4 such that the controlled system (5.156) is chaotic in the sense of both
Devaney and Li-Yorke. From Section 5.3, (5.156) is equivalent to

X1 = F () + sawe (4xm) (5.158)

in the complete metric space (I°, d).

Equation (5.156) is chaotic in the sense of Devaney (or Li-Yorke) on V C I®
if its induced system (5.158) is chaotic in the sense of Devaney (or Li-Yorke) on
VvV cl>.

Suppose that f € C! in [—r,r]? for some r > 0. Denote

U515
— + —_—
0x oy

Then, F € C'inI®, I = [-r,r]. Using Theorem 5.30, we can prove the following

corollary.

1x, Y€ [—r,r]}. (5.159)

Corollary 5.35. Assume that f € C'in [—r,r] for somer > 0 and f(0,0) = 0. Then
for each constant y satisfying

U > po =max{%r‘1€,5(L+l)}, (5.160)
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there exists a Cantor set A C B(s/2)u1¢(0) C I such that (5.156) is chaotic on A in
the sense of both Devaney and Li-Yorke, where € is any given positive number.
Consider a special case of (5.156), given below:

Xt = X (1 — X)) + AXppi1 + sawe (UXmn), m,n = 0. (5.161)

It is easy to see that f(x,y) = cx(1 — x) + dy is continuously differentiable in R?,
£(0,0) =0, fu(x,y) = c(1 = 2x), and f,(x, y) = d. Hence

| o) |+ | fi(e )| <3lel+1dl,  x,ye[-1,1]. (5.162)

By Corollary 5.35, for each
5
y>;40=max{56,5(3|c|+|d|+l)}, (5.163)

there exists a Cantor set A C Es/z),,fle(o) C 1% such that the controlled system
(5.161) is chaotic on A in the sense of both Devaney and Li-Yorke.

5.5. Notes

First mathematical definition of chaos is from Li and Yorke [93]. Martelli et al.
[112] include several definitions of chaos and their comparison; also refer to [12].
The related contents of chaos can refer Devaney [52] and Elaydi [57]. The main
part of Section 5.2 is from Chen and Liu [26]. Remark 5.5 is taken from Shi et al.
[131]. The contents of Section 5.3 is based on Chen et al. [27]. Banks et al. [18]
point out that condition (3) in the definition of chaos in the sense of Devaney
is redundant. Remark 5.11 can be seen from Huang and Ye [71]. The contents of
Section 5.4 is taken from Shi and Chen [129]. Corollary 5.35 can be seen from Shi
etal. [131].
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